Электрическая емкость аккумулятора – Емкость аккумуляторов электрическая — Энциклопедия по машиностроению XXL

Содержание

Электрический аккумулятор — Википедия

Зарядное устройство «Duracell», позволяющее заряжать, как обычные пальчиковые аккумуляторы (видны пружинные прижимы для них), так и аккумуляторы типа «Крона». Во время зарядки горят индикаторы

Электри́ческий аккумуля́тор — химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.

Значение и употребление слова

Термин «аккумулятор» используется для обозначения:

  • отдельного элемента: например, аккумулятор, аккумуляторная банка, аккумуляторная ячейка.
  • нескольких отдельных элементов, соединённых последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока) друг с другом: например, аккумуляторная батарея.

История

Первый прообраз аккумулятора, который в отличие от батареи Алессандро Вольты можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. После пропускания через данное устройство тока от вольтова столба, оно само стало вести себя как источник электричества

[1].

Принцип действия

Принцип действия аккумулятора основан на обратимости химической реакции. Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием электрического тока в направлении, обратном направлению тока при разряде. Несколько аккумуляторов, объединённых в одну электрическую цепь, составляют аккумуля́торную батаре́ю.

Свинцово-кислотный аккумулятор

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в растворе серной кислоты.

Химическая реакция (слева направо — разряд, справа налево — заряд):

Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}
PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}
Литий-ионный аккумулятор

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который внедряется (интеркалируется) в кристаллическую решетку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи (например: в графит с образованием LiC6, оксиды (LiMO2) и соли (LiMRON) металла).

Алюминий-ионный аккумулятор состоит из металлического алюминиевого анода, катода из графита в виде пены и жидкого ионного невоспламеняющегося электролита. Батарея работает по принципу электрохимического осаждения: происходит растворение алюминия на аноде, далее в среде жидкого электролита анионы хлоралюмината интеркалируют в графит. Количество возможных перезарядок батареи — более 7,5 тыс. циклов без потери мощности[2][3].

Характеристики

Ёмкость аккумулятора

За ёмкость аккумулятора чаще всего принимают количество электричества равное 1 Кл, при силе тока 1 А в течение 1 с, (при переводе времени в часы получаем 1 А*ч=3600 Кл). Однако принимают, а не измеряют. Существует распространенное заблуждение, что ёмкость аккумулятора измеряется в А*ч, это не совсем так, т. к. в 1 А*с=1 Кл или 1 А*ч=3600 Кл измеряется количество электричества или электрический заряд; по формуле Q= I*t, где Q -количество электричества или электрический заряд, I — сила тока, t — время протекания электрического тока. Например, обозначение «12 В на 55 А*ч» означает, что аккумулятор выдаёт количество электричества 198 кКл (кило Кулон) по какому-либо контуру, при токе разряда 55 А за 1 ч (3600 с) до порогового напряжения 10,8 В. Расчёт показывает, что при токе разряда в 255 А аккумулятор разрядится за 12,9 минут. Как видно 55 А*ч — это не ёмкость (электрическая ёмкость измеряется в Фарадах, 1 Ф= 1 Кл/В). Поэтому на аккумуляторе написано количество электричества Q, которое он выдаёт при определённом токе разряда и определённом времени его прохождения.[источник не указан 610 дней]

Плотность энергии

Плотность энергии — количество энергии на единицу объёма или единицу веса аккумулятора (см. ст. Плотность энергии).

Саморазряд

Саморазряд — это потеря аккумулятором заряда после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после — замедляется.

Для Ni-Cd аккумуляторов считают допустимым не более 10 % саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он пренебрежимо мал и значительно себя проявляет только в течение нескольких месяцев.

В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40 % за 1 год хранения при 20°С, 15 % — при 5°С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40°С теряют ёмкости 40 % всего за 4-5 месяцев.

Температурный режим

Следует беречь аккумуляторы от огня и воды, чрезмерного нагревания и охлаждения, резких перепадов температур.

Не следует использовать аккумуляторы при температурах выше +50°С и ниже −25°С. При эксплуатации аккумулятора в условиях «холодной зимы» рекомендуется его снимать и хранить в тёплом помещении. Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.

Тип аккумулятора

Тип аккумулятора определяется используемыми материалами. Различают следующие:

  • Cn-Po — Графен-полимерный аккумулятор.
  • La-Ft — лантан-фторидный аккумулятор
  • Li-Ion — литий-ионный аккумулятор (3,2-4,2 V), общее обозначение для всех литиевых аккумуляторов
    • Li-Co — литий-кобальтовый аккумулятор, (3,6 V), на базе LiCoO2, технология в процессе освоения
    • Li-Po — литий-полимерный аккумулятор (3,7 V), полимер в качестве электролита
    • Li-Ft — литий-фторный аккумулятор
    • Li-Mn — литий-марганцевый аккумулятор (3,6 V) на базе LiMn2O4
    • LiFeS — литий-железно-сульфидный аккумулятор (1,35 V)[источник не указан 209 дней]
    • LiFeP или LFP — Литий-железно-фосфатный аккумулятор (3,3 V) на базе LiFePO
      4
      • LiFeYPO4 — литий-железо-иттрий-фосфатный (Добавка иттрия для улучшения свойств)
    • Li-Ti — литий-титанатный аккумулятор (3,2 V) на базе Li4Ti5О12
    • Li-Cl — литий-хлорный аккумулятор (3,99 V)
    • Li-S — литий-серный аккумулятор (2,2 V)
    • LMPo — литий-металл-полимерный аккумулятор
  • Fe-air — железо-воздушный аккумулятор
  • Na/NiCl — никель-солевой аккумулятор (2,58 V)
  • Na-S — натрий-серный аккумулятор, (2 V), высокотемпературный аккумулятор
  • Ni-Cd — никель-кадмиевый аккумулятор (1,2 V)
  • Ni-Fe — железо-никелевый аккумулятор (1,2-1,9 V)
  • Ni-H2 — никель-водородный аккумулятор (1,5 V)
  • Ni-MH — никель-металл-гидридный аккумулятор (1,2 V)
  • Ni-Zn — никель-цинковый аккумулятор (1,65 V)
  • Pb — свинцово-кислотный аккумулятор (2 V)
  • Pb-H — свинцово-водородный аккумулятор
  • Ag-Zn — серебряно-цинковый аккумулятор (1,85 V)
  • Ag-Cd — серебряно-кадмиевый аккумулятор (1,6 V)
  • Zn-Br — цинк-бромный аккумулятор (1,8 V)
  • Zn-air — цинк-воздушный аккумулятор
  • Zn-Cl — цинк-хлорный аккумулятор
  • RAM (Rechargeable Alkaline Manganese) — перезаряжаемая разновидность марганцево-цинкового щелочного гальванического элемента (1,5 V)[источник не указан 537 дней]
  • Ванадиевый аккумулятор (1,41 V)[источник не указан 537 дней]
  • Алюминиево-графитный аккумулятор (2 V)[источник не указан 537 дней]
  • Алюминиево-ионный аккумулятор (2 V)[4]

Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:

Тип ЭДС (В) Область применения
свинцово-кислотные

Pb

2,1 троллейбусы, трамваи, воздушные суда, автомобили, мотоциклы, электропогрузчики, штабелеры, электротягачи, аварийное электроснабжение, источники бесперебойного питания
никель-кадмиевые

Ni-Cd

1,2 замена стандартного гальванического элемента, строительные электроинструменты, троллейбусы, воздушные суда
никель-металл-гидридные

Ni-MH

1,2 замена стандартного гальванического элемента, электромобили
литий-ионные

Li‑ion

3,7 мобильные устройства, строительные электроинструменты, электромобили
литий-полимерные

Li‑pol

3,7 мобильные устройства, электромобили
никель-цинковые

Ni-Zn

1,6 замена стандартного гальванического элемента

По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо́льшим напряжением при ограничении тока. Наиболее распространённым считается зарядный ток (в амперах), пропорциональный 1/10 условной номинальной ёмкости аккумулятора (в ампер⋅часах).

Однако, основываясь на техническом описании, распространяемом изготовителями широко применяемых электрических аккумуляторов (NiMH, NiCd), можно сделать предположение о том, что данный режим заряда, обычно именуемый стандартным, рассчитывается исходя из продолжительности восьмичасового рабочего дня, когда разряженный в конце рабочего дня аккумулятор подключается к сетевому зарядному устройству до начала нового рабочего дня. Применение такого режима заряда для этих типов аккумуляторов при систематическом использовании позволяет соблюсти качественно-стоимостной баланс эксплуатации изделия. Таким образом, с подачи изготовителя данный режим можно применять только для никель-кадмиевых и никель-металл-гидридных аккумуляторов.

Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эксплуатации, например NiMH-аккумуляторы чувствительны к перезаряду, литиевые — к переразряду, напряжению и температуре. NiCd- и NiMH-аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости в случае, когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд, не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться капельная подзарядка.

