Автоматическая блокировка: Автоматическая блокировка Википедия – Автоматическая блокировка

Содержание

Автоматическая блокировка Википедия

Автоматическая блокировка (автоблокировка) — система автоматического регулирования интервалов между железнодорожными поездами, попутно следующими по железнодорожному перегону.[1]

Классификация[ | ]

Автоматическая блокировка по регулируемому направлению движения делится на:

  • одностороннюю;
  • двустороннюю.

По способу контроля состояния блок-участка различают автоматическую блокировку на основе:

  • рельсовых цепей;
  • счётчиков осей.

По способу разграничения железнодорожных поездов на перегоне различают автоматическую блокировку:

  • с фиксированными границами блок-участков;
  • с изменяемым интервальным разграничением.

Различают автоматическую блокировку по типу используемых рельсовых цепей.

По используемой элементной базе различают автоматическую блокировку:

  • релейную;
  • электронную;
  • на основе программно-аппаратных средств.

По способу размещения оборудования различают автоматическую блокировку:

  • с централизованным размещением;
  • с децентрализованным размещением.

Сигналы автоблокировки[ | ]

Полуавтоматическая блокировка[ | ]

TZ D8-Kutno.jpg
  • Зелёный огонь — Перегон до следующей станции (путевого поста) свободен.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Полуавтоматическая блокировка (ПАБ) — система интервального регулирования движения поездов, применяемая на малодеятельных участках железных дорог (на одно- и двухпутных перегонах).

Полуавтоматическая блокировка не применяется на метрополитене.

Трёхзначная АБ[ | ]

  • Зелёный огонь — свободны два и более блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал. Следующий блок-участок занят.

Четырёхзначная АБ[ | ]

  • Зелёный огонь — свободны три или более блок-участка.
  • Жёлтый и зелёный огонь — свободны два блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Расстановка светофоров[ | ]

На железнодорожных линиях с трёхзначной автоблокировкой длина блок-участка должна быть не менее тормозного пути при полном служебном и автостопном торможении для максимальной скорости движения, но не более 8

Автоблокировка — Википедия

Автоматическая блокировка (автоблокировка) — система автоматического регулирования интервалов между железнодорожными поездами, попутно следующими по железнодорожному перегону.[1]

Классификация

Автоматическая блокировка по регулируемому направлению движения делится на:

  • одностороннюю;
  • двустороннюю.

По способу контроля состояния блок-участка различают автоматическую блокировку на основе:

  • рельсовых цепей;
  • счётчиков осей.

По способу разграничения железнодорожных поездов на перегоне различают автоматическую блокировку:

  • с фиксированными границами блок-участков;
  • с изменяемым интервальным разграничением.

Различают автоматическую блокировку по типу используемых рельсовых цепей.

По используемой элементной базе различают автоматическую блокировку:

  • релейную;
  • электронную;
  • на основе программно-аппаратных средств.

По способу размещения оборудования различают автоматическую блокировку:

  • с централизованным размещением;
  • с децентрализованным размещением.

Сигналы автоблокировки

Полуавтоматическая блокировка

TZ D8-Kutno.jpg
  • Зелёный огонь — Перегон до следующей станции (путевого поста) свободен.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Полуавтоматическая блокировка (ПАБ) — система интервального регулирования движения поездов, применяемая на малодеятельных участках железных дорог (на одно- и двухпутных перегонах).

Полуавтоматическая блокировка не применяется на метрополитене.

Трёхзначная АБ

  • Зелёный огонь — свободны два и более блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал. Следующий блок-участок занят.

Четырёхзначная АБ

  • Зелёный огонь — свободны три или более блок-участка.
  • Жёлтый и зелёный огонь — свободны два блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Расстановка светофоров

На железнодорожных линиях с трёхзначной автоблокировкой длина блок-участка должна быть не менее тормозного пути при полном служебном и автостопном торможении для максимальной скорости движения, но не более 80 км/ч для грузовых и 120 км/ч для пассажирских поездов. При более высоких скоростях движения длина двух смежных блок-участков должна быть не менее тормозного пути для максимальной реализуемой скорости[2]. На участках с четырёхзначной автоблокировкой длина блок-участка должна быть достаточна для остановки пригородного поезда, а длина двух смежных блок-участков – для остановки грузового поезда.

При трёхзначной автоблокировке расстановка светофоров выполняется по засечкам времени на кривой скорости расчётного поезда или по максимальным тормозным путям поездов. При четырёхзначной автоблокировке используется более сложный способ расстановки светофоров по кривым времени, построенным для хвоста первого и головы второго поездов. Расчётные длины блок-участков корректируются в допустимых пределах с учётом видимости светофоров и расположения мостов, тоннелей, нейтральных вставок, платформ.

Принцип действия автоблокировки

Основные функции автоблокировки:

  • определение занятости блок-участков, станционных путей и целостности рельсового пути, контролируя протекание тока через рельсовую цепь;
  • включение огней напольных светофоров в зависимости от занятости блок-участка за этим светофором или от количества свободных блок-участков за ним, при перегорании лампы красного огня в светофоре, запрещающее показание автоматически переносится на впереди стоящий светофор;
  • передача информации в систему АЛС для кодирования рельсовых цепей, передача информации поездному диспетчеру, дежурному по станции посредством аппаратуры электрической централизации и диспетчерского контроля.

Числовая кодовая автоблокировка

Упрощённая схема числовой кодовой автоблокировки:
1 — изолирующий стык; 2 — рельс; 3 — дроссель-трансформатор; 4 — проходной светофор; 5 — импульсное реле (приёмник сигнала) и дешифратор; 6 — кодовый путевой трансмиттер

Кодовая автоблокировка действует совместно с АЛСН, образуя единое комплексное средство сигнализации. Кодовый сигнал АЛСН, соответствующий показанию напольного светофора, формируется кодовым путевым трансмиттером, находящимся в конце блок-участка, и через дроссель-трансформатор передаётся в рельсовую цепь. При свободности блок-участка, сигнал дойдёт до его начала, будет принят и расшифрован напольной аппаратурой, которая выдаст более разрешающее показание (