В большинстве случаев возможность систематического использования аккумуляторов есть только в портативных устройствах радиосвязи и иной цифровой технике, где используются литий-ионные аккумуляторы и система контроля заряда-разряда встроена в устройство. В бюджетном сегменте «простые» никель-металл-гидридные и никель-кадмиевые аккумуляторы используются в качестве бюджетной замены щелочных элементов питания. В качестве источника тока для бюджетного аккумуляторного электроинструмента используются никель-кадмиевые аккумуляторы. Если в первом случае обычно есть возможность выбирать между бюджетным устройством «стандартного» заряда и зарядным устройством с контролем заряда (капельный заряд, импульсный заряд, ускоренный заряд с контролем напряжения и т. д.), то во втором случае изделие комплектуется, как правило, с трансформаторным источником питания для зарядки постоянным током, что при несоблюдении технических условий эксплуатации аккумулятора снижает срок его службы.

Форм-факторы

Внешний аккумулятор

Внешний аккумулятор (аккумуляторная батарея) — устройство для многократной подзарядки мобильного устройства (телефона, смартфона, планшетного компьютера) при отсутствии источника переменного тока (электросети).

Причиной появления этих устройств стало то, что при активном использовании современных смартфонов и планшетов заряда их аккумуляторов хватает на сравнительно короткое время — полдня или день. Для их зарядки в полевых условиях и были разработаны портативные аккумуляторы[5][6]. Типичный вес таких устройств — от нескольких сотен грамм, ёмкость от нескольких тысяч мА*ч до 10-20 А*ч[7]. С их помощью можно зарядить телефон 2-3 раза. Чаще всего они предоставляют для подключения порт USB. Некоторые из них имеют разъёмы или переходники для популярных разъёмов мобильных телефонов. Внешние аккумуляторы больших ёмкостей могут иметь переходники для зарядки ноутбуков. Иногда на внешних аккумуляторах имеется индикатор заряда или встроенный светодиодный фонарик.

Методы заряда аккумуляторов

Для заряда аккумуляторов применяется несколько методов. Как правило, метод заряда зависит от типа аккумулятора и обеспечивается зарядным устройством[8].

Медленный заряд постоянным током

Заряд постоянным током, пропорциональным 0.1-0.2 условной номинальной ёмкости Q в течение примерно 15-7 часов соответственно.

Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.

Быстрый заряд

Заряд постоянным током, пропорциональным 1/3 Q в течение примерно 3—5 часов.

Ускоренный или «дельта-V» заряд

Заряд с начальным током заряда, пропорциональным величине условной номинальной ёмкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.

Реверсивный заряд

Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd и NiMH аккумуляторов, для которых характерен т. н. «эффект памяти».

См. также

Примечания

Литература

Ссылки

Емкость аккумуляторов электрическая — Энциклопедия по машиностроению XXL

Схема такого энерготехнологического блока с промежуточной газовой емкостью (аккумулятором) показана на рис. 6-12. Здесь энергетическая часть блока, состоящая из парогенератора ПГ, паровой турбины ПТ и электрогенератора Г при достаточной емкости газового аккумулятора ГА работает с переменной нагрузкой в соответствии с заданным суточным графиком электрических нагрузок. Технологическая часть, состоящая из блока пиролиза БП, системы газоочистки ГО, работает с постоянной нагрузкой, обеспечивающей суточную выработку электрической энергии и химической продукции.  
[c.171]

Что такое электрическая емкость аккумулятора и в каких единицах она измеряется  [c.49]

Важной характеристикой аккумулятора является его емкость, т. е. количество электрической энергии, которую способен отдать аккумулятор. Емкость характеризуется произведением силы разрядного тока на продолжительность разряда (от полностью заряженного состояния до предельно допустимого разряженного) и измеряется в Ампер-часах. Емкость аккумулятора зависит в первую очередь от площади электродов, вступающих в реакцию с электролитом. Поэтому для повышения емкости аккумулятора необходимо увеличивать площадь пластин и обеспечивать участие в реакции всей активной массы электродов,- а не только их поверхности. С этой целью для электродов используют пористый материал. Увеличение площади пластин достигается параллельным включением нескольких пластин.  [c.101]

Электрические характеристики аккумуляторов. Электродвижущая сила аккумуляторов. К числу электрических характеристик аккумулятора относятся следующие 1) величина э. д. с. 2) величина внутреннего сопротивления 3) величина напряжения на зажимах аккумулятора 4) емкость аккумулятора и 5) коэффициент электрической отдачи.  [c.149]

Что такое электрическая емкость аккумулятора  [c.36]

Емкость аккумулятора характеризует его способность поглощать при заряде и отдавать при разряде то или иное количество электрической энергии определенной силы до предельно допустимого падения напряжения на выводных штырях.  [c.17]

Емкостью аккумулятора называют его способность поглощать и отдавать при разрядке определенное количество электрической энергии. Емкость определяется числом пластин в аккумуляторе и их размером. Она измеряется в ампер-часах. Для определения емкости надо перемножить силу разрядного тока в амперах на время до полной разрядки аккумулятора. Емкость не является величиной постоянной, она зависит от разрядного тока и температуры электролита. Емкость, указанная на аккумуляторной батарее, определяется при температуре электролита (+30° С) и времени полного разряда 10 ч.  [c.108]

Температура. Прохождение электрического тока через аккумулятор вызывает его нагрев. Допустимый верхний предел температур при заряде для аккумуляторов с трубчатыми пластинами составляет приблизительно 45° С. При ламельных электродах температура при заряде не должна превышать 35—40° С. Часто превышение этих температур является причиной снижения емкости аккумулятора.  [c.248]


Емкость аккумулятора. Емкостью аккумулятора называется способность его при зарядке поглощать, а затем отдавать то или иное количество электрической энергии ири разрядке током постоянной величины до предельно допустимого падения напряжения.  [c.301]

С герметичным аккумулятором можно обращаться как с обычной радиодеталью, помещая его в любом положении. Выходное сопротивление герметичных аккумуляторов очень мало — сотые и десятые доли ома (чем больше емкость, тем меньше сопротивление). Эквивалентная электрическая емкость аккумулятора для переменной составляющей тока порядка тысяч микрофарад на частоте 100 Гц.  [c.26]

Количество запасаемой аккумулятором при заряде и отдаваемой при разряде электрической энергии (емкость батареи) зависит, как уже отмечалось, от количества активной массы, а еще больше — от размера ее поверхности, соприкасающейся с электролитом. Чтобы  [c.46]

Для получения аккумулятора большой емкости обычно увеличивают количество составляющих его пластин, а не их размеры, так как увеличение размеров пластин сопряжено с техническими затруднениями. Уменьшение разновидностей пластин ведет к упрощению и, следовательно, удешевлению производства аккумуляторов, улучшению их электрических качеств, повышению механической прочности и т. д. Например, аккумуляторный элемент ЭКН-280 составляют из 19 пластин, в том числе из девяти положительных и десяти отрицательных.  [c.29]

Наличие тонких пор, невидимых простым глазом, контролируется с помощью искрового дефектоскопа-детектора ДР-12. Электрическая схема его показана на рис. 63. Электрооборудование размещено на шасси, снабженном резиновыми роликами с вогнутой поверхностью катания. В футляре детектора смонтированы индукционная катушка, прерыватель-конденсатор и механический выключатель. Питание детектора осуществляется от кислотного аккумулятора напряжением 6 в, емкостью 10 а-ч. При этом в индукционной катушке получается ток напряжением 12—18 кв.  [c.140]

Важной характеристикой аккумулятора является его емкость, т. е. количество электрической энергии, которую способен отдать аккумулятор. Емкость характеризуется произведением силы  [c.85]

Кислотные батареи, состоящие из 26 элементов (аккумуляторов), отличаются друг от друга числом и конструкцией пластин, а также величиной электрической емкости. Применяют следующие типы кислотных аккумуляторов ВПМ-400, Х-Г0-50, ВП.45.ХП.  [c.206]

Таким образом, измерению подлежат время т и какие-нибудь две из трех величин — 1, е или / . В некоторых случаях сопротивление нагревателя калориметра остается во времени достаточно постоянным, тогда для определения количества электрической энергии необходимо измерить помимо времени только одну из величин — I или е. Однако сравнительно редко можно быть уверенным в постоянстве (в пределах требующейся точности измерения) сопротивления нагревателя в течение всего времени нагрева и потому приходится проводить измерение двух величин — обычно / и е. Необходимо отметить, что для точного измерения энергии величины I м е следует, строго говоря, интегрировать во все время пропускания тока, так как они обычно несколько изменяются. Чтобы свести эти изменения к минимуму, следует обеспечить достаточное постоянство (или небольшое монотонное изменение) э. д. с. источника тока (обычно батарея аккумуляторов большой емкости) и отсутствие во всей цепи участков, сопротивление которых может меняться во времени. Проводя измерения I н е через определенные интервалы времени, можно достаточно точно найти средние значения этих величин за весь период нагревания. Эти значения и используются для вычисления электрической энергии.  [c.219]

Основными электрическими параметрами стартерных аккумуляторных батарей являются ЭДС, напряжение, мощность и емкость. ЭДС химического источника тока представляет собой разность электродных потенциалов при разомкнутой внешней цепи. ЭДС Е свинцового аккумулятора зависит от химических свойств активных веществ. Температура мало влияет на величину ЭДС. При работе аккумулятора ЭДС меняется вследствие изменения концентрации серной кислоты в электролите, т. е. изменения плотности электролита. Она не зависит от количества заложенных в аккумулятор активных материалов и от геометрических размеров электродов и увеличивается пропорционально числу последовательно включенных аккумуляторов.  [c.64]

Особенностью работы аккумуляторной батареи зимой является то, что с понижением температуры электролита уменьшается емкость батареи и падает напряжение на ее клеммах. Это объясняется увеличением вязкости электролита, в результате чего замедляются электрохимические процессы, происходящие в аккумуляторе, возрастает удельное электрическое сопротивление электролита и ухудшается проникновение его в поры активной массы пластин. При уменьшении емкости и падении напряжения на клеммах аккумуляторная батарея не обеспечит мощности, необходимой для прокручивания коленчатого вала стартером с нужной скоростью. Следовательно, при низких температурах необходимо уменьшить вязкость электролита. Для этого аккумуляторную батарею помещают в специальные утеплительные ящики.  [c.254]

Способность аккумулятора накапливать и отдавать электрическую энергию характеризуется его емкостью. Емкость — это количество электричества, отданное аккумулятором во время разряда, которое измеряют в ампер-часах (А-ч) и определяют произведением значения разрядного тока на количество часов, в течение которых происходит разряд аккумулятора, т. е. пока его напряжение не упадет до конечного значения (1,7 В на элемент при постоянном нормальном значении тока данного аккумулятора). Если, например, свинцовый аккумулятор разряжали до напряжения 1,7 В в течение 4 ч при постоянном токе 50 А, его отданная емкость составляет примерно 200 А-ч.  [c.14]

После заполнения решеток активной массой их аккуратно накладывают одна на другую, чтобы совпали ребра решеток и прямоугольные выступы на одной решетке с отверстиями в другой. После этого внешние стороны решеток покрывают перфорированными свинцовыми листами. Две сложенные таким образом половинки соединяют вместе. Перфорированные свинцовые листы позволяют проникать электролиту внутрь активной массы и одновременно препятствуют выпадению активной массы из пластин. Коробчатые пластины по электрической характеристике и удельной емкости уступают намазным решетчатым пластинам. В тяговых аккумуляторах их применяют в качестве отрицательных электродов.  [c.21]

Для получения аккумулятора большой емкости обычно увеличивают число составляющих его пластин, а не их размеры, поскольку увеличение последних сопряжено с техническими затруднениями. Уменьшение разновидностей пластин ведет к упрощению и, следовательно, удешевлению производства аккумуляторов, улучшению их электрических качеств, повышению механической прочности и т. д.  [c.22]

В данной системе для питания пульта при управлении по радиоканалу применяются герметичные, никель-кадмиевые аккумуляторы типа ЦНК-0,9. В условном наименовании аккумуляторов буква Ц обозначает их форму (цилиндрические), буквы НК — материал и электрическую схему (никель-кадмиевые). Число после буквенного обозначения 0,9 — номинальную емкость в ампер-часах. Аккумуляторы собраны в батарею по 10 штук,  [c.103]

Отдача аккумуляторной батареей электрической емкости при разряде всегда меньше полученной им емкости при заряде, так как часть энергии расходуется на побочные процессы (нагрев, электролиз воды). Отношение емкости (в ампер-часах),- полученной во время разряда, к емкости, сообщенной при заряде, называют коэффициентом отдачи по емкости. Он для свинцово-кислотных аккумуляторов примерно равен 0,85.  [c.177]

Отрицательный электрод состоит из сетчатого токо-отвода, на который методом прокатки наносится активная масса в виде губчатого железа с обычными активирующими добавками. Конструкция блока пластин сварная, что позволяет снизить электрическое сопротивление токоведущих частей. Вследствие этих особенностей аккумуляторы ТЖН К имеют лучшие по сравнению с аккумуляторами ТЖН характеристики их удельная емкость 27 Вт ч/кг, объемная емкость 55 Вт-ч/дм .  [c.81]

Электрические данные каждого аккумулятора характеризуются тремя основными величинами — напряжением, емкостью и внутренним сопротивлением. Напряжение аккумулятора зависит от материала электродов и состава электролита. Напряжение на клеммах щелочного аккумулятора зависит от степени его заряженности и величины тока нагрузки. Рабочее напряжение аккумулятора равно 1,20—1,25 в. В конце зарядки оно может возрасти до 1,75—1,80 в, затем при. под-  [c.167]

Аккумуляторами называются химические источники электрической энергии, принцип действия которых основан на использовании обратимых химических реакций. Аккумулятор представляет собой накопитель энергии, характеризующийся такими параметрами как ЭДС, напряжение, сопротивление, емкость, отдача, саморазряд и срок службы.  [c.385]

Способность аккумулятора накапливать и отдавать электрическую энергию характеризуется его емкостью. Емкостью аккумулятора называется количество электричества, отданное им во время разряда. Емкость измеряют в ампер-часах (а и определяют путем умпоже-ипя величины разрядн010 гока на количество часов, в течение которых производится разряд аккумулятора, т. е. пока его напряжение не упадет до конечного значе-  [c.18]

Укажем, что для измерения электрического заряда ак-хумуляторов (неудачное, но весьма распространенное название емкость аккумуляторов ) применяется единица ампер-час 1 А-ч = 3600 Кл.  [c.213]

Нам кажется возможным и желательным воспользоваться тем обстоятельством, что в наше время 1) стало возможным регулирование на ускорение открытие дросселя, 2) возможно увеличение емкости аккумуляторов и их использование для приемистости, 3) конструирование электродвигателей достигло высокой степени совершенства, 4) экономика играет здесь (в приемистости) малую роль. Заметим, что возможно и не электрическое аккумулирование запаса энергии, а чисто механическое, как предлагал В. П. Ветчинкип. Но это отдельный вопрос, и его не надо смешивать с обш ими принципами экономичности автомобиля.  [c.307]

Нормально уровень электролита должен находиться на высоте 10—15 мм от верхней кромки пластин аккумулятора или предохранительного щита. Снижение уровня ниже нормы может привести к обнажению пластин аккумулятора. Обнаженные места, в первую очередь у отрицательных пластин, усиленно окисляются, образуется сульфат свинца. Сульфатацня пластин вызывает значительное понижение емкости аккумулятора. Кроме этого, затрудняется запуск двигателя стартером, стартер не развивает требуемой мощности вследствие увеличения сопротивления в самом аккумуляторе, так как сульфат свинца не проводит электрический ток. Если верхняя часть пластин остается оголенной в течение двух —трех недель, пластины разрушаются, так как сульфат свинца выпадает из решеток пластин.  [c.209]

Чтобы получить достаточно высокую точность измерения электрических величин, нужно выбрать амперметр и вольтметр не только высокого класса точности, но и с такими пределами измерения, чтобы измеряемые в опыте величины были близки к пределу прибора. Наиболее высокая точность измерений может быть получена в случае применения потенциометрического метода с четырехпроводной схемой. Электрическая схема в этом случае аналогична схеме измерения сопротивления термометра сопротивления (см. рис. 3.14) с тем лишь отличием, что дополнительно используется делитель напряжения, так как падение напряжения на нагревателе составляет обычно несколько вольт и не может быть измерено на потенциометре. Большое внимание должно быть уделено обеспечению стабильности напряжения во время опыта, так как его колебания увеличивают случайную погрешность измерений. Поэтому при точных измерениях теплоемкости для питания калориметрического нагревателя применяют батарею аккумуляторов большой емкости.  [c.105]

Тепловые аккумуляторы — третий вид аккумуляторов, предложенный Ветчинкиным и Уфимцевым,— представляют собой большие цистерны с прочными и хорошо теплоизолированными стенками. В них находится вода, нагреваемая злектроподогревателями до высокой температуры. Тепловая энергия, запасенная в этих цистернах, может использоваться и для отопительных и для энергетических целей снижая давление, превращая воду в пар, можно потом заставлять ее работать в паровых машинах или турбинах. По расчетам авторов предложения, тепловые аккумуляторы могут оказаться в некоторых случаях в 300—500 раз экономичнее, чем электрические той же емкости. Общим недостатком всех этих проектов аккумуляторов является, кроме их громоздкости, необходимости держать в резерве крупные мощности дублирующих двигателей другого типа, которые простаивают во время работы ветродвигателя, и их сравнительно невысокий коэффициент полезного действия. Поднятая в водохранилище вода будет испаряться, не говоря уж о том, что часть энергии потеряется при работе насосной и гидротурбинной установок. Коэффициент полезного действия гидроаккумулятора составляет всего 40—50 процентов, а резервной станции с двигателем внутреннего сгорания, работающим на водороде в качестве горючего, вряд ли превзойдет 35 процентов. Еще ниже будет коэффициент полезного действия станции с паровой машиной или турбиной, не говоря уже о потерях тепла при хранении горячей воды в цистернах— теплоаккумуляторах. Ни одно из рассмотренных устройств при практическом исполнении не сможет, видимо, превратить в электрическую энергию свыше 50 процентов от затраченной.  [c.213]

Основное требование к источникам тока, питающим электроосветителл, — стабильность их напряжения, от которой зависит стабильность светимости модели излучающей иоверхности во время проведения оиыта. В качестве таких источников обычно используются электрическая сеть, аккумуляторы и батареи иостоянного тока большой емкости. Если осветители модели питаются от электрической сети, то необходимо предусмотреть хорошую стабилизацию наиряжения.  [c.305]

Электрические свинцовые аккумуляторы для стационарных установок по ГОСТу 825-41 тниа С —с положительными пластинами поверхностного типа и СП — панцирного типа — для продолжительных разрядных режимов и соответственно типов СК н СПК для коротких разрядных режимов. Номинальная емкость соответствует 10-часовому режиму разряда. Изготовляются емкостью от 36 до 5328 а-ч. Номинальное напряжение 2 е (наименьшее значение напряжения на зажимах вполне заряженного аккумулятора в течение первого часа его разряда при 10-часовом режиме разряда). Номинальный ток — ток 10-часового разряда. Удельный вес электролита в начале разряда 1,205, в конце разряда 1,16. Наименьшее допустимое напряжение 1,8 в для режима разряда 3—10 час. и 1,75 в для элементов СК при режиме разряда 1—2 часа.  [c.465]

Устройство простейших емкостных аккумуляторов тепла у потребителей. Примером та.ки) устройств являются баки большой емкости, устанавливаемые в банях, питаемых от тэц. В течение периода неполной нагрузки станции бани польвуются теплом от тэц (в виде пара или горячей воды) для нагрева воды в баках. В часы максимума электрической нагрузки теплоснабжение от тэц временно прекращается и начинается расходование тепла горячей воды, запасаемой в баках. Баки емкостью 150 м. при температуре воды 90° аккумулируют 13,5 10 ккал, что соответствует расходу пара порядка 23 ООО кг. Другими словами, в баке простейшего типа, не подверженном повышенному давлению, может быть аккумулировано вдвое большее количество тепла, чем в описанном выше паровом аккумуляторе той же емкости с начальным давлением 8 ата и конечным давлением разряда 2 ата.  [c.105]

Такие цены уже установлены во многих западных странах (но не в США). Поэтому использование теплового аккумулш рования представляется экономически и технически более оправданным для небольших погружных устройств и малогабаритных автомобилей. В то же время из опыта разработки тепловых аккумуляторов фирмой Дженерал моторе следует, что такие системы лучше подходят для более крупных знергосиловых установок, чем используемые на автомобилях, а именно для энергосиловых установок локомотивов и подводных лодок среднего размера. Энергосиловая установка на основе системы с тепловым аккумулированием и двигателем Стирлинга мощностью 1 МВт при емкости теплового аккумулятора 44 МВт-ч обеспечивает в 8,34 раза больше энергии для погружных устройств, чем электрическая. система той же массы на свинцово-кислотных батареях.  [c.388]

В проведенных опытах наряду с накоплением материалов по минималь-ным напряжениям, вызывающим щелочные хрупкие разрушения металла, >были произведены также непосредственные измерения самоустанавливаю-щихся потенциалов образцов. Кроме того, чтобы изучить влияние более широкого диапазона изменений потенциалов образцов, на каждом автоклаве был предусмотрен автономный поляризационный контур, питающийся от аккумуляторной батареи. Каждый из трех электрических контуров был оборудован тремя аккумуляторами емкостью по 270 а-ч, с общей емкостью около 700 а-ч.  [c.369]

Неисправности свинцовых аккумуляторных батгфей и их причины, в свинцовых аккумуляторных батареях встречаются следующие неисправности потеря емкости, вызываемая вредной сульфатацией, большим саморазрядом или же выпадением активной массы из решеток пластин, а также обрывом одной или нескольких пластин от бареток. Кроме того, в аккумуляторах может иметь место разрушение решеток пластин, разрушение сепараторов или потеря пористости их, коробление пластин и их замыкание, нарушение электрического контакта между штырем баретки и межэлементной перемычкой, обрыв выводных штырей, повреждение стенок и крышек бака, появление трещин и отставание заливочной мастики. При неисправности одного из аккумуляторов батареи может иметь место перенлюсовка его пластин.  [c.170]

Аккумуляторные батареи и отдельные аккумуляторы характеризуются целым рядом показателей, из кот( пых наиоо ьшее практическое значение имеют электродвижущая сила (э. д. с.), напряжение, электрическая емкость и срок службы. Электродвижущая сила любого химического источника тока зависит от химических свойств материалов, из которых изготовлены электроды, и концентрации ионов этих материалов в электролите. Концентрация ионов свинца в растворе серной кислоты , свиниово-кислотш. м аккумуляторе зависит от концентрации серной кислоты в электролите (плотности электролита), а его химические свойства не изменяются. Поэтому практически э. д. с. аккумулятора находится в линейной зависи.мости от плотности электролита и может быть определена по простой эмпирической формуле  [c.122]

О. ж.-д. транспорта. Вследствие разнообразия условий на ж. д. находят себе применение свечные, масляные, керосиновые, спирто-калильные, газовые и электрич. источники света. Нормальным О. пассажирских вагонов в настоящее время признается только электрическое. Первоначально оно устраивалось от аккумуляторов, периодически заряжаемых на станциях. Теперь чаще всего применяется особая генераторная установка, состоящая из аккумуляторной батареи и специальной динамомашины, сцепленной с осью вагона. На остановках и при тихом ходе сеть питает батарея, в пути ток дает динамо, к-рая в то же время заряжает и батарею. Для саморегулирования эта установка, называемая осевой системой , имеет специальное устройство, выполняемое различно, но всегда состоящее из следующих частей. 1) Включающий автомат, к-рый при достаточном числе оборотов включает машину на сеть и батарею на зарядку при малых оборотах выключает машину. Включающие автоматы бывают центробежные и электромагнитные. 2) Переключатели полярности переключают полюсы машины при обратном ходе вагона по конструкции бывают электромагнитные или в виде особого супорта на самой машине. 3) Регулятор машины регулирует постоянство напряжения на зажимах машины. Это достигается или при помощи скользящего ремня или особыми электромагнитными регуляторами. Иногда машина регулируется на постоянную силу тока, тогда для сети ламп ставится отдельный регулятор напряжения. 4) Регулятор зарядки батареи делается обычно электромагнитного типа. Выключает батарею, когда ее напряжение достигнет предела (2,6 V на свинцовый и. 1,7 V на щелочной элемент). О. подвижного состава может производиться и от особого турбогенератора, устанавливаё-мого на паровозе, от к-рого ток распределяется по вагонам и подводится к вагонным батареям. Днем производится зарядка батарей, а ночью они работают на сеть. Электрифицированные составы обычно имеют мотор-генераторы, к-рые питаются током от тролер-ного провода. На ж. д. СССР находят применение машины и аппаратура самых разнообразных фирм. За последнее время имеются вагоны, оборудованные з-дом Динамо . Кислотные аккумуляторы производства ВЭО имеют емкость на 108—370 Ah при разрядном токе на 36—90 А. Щелочные аккумуляторы (Юнгнера) имеют емкость в 140—300 Ah при токе 17—38 А.  [c.106]

Магнитное поле является аккумулятором энергии с возникновением магнитного поля сопряжена затрата некоторого количества энергии, необходимого для создания поля эту энергию поле при своем исчезновении отдает обратно в электрич. цепь, из к-рой оно эту энергию почерпнуло. При получении поля с помощью переменного тока все время имеет место процесс переливания энергии из электрич. цепи в магнитное поле и обратно. Поля и связанные с ними С. ф. зависят от характера нагрузки (приемников) и свойств самих проводов (см. Провода электрические и Сети элек-шришкие). На практике чаще встречаются поля магнитные с электрич. полями приходится иметь дело преимущественно в высоковольтных установках (обладающие значительной емкостью кабели и линии большого протяжения). Практически С. ф. можно считать равным нулю при нагрузке в виде одних ламп накаливания или синхронных двигателей (или синхронных преобразователей), работающих при os 9 = 1 и при низковольтных не слишком длинных проводах (распределительные сети). Во всех других случаях, и особенно при наличии асинхронных двигателей, (рФО. У асинхронных двигателей вообще os 9 асинхронных двигателей (в отношении уменьшения С, ф.) большое число обо-  [c.224]

Основными техническими характеристиками электрического аккумулятора являются емкость, т. е. количество электричества в А-ч, которое аккумулятор может отдать в питаемую им цепь среднее напряжение во время зарядки и разрядки в В удельная энергия по весу и объему, т. е. энергия, снимаемая с 1 кг веса и 1 дм объема аккумулятора при разрядке, выражаемая в Вт-ч/кг и Вт-ч/дм отдача по емкости, т. е. отношение количества ампер-часов, отдаваемых аккумулятором при разрядке, к количеству ампер-часов, сообщаемых аккумулятору при зарядке отдача по энергии (или к. п. д. аккумулятора), или отношение энергии, отдаваемой аккумулятором при разрядке, к энергии, сообщаемой аккумулятору при зарядке. Чтобы получить источник тока требуемого напряжения, ooтвet твyющee число аккумуляторов соединяется последовательно в батареи.  [c.77]

В качестве источников электрического тока на автопогрузчиках используют генераторы постоянного тока и кислотные аккумуляторные батареи 3-СТ-70-ПД либо 3-СТ-ЭМ. Марка расшифровывается следующим образом батарея стартерного типа, объединяющая три последовательно соединенных аккумулятора емкостью 70 а-ч при десятичасовом разряде буквы Э (эбонитовый) или П (пластмассовый) обозначают материал бачков, а буквы Д (дерево) или М (мипор) — материал  [c.288]

На электропоездах применяют щелочные аккумуляторные батареи 90НК-55 (см. рис. 2.18). Первая цифра обозначает число элементов (банок) в батарее, буквы НК — никелево-кадмиевая, число после букв — номинальную емкость батареи в ампер-часах. Батарея представляет собой блок из девяноста банок 1, стянутых между собой деревянным дощатым каркасом. Банки электрически последовательно соединены между собой медными шинами 2. На каждом прицепном (головном) вагоне в специальных подвагонных ящиках установлены две параллельно соединенные аккумуляторные батареи. Щелочные аккумуляторы по сравнению с кислотными имеют меньшую массу при одинаковой емкости и срок их службы увеличен в несколько раз, но они значительно дороже.  [c.29]


Электрический аккумулятор Википедия

Зарядное устройство «Duracell», для заряжания как аккумуляторов типоразмеров AA и AAA (видны пружинные прижимы для них), так и аккумуляторные батареи типа «Крона». Во время зарядки горят индикаторы

Электри́ческий аккумуля́тор — химический источник тока, источник ЭДС многоразового действия, основная специфика которого заключается в обратимости внутренних химических процессов, что обеспечивает его многократное циклическое использование (через заряд-разряд) для накопления энергии и автономного электропитания различных электротехнических устройств и оборудования, а также для обеспечения резервных источников энергии в медицине, производстве, транспорте и в других сферах.

Значение и употребление слова

Термин «аккумулятор» используется для обозначения отдельного элемента: например, аккумулятор, аккумуляторная банка, аккумуляторная ячейка. Но, разговорной речи на бытовом уровне может также применяться в отношении нескольких отдельных элементов, соединённых последовательно (для увеличения напряжения) или параллельно (для увеличения силы тока) друг с другом, то есть для обозначения аккумуляторной батареи.

История

Первый прообраз аккумулятора, который, в отличие от батареи Алессандро Вольты, можно было многократно заряжать, был создан в 1803 году Иоганном Вильгельмом Риттером. Его аккумуляторная батарея представляла собой столб из пятидесяти медных кружочков, между которыми было проложено влажное сукно. После пропускания через данное устройство тока от вольтова столба оно само начинало вести себя как источник электричества[1].

Принцип действия

Принцип действия аккумулятора основан на обратимости химической реакции. Работоспособность аккумулятора может быть восстановлена путём заряда, то есть пропусканием электрического тока в направлении, обратном направлению тока при разряде. Несколько аккумуляторов, объединённых в одну электрическую цепь, составляют аккумуля́торную батаре́ю.

Свинцово-кислотный аккумулятор

Принцип работы свинцово-кислотных аккумуляторов основан на электрохимических реакциях свинца и диоксида свинца в растворе серной кислоты.

Химическая реакция (слева направо — разряд, справа налево — заряд):

Pb+SO42−−2e−⇆PbSO4{\displaystyle Pb+SO_{4}^{2-}-2e^{-}\leftrightarrows PbSO_{4}}
PbO2+SO42−+4H++2e−⇆PbSO4+2h3O{\displaystyle PbO_{2}+SO_{4}^{2-}+4H^{+}+2e^{-}\leftrightarrows PbSO_{4}+2H_{2}O}
Литий-ионный аккумулятор

Литий-ионный аккумулятор состоит из электродов (катодного материала на алюминиевой фольге и анодного материала на медной фольге), разделённых пропитанными электролитом пористыми сепараторами. Переносчиком заряда в литий-ионном аккумуляторе является положительно заряженный ион лития, который внедряется (интеркалируется) в кристаллическую решетку других материалов (например, в графит, оксиды и соли металлов) с образованием химической связи (например: в графит с образованием LiC6, оксиды (LiMO2) и соли (LiMRON) металла).

Алюминий-ионный аккумулятор состоит из металлического алюминиевого анода, катода из графита в виде пены и жидкого ионного невоспламеняющегося электролита. Батарея работает по принципу электрохимического осаждения: происходит растворение алюминия на аноде, далее в среде жидкого электролита анионы хлоралюмината интеркалируют в графит. Количество возможных перезарядок батареи — более 7,5 тыс. циклов без потери мощности[2][3].

Характеристики

Ёмкость аккумулятора

За ёмкость аккумулятора чаще всего принимают количество электричества равное 1 Кл, при силе тока 1 А в течение 1 с, (при переводе времени в часы получаем 1 А*ч=3600 Кл). Однако принимают, а не измеряют. Существует распространенное заблуждение, что ёмкость аккумулятора измеряется в А*ч, это не совсем так, т. к. в 1 А*с=1 Кл или 1 А*ч=3600 Кл измеряется количество электричества или электрический заряд; по формуле Q= I*t, где Q -количество электричества или электрический заряд, I — сила тока, t — время протекания электрического тока. Например, обозначение «12 В на 55 А*ч» означает, что аккумулятор выдаёт количество электричества 198 кКл (килокулон) по какому-либо контуру, при токе разряда 55 А за 1 ч (3600 с) до порогового напряжения 10,8 В. Расчёт показывает, что при токе разряда в 255 А аккумулятор разрядится за 12,9 минут. Как видно 55 А*ч — это не ёмкость (электрическая ёмкость измеряется в Фарадах, 1 Ф= 1 Кл/В). Поэтому на аккумуляторе написано количество электричества Q, которое он выдаёт при определённом токе разряда и определённом времени его прохождения.[источник не указан 1072 дня]

Плотность энергии

Плотность энергии — количество энергии на единицу объёма или единицу веса аккумулятора (см. ст. Плотность энергии).

Саморазряд

Саморазряд — это потеря аккумулятором заряда после полной зарядки при отсутствии нагрузки. Саморазряд проявляется по-разному у разных типов аккумуляторов, но всегда максимален в первые часы после заряда, а после — замедляется.

Для Ni-Cd аккумуляторов считают допустимым не более 10 % саморазряда за первые 24 часа после проведения зарядки. Для Ni-MH саморазряд чуть меньше. У Li-ion он пренебрежимо мал и значительно себя проявляет только в течение нескольких месяцев.

В свинцово-кислотных герметичных аккумуляторах саморазряд составляет около 40 % за 1 год хранения при 20°С, 15 % — при 5°С. Если температуры хранения более высокие, то саморазряд возрастает: батареи при 40°С теряют ёмкости 40 % всего за 4-5 месяцев.

Температурный режим

Следует беречь аккумуляторы от огня и воды, чрезмерного нагревания и охлаждения, резких перепадов температур.

Не следует использовать аккумуляторы при температурах выше +50°С и ниже −25°С. При эксплуатации аккумулятора в условиях «холодной зимы» рекомендуется его снимать и хранить в тёплом помещении. Нарушение температурного режима может привести к сокращению срока службы или потере работоспособности.

Тип аккумулятора

Тип аккумулятора определяется используемыми материалами. Различают следующие:

  • Cn-Po — Графен-полимерный аккумулятор.
  • La-Ft — лантан-фторидный аккумулятор
  • Li-Ion — литий-ионный аккумулятор (3,2-4,2 V), общее обозначение для всех литиевых аккумуляторов
    • Li-Co — литий-кобальтовый аккумулятор, (3,6 V), на базе LiCoO2, технология в процессе освоения
    • Li-Po — литий-полимерный аккумулятор (3,7 V), полимер в качестве электролита
    • Li-Ft — литий-фторный аккумулятор
    • Li-Mn — литий-марганцевый аккумулятор (3,6 V) на базе LiMn2O4
    • LiFeS — литий-железно-сульфидный аккумулятор (1,35 V)[источник не указан 671 день]
    • LiFeP или LFP — Литий-железно-фосфатный аккумулятор (3,3 V) на базе LiFePO4
      • LiFeYPO4 — литий-железо-иттрий-фосфатный (Добавка иттрия для улучшения свойств)
    • Li-Ti — литий-титанатный аккумулятор (3,2 V) на базе Li4Ti5О12
    • Li-Cl — литий-хлорный аккумулятор (3,99 V)
    • Li-S — литий-серный аккумулятор (2,2 V)
    • LMPo — литий-металл-полимерный аккумулятор
  • Fe-air — железо-воздушный аккумулятор
  • Na/NiCl — никель-солевой аккумулятор (2,58 V)
  • Na-S — натрий-серный аккумулятор, (2 V), высокотемпературный аккумулятор
  • Ni-Cd — никель-кадмиевый аккумулятор (1,2 V)
  • Ni-Fe — железо-никелевый аккумулятор (1,2-1,9 V)
  • Ni-H2 — никель-водородный аккумулятор (1,5 V)
  • Ni-MH — никель-металл-гидридный аккумулятор (1,2 V)
  • Ni-Zn — никель-цинковый аккумулятор (1,65 V)
  • Pb — свинцово-кислотный аккумулятор (2 V)
  • Pb-H — свинцово-водородный аккумулятор
  • Ag-Zn — серебряно-цинковый аккумулятор (1,85 V)
  • Ag-Cd — серебряно-кадмиевый аккумулятор (1,6 V)
  • Zn-Br — цинк-бромный аккумулятор (1,8 V)
  • Zn-air — цинк-воздушный аккумулятор
  • Zn-Cl — цинк-хлорный аккумулятор
  • RAM (Rechargeable Alkaline Manganese) — перезаряжаемая разновидность марганцево-цинкового щелочного гальванического элемента (1,5 V)[источник не указан 999 дней]
  • Ванадиевый аккумулятор (1,41 V)[источник не указан 999 дней]
  • Алюминиево-графитный аккумулятор (2 V)[источник не указан 999 дней]
  • Алюминиево-ионный аккумулятор (2 V)[4]

Электрические и эксплуатационные характеристики аккумулятора зависят от материала электродов и состава электролита. Сейчас наиболее распространены следующие аккумуляторы:

Тип ЭДС (В) Область применения
свинцово-кислотные

Pb

2,1 троллейбусы, трамваи, воздушные суда, автомобили, мотоциклы, электропогрузчики, штабелеры, электротягачи, аварийное электроснабжение, источники бесперебойного питания
никель-кадмиевые

Ni-Cd

1,2 замена стандартного гальванического элемента, строительные электроинструменты, троллейбусы, воздушные суда
никель-металл-гидридные

Ni-MH

1,2 замена стандартного гальванического элемента, электромобили
литий-ионные

Li‑ion

3,7 мобильные устройства, строительные электроинструменты, электромобили
литий-полимерные

Li‑pol

3,7 мобильные устройства, электромобили
никель-цинковые

Ni-Zn

1,6 замена стандартного гальванического элемента

Форм-факторы

Литий-ионный аккумулятор форм-фактора 18650
Внешний аккумулятор

Внешний аккумулятор (аккумуляторная батарея) (англ. power bank) — устройство для многократной подзарядки мобильного устройства (телефона, смартфона, планшетного компьютера) при отсутствии источника переменного тока (электросети).

Причиной появления этих устройств стало то, что при активном использовании современных смартфонов и планшетов заряда их аккумуляторов хватает на сравнительно короткое время — полдня или день. Для их зарядки в полевых условиях и были разработаны портативные аккумуляторы[5][6]. Типичный вес таких устройств — от нескольких сотен грамм, ёмкость от нескольких тысяч мА*ч до 10-20 А*ч[7]. С их помощью можно зарядить телефон 2-3 раза. Чаще всего они предоставляют для подключения порт USB. Некоторые из них имеют разъёмы или переходники для популярных разъёмов мобильных телефонов. Внешние аккумуляторы больших ёмкостей могут иметь переходники для зарядки ноутбуков. Иногда на внешних аккумуляторах имеется индикатор заряда или встроенный светодиодный фонарик.

Применение

В большинстве случаев возможность систематического использования аккумуляторов есть только в портативных устройствах радиосвязи и иной цифровой технике, где используются литий-ионные аккумуляторы и система контроля заряда-разряда встроена в устройство. В бюджетном сегменте «простые» никель-металл-гидридные и никель-кадмиевые аккумуляторы используются в качестве бюджетной замены щелочных элементов питания (батареек). В качестве источника тока для бюджетного аккумуляторного электроинструмента используются никель-кадмиевые аккумуляторы.

Если в первом случае обычно есть возможность выбирать между бюджетным устройством «стандартного» заряда и зарядным устройством с контролем заряда (капельный заряд, импульсный заряд, ускоренный заряд с контролем напряжения и т. д.), то во втором случае изделие комплектуется, как правило, с трансформаторным источником питания для зарядки постоянным током, что при несоблюдении технических условий эксплуатации аккумулятора снижает срок его службы.

Зарядка аккумуляторов

По мере исчерпания химической энергии напряжение и ток падают, аккумулятор перестаёт действовать. Зарядить аккумулятор (батарею аккумуляторов) можно от любого источника постоянного тока с бо́льшим напряжением при ограничении тока. Наиболее распространённым считается зарядный ток (в амперах), пропорциональный 1/10 условной номинальной ёмкости аккумулятора (в ампер⋅часах).

Однако, основываясь на техническом описании, распространяемом изготовителями широко применяемых электрических аккумуляторов (NiMH, NiCd), можно сделать предположение о том, что данный режим заряда, обычно именуемый стандартным, рассчитывается исходя из продолжительности восьмичасового рабочего дня, когда разряженный в конце рабочего дня аккумулятор подключается к сетевому зарядному устройству до начала нового рабочего дня. Применение такого режима заряда для этих типов аккумуляторов при систематическом использовании позволяет соблюсти качественно-стоимостной баланс эксплуатации изделия. Таким образом, с подачи изготовителя данный режим можно применять только для никель-кадмиевых и никель-металл-гидридных аккумуляторов.

Многие типы аккумуляторов имеют различные ограничения, которые необходимо учитывать при зарядке и последующей эксплуатации, например NiMH-аккумуляторы чувствительны к перезаряду, литиевые — к переразряду, напряжению и температуре. NiCd- и NiMH-аккумуляторы имеют так называемый эффект памяти, заключающийся в снижении ёмкости в случае, когда зарядка осуществляется при не полностью разряженном аккумуляторе. Также эти типы аккумуляторов обладают заметным саморазрядом, то есть они постепенно теряют заряд, не будучи подключенными к нагрузке. Для борьбы с этим эффектом может применяться капельная подзарядка.

Методы заряда аккумуляторов

Для заряда аккумуляторов применяется несколько методов; как правило, метод заряда зависит от типа аккумулятора[8].

Медленный заряд постоянным током

Заряд постоянным током, пропорциональным 0,1-0,2 условной номинальной ёмкости Q в течение примерно 15-7 часов соответственно.

Самый длительный и безопасный метод заряда. Подходит для большинства типов аккумуляторов.

Быстрый заряд

Заряд постоянным током, пропорциональным 1/3 Q в течение примерно 3—5 часов.

Ускоренный или «дельта-V» заряд

Заряд с начальным током заряда, пропорциональным величине условной номинальной ёмкости аккумулятора, при котором постоянно измеряется напряжение аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда — примерно час-полтора. Возможен разогрев аккумулятора и даже его разрушение.

Реверсивный заряд

Выполняется чередованием длинных импульсов заряда с короткими импульсами разряда. Реверсивный метод наиболее полезен для заряда NiCd и NiMH аккумуляторов, для которых характерен т. н. «эффект памяти».

См. также

Примечания

Литература

Как измерить? Как увеличить? Расчеты

Что такое емкость?

Первичные источники – батарейки, как и вторичные — аккумуляторы, характеризуются несколькими основными параметрами, которые определяют длительность и качество их работы в технических устройствах. Одним из определяющих параметров является емкость. Это величина количественная, которая показывает сколько электрической энергии можно получить от работы элемента под током разряда в течении некоторого времени.

В чем измеряется емкость батареи?

            В Международной системе единиц (СИ) единица измерения принята в кулонах. 1 Кл = 1А*с – количество электрической энергии при токе 1 А за 1 с.

            Практически используют внесистемную единицу 1А*ч = 3600Кл, т. е мы имеем не емкость, а электрический заряд или количество электричества.

Как обозначается емкость батареи?

            При расчетах принято буквенное обозначение – C б, мА*ч. Физически это означает электрический заряд при токе 1 А в течение часа.

Как рассчитать емкость батареи?

(Определить, узнать)

            Для расчета используем простую формулу:

C б = I н * t, где:

  • C б – емкость батареи, мА*ч;
  • I н – ток нагрузки, мА;
  • t – время работы, ч.

            На вторичных источниках эта величина указана на корпусе или упаковке в виде числового значения. Например: 900 мА*ч или 550 мА*ч. Чем больше величина этого значения, тем дольше будет работать прибор с данным источником питания от зарядки до зарядки.

емкость батареи

            Для первичных источников питания, которые не подлежат повторной зарядке, это значение считается принятым:

Обозначение (маркировка) Вид батареи C б, мА*ч
AA R6, солевая (1)LR6, щелочная (2)FR6, литиевая (3) 1100 – 3500
AAA R03, (1)LR03, (2)FR03, (3) 540 – 1300
B LR12, (2) 8350
C R14, (1)LR14, (2) 3800 – 8000
D R20, (1)LR20, (2) 8000 – 19500
N R1, (1)LR1, (2) 1000
1/2AA R14250, (1) 250
R10 R10, (1) 1800

            Из таблицы наглядно видно, какая емкость у обычных батареек, это значение не указывается на корпусе или упаковке, как у аккумуляторов. Но показатель очень важен с точки зрения длительности работы элемента в техническом приборе или устройстве.

Как измерить емкость?

          Для примера можно взять любую аккумуляторную батарею либо прибор, хорошо подойдет сотовый телефон. При помощи тестера проведем замер тока нагрузки. Далее нужно полностью разрядить аккумулятор и поставить на зарядку. Замерить время до его полной зарядки, посчитать по формуле:

C б  = I н * t.

            Если ток потребления 1,15 А или 1150 мА, время зарядки составило 3 часа, то в итоге получаем:

C б = 1150*3 = 3450 мА*ч.

Как измерить емкость батарейки мультиметром?

            Величину C б в числовом выражении измерить мультиметром фактически не получится. Однако можно измерить один показатель, в данном случае, ток нагрузки I н и подставляя в формулу – I н * t, после проведения зарядки батареи за определенный промежуток времени — t, произвести расчеты значения C б.

Как увеличить емкость батареи?

            Для того, чтобы увеличить это значение, нужно знать от чего зависит емкость батареи:

  • Типа элемента — солевой, щелочной или литиевый.
  • Температурного режима эксплуатации — одни батарейки (солевые) не рассчитаны на отрицательные температуры, другие (литиевые) при морозе работают лучше. Перегрев также негативно влияет на работу источников питания.
  • Целостности корпуса элемента — деформация отрицательно влияет на химическую реакцию внутри устройства, разгерметизация и протечка электролита делает ее полностью не пригодной.

            Существует способ, как повысить емкость батареи, например аккумуляторной. Для этого ее нужно «раскачать», т. е разрядить полностью и снова зарядить. Так проделать несколько раз.

последовательное соединение для увеличения емкости

            Можно воспользоваться «народным» методом, однако не имеющим подтверждений с научной точки зрения. Требуется положить батарейку в морозильную камеру холодильника на ночное время. Показатель C б немного вырастет, но существенного увеличения, к сожалению, не получится.

            Если в приборе (планшете, телефоне) есть возможность включения экономичного режима или экономии энергопотребления, то его можно включить, тем самым мы снижаем нагрузку, увеличиваем время работы, и как бы увеличиваем емкость источника питания.

Как соединить батарейки чтобы увеличить суммарную емкость?

          Для достижения поставленной цели по увеличению технических характеристик источника питания при работе прибора либо устройства есть варианты различного соединения элементов электрической цепи.

            Существует два метода или схемы подключения:

  1. Последовательное соединение.
  2. Параллельное соединение.

            Емкость батареи при последовательном и параллельном соединении будет разная. Первый способ даст увеличение только суммарного напряжения, а второй — увеличит суммарную C б во столько раз, сколько будет взято элементов в схеме:

C = C1 + C2

            Прежде чем приступить к эксперименту, нужно взять два аккумуляторных источника питания с одинаковой степенью износа и зарядки, два диода. Для параллельного соединения минусы батарей нужно соединить вместе, а плюс одной к аноду одного диода, плюс другой к аноду другого. Катоды диодов также надо соединить между собой. Включить нагрузку минусом в точку соединения отрицательных клемм элементов, плюсом в месте соединения диодных катодов. Такая схема соединения увеличит C б в два раза. Собирать такую цепь без диодов нельзя, т. к. элементы питания разрядятся один через другого.

Выводы

  1. Электроемкость батареи важнейший показатель количества электрической энергии и продолжительности ее работы, выраженные в числовых значениях. Ее можно определить, подсчитать, увеличить используя различные методы.
  2. Емкость батареи (объем) может быть различной как для первичных источников, так и для вторичных, но вторые можно повторно заряжать с помощью ЗУ (зарядных устройств).
  3. Емкость батарейки зависит от типа элемента, химической реакции, внешних условий, тока нагрузки, срока годности и способа эксплуатации. При нарушении правил использования можно быстро испортить батарейку, а при грамотном подходе время ее использования можно значительно продлить.
  4. Батарейки или аккумуляторы, изготовленные известными производителями, как правило, хорошо зарекомендовали себя на потребительском рынке, тем, что гарантируют заявленные технические характеристики и качественную бесперебойную службу в устройствах длительное время.

 

Batareykaa.ru

Немного о портативных аккумуляторах / Habr

Привет, уважаемые друзья! Выбирая портативный аккумулятор, можно столкнуться с большим количеством негативных отзывов по поводу несоответствия их заявленной ёмкости и количеству заряженных гаджетов. Казалось бы, купив зарядку на 13 000 мАч мы должны зарядить свой смартфон с аккумулятором в 2300 мАч около 5,5 раз! Но не всё так просто.

Немного предыстории


Я как любитель гаджетов и современных технологий обладаю смартфоном и прочим добром. И на определенном пути столкнулся с одной, на мой взгляд, серьезной проблемой передовых устройств — они обладают относительно небольшим временем автономной работы от аккумулятора. Да, спорить не буду, есть «монстры» телефоностроения, обладающие аккумуляторами по 4000 мАч и более. Но, зачастую, такие устройства крайне редки и обладают другими минусами. В любом случае, даже если ваш гаджет способен продержаться до вечера (а мой Nexus 5 c 2300 мАч не из этого списка), рано или поздно встает вопрос о покупке портативного аккумулятора.

Как у многих гиков, у меня давно чесались руки к покупке данного вида устройства. Рассматривал варианты и с покупкой бокса под аккумуляторы формата 18650, так и готового устройства (в котором с гигантской долей вероятности и стоят те самые 18650, как и в батареях ноутбуков). В итоге появилась необходимость иметь заряженный телефон на работе в условиях отсутствия розетки, и был куплен портативный аккумулятор DF TRIO-02.

Скажу честно — не было много времени выбирать и читать обзоры. Просто быстро «прошерстил» один всеми известный интернет магазин (тот, что состоит в группе компаний наряду в банком и ювелиркой) и выбран по следующим критериям:

  • необходимая ёмкость
  • цена\качество
  • внешний вид (да-да, нужно стремиться не только к эргономике, но получать удовольствие эстетически)

Коротко об этом самом девайсе


Плюсы:
  1. хорошая ёмкость
  2. два выхода по 5В, 1 А; один выход 5В, 2.1 А
  3. вход для зарядки аккумулятора microUSB

Минусы:
  1. Маркий глянцевый корпус

Арифметика расчета ёмкости


Для легкости расчета введем следующие допущения:
  1. принимаем КПД преобразователя напряжения за 100%
  2. принимаем все указанные ёмкости за реальные значения
  3. считаем постоянными значения тока и напряжения во время зарядки
  4. зарядка телефона происходит от идеальных 0% до 100% (без учета остаточного заряда, который закладывают производители и тд.)

Для ликвидации неточности заглянем на википедию:
Максимально возможный полезный заряд аккумулятора называется зарядной ёмкостью, или просто ёмкостью. Ёмкость аккумулятора — это заряд, отдаваемый полностью заряженным аккумулятором при разряде до наименьшего допустимого напряжения. В системе СИ ёмкость аккумуляторов измеряют в кулонах, на практике часто используется внесистемная единица — ампер-час. 1 А⋅ч = 3600 Кл. Ёмкость аккумулятора указывается производителем. Не путать с электрической ёмкостью конденсатора.

В настоящее время всё чаще на аккумуляторах указывается энергетическая ёмкость — энергия, отдаваемая полностью заряженным аккумулятором при разряде до наименьшего допустимого напряжения. В системе СИ она измеряется в джоулях, на практике используется внесистемная единица — ватт-час. 1 Вт⋅ч = 3600 Дж.


На упаковке имеем гордую надпись: «13000 мАч». Это наша зарядная ёмкость.
Внимательно посмотрев на наклеечку с обратной стороны видим следующее.

Напряжение: 3.7 В.
Зарядная ёмкость: 13000 мАч.
Энергетическая ёмкость: 48.1 Вт⋅ч.

Оказывается, многие производители указывают запасаемый заряд в мАч (mAh), но также важно напряжение работы данного устройства. В самой полной мере «ёмкость» характеризует запасаемая энергия.

Часто люди путают понятия запасаемый заряд и запасаемая энергия называя это «ёмкостью». Если не нужна большАя точность, то можно считать, что запасаемая энергия (в Вт·ч) приблизительно равна произведению запасаемого заряда (в А·ч) на среднее напряжение (в Вольтах).

1 Вт·ч = 1 В · 1 А·ч.

Теперь, разобравшись в понятиях, перейдем к нашему примеру: 48.1 Вт⋅ч аккумулятора это и есть 13 Ач (13000 мАч) умноженные на 3.7 В. Пока всё сходится. Но, наше устройство заряжается от выхода в 5 В. Поэтому заряд, который способно выдать наше устройство находится как частное от запасаемой энергии и выходного напряжения.
48.1 Вт⋅ч / 5 В = 9.62 Ач (9620 мАч).

Анализируем


Теперь можно легко посчитать «сколько раз я могу зарядить своё устройство». Так, тот же Nexus 5 можно зарядить:
9620 мАч/ 2300 мАч = 4.18
Или, иначе говоря, немногим более 4 раз. Что против 5,5

Делаем выводы


Рассчитанный запасаемый заряд 9620 мАч оказался на 26% меньше, чем 13000 мАч, которые мы видим на коробке. И на 26% меньше чем ожидает неискушенный расчетами пользователь. Хотя, фактически производитель нас совершенно не обманывал. Просто такой маркетинговый ход.

Полезные статьи и источники:
» Электрическая ёмкость
» Электрический аккумулятор
» Ампер-час

как рассчитать емкость аккумуляторной батареи

Любой современный аккумулятор (хоть от мобильного телефона, хоть от автомобиля) обладает двумя важнейшими характеристиками: это номинальное напряжение источника питания и его электрическая емкость. Совокупностью двух этих показателей определяется полная энергия аккумулятора, то есть та максимальная энергия, которую только возможно накопить при его полной зарядке.

Аккумуляторы

Аккумуляторы

Что такое емкость аккумулятора

От этого параметра зависит количество времени, в течение которого аккумулятор способен отдавать предварительно накопленную в результате зарядки электроэнергию. Этот показатель одинаково важен как для аккумуляторной батареи автомобиля, так и для «пальчикового» аккумулятора от плеера или фотоаппарата. То же самое относится и к источникам питания сотовых телефонов.

Особенно большие неприятности могут случиться, если взять не ту емкость для АКБ автомобиля. Во-первых, емкости может не хватить для питания бортовой сети при неработающем двигателе, самое страшное – могут возникнуть проблемы с запуском в зимнее время. О том, как рассчитать емкость аккумулятора, должен иметь представление каждый автомобилист.

Исчерпывающую информацию об этом параметре современного источника питания можно получить, взглянув на его маркировку. Например, 1200 mAh (1200 миллиампер-часов), 60 Ah (60 ампер-часов). В отличие от емкости конденсатора, которая измеряется в фарадах, для аккумулятора используется внесистемная единица измерения – Ah (Ampere hour, «ампер-час»). Часы в этой единице измерения присутствуют по той причине, что, в отличие от конденсатора, который разряжается мгновенно, аккумулятор призван обеспечить питание в течение достаточно продолжительного времени.

Емкость данного аккумулятора составляет 60 ампер-часов

Емкость данного аккумулятора составляет 60 ампер-часов

Емкость, выраженная в ампер-часах, показывает на то, в течение какого времени данный аккумулятор способен питать нагрузку с указанным током потребления.

Обратите внимание! О чем говорит такая аббревиатура, как, например, 30 Ah? Полностью заряженный аккумулятор с емкостью в 30 ампер-час может работать в течение одного часа, поддерживая нагрузку в сети в 30 А с номинальным напряжением в 12,7 V.

30 А – это довольно большое значение силы тока, при напряжении 12,7 V мощность аккумулятора будет составлять: I*V=30*12,7=0,381 kW. Этой мощности достаточно для освещения всего дома в течение суток, если там стоят светодиодные лампы, которые потребляют от 3 до 5 W за один час эксплуатации. Время работы находится в обратной зависимости от тока нагрузки: чем он меньше, тем дольше аккумулятор способен поддерживать работу сети. Если ток нагрузки составляет 10 А, он будет работать 3 часа, если 5 А, то 6 часов.

Аккумулятор сотового телефона

Аккумулятор сотового телефона

Емкость АКБ сотового телефона колеблется в пределах от 500 до 2000 mAh. Такая батарея позволит телефону или смартфону работать в активном режиме в течение недели. При этом надо учитывать активность самого пользователя: если человек разговаривает по телефону более часа каждый день, пользуется будильником, различными играми, тогда самой большой емкости хватит на день-два.

Дополнительная информация. Расчет полной емкости аккумулятора возможен только эмпирическим путем. Когда он отрабатывает указанные на маркировке положенные ампер-часы, это отнюдь не значит, что после этого он больше не способен выдавать электричество. Без подзарядки аккумулятор еще достаточно продолжительное время способен вырабатывать электрическую энергию. Однако силы тока при этом будет недостаточно для той цели, с которой он используется.

Аккумулятор и аккумуляторная батарея

Как добиться увеличения емкости источника питания? Самый простой и очевидный способ – это увеличение вещества, участвующего в химической реакции. При этом произойдет увеличение силы тока, и процесс выработки электроэнергии будет протекать дольше, то есть число ампер-часов станет больше. Однако этот метод далеко не всегда можно применить на практике. Получить рассчитанную емкость путем увеличения или уменьшения количества реактивов не всегда представляется возможным.

Дело в том, что будь аккумулятор самых больших размеров, и на его изготовление потрачено огромное количество лития, напряжение вырабатываемого электричества нисколько не увеличится. Этот показатель заложен в самой основе химической реакции. Для кислотного аккумулятора он составляет 2 V, для литий-ионного – 3,7 V.

Так как же получить напряжение 12 V, необходимое для запуска автомобильного двигателя? Для этого нужно аккумуляторы объединить в батарею. Например, 6 свинцово-кислотных аккумуляторов с напряжением 2 V соединить последовательно между собой.

Существует два способа соединения аккумуляторов:

  • последовательное, при котором возрастает напряжение, при неизменной емкости;
  • параллельное, когда количество ампер-часов увеличивается, напряжение остается постоянным.

Емкость аккумуляторной батареи, как и ее напряжение, посчитать нетрудно, для этого может не понадобится даже обычного калькулятора. Если, например, два кислотных аккумулятора емкостью 1 Ah соединить между собой параллельно, то фактически произойдет удвоение емкости при неизменном напряжении. При их последовательном соединении получится наоборот: напряжение увеличится в 2 раза, емкость останется прежней. При этом в обоих случаях количество электроэнергии от двух источников питания увеличится вдвое.

Моноблок

Собрать батарею из отдельных аккумуляторов можно с помощью медного провода или шины с клеммами. Этот процесс, хотя и несложный, все же довольно трудоемкий, поэтому на заводах изготавливают готовые моноблоки. Они представляют из себя несколько элементов, собранных в одном корпусе из прочной пластмассы. Моноблок свинцово-кислотных аккумуляторов, как правило, состоит из 6 или 12 отдельных элементов. Напряжение составляет, соответственно, 12 V или 24 V.

Моноблок

Моноблок

Все элементы моноблока ничем не отличаются друг от друга, и их старение  протекает одновременно, поэтому срок эксплуатации моноблока больше, чем у каждого отдельного аккумулятора. В процессе сборки моноблока возможно использование как параллельного, так и последовательного соединения его отдельных элементов.

Обратите внимание! Срок службы АКБ измеряется не в годах или месяцах, а количеством зарядных циклов. Чтобы батарея могла служить как можно дольше, повторную зарядку желательно производить после использования лишь малой части ее номинальной емкости.

Видео

2.4.3. Различие номинальной и реальной емкостей аккумулятора

2.4.3. Различие номинальной и реальной емкостей аккумулятора

Электрическая емкость аккумуляторной батареи состоит из номинальной и реальной.

Номинальная электрическая емкость – это то количество энергии, которым батарея теоретически должна обладать в заряженном состоянии. Данный параметр аналогичен емкости, например, стакана. Так же, как в стандартный граненый стакан можно налить 200 мл воды, так и в батарею можно «закачать» лишь вполне определенное количество энергии. Но определяется это количество энергии не в момент заряда, а при обратном процессе (при разряде батареи) постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется емкость в А/ч (ампер-часах) или мА/ч соответственно и обозначается буквой С. Значение номинальной емкости батареи, как правило, зашифровано в ее обозначении.

Реальное значение емкости новой батареи на момент ввода ее в эксплуатацию колеблется от 80 до 110 % номинального значения и зависит от фирмы-изготовителя, условий и срока хранения, а также от технологии ввода в эксплуатацию. Нижний предел (80 %) обычно рассматривается как минимально допустимое значение для новой батареи. Теоретически батарея, например, номинальной емкостью 1000 мА/ч может отдавать ток 1000 мА в течение 1 ч, 100 мА – в течение 10 ч, 10 мА – в течение 100 ч.

Практически же при высоком токе разряда номинальная емкость не достигается, а при низком токе – превышается.

В процессе эксплуатации емкость батареи уменьшается. Скорость уменьшения зависит от типа батареи, технологии обслуживания в процессе работы, используемых зарядных устройств, условий и длительности эксплуатации.

Внутреннее сопротивление батареи определяет ее способность отдавать в нагрузку большой ток. Эта зависимость подчиняется закону Ома. При низком значении внутреннего сопротивления батарея способна отдать в нагрузку больший пиковый ток (без существенного уменьшения напряжения на ее выводах), а значит, и большую пиковую мощность, в то время как высокое значение сопротивления приводит к резкому уменьшению напряжения на выводах батареи при резком увеличении тока нагрузки. Это приводит к тому, что внешне хороший аккумулятор не может полностью отдать запасенную в нем энергию в нагрузку. То есть устройство становится неэффективно для применения.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Отправить ответ

avatar
  Подписаться  
Уведомление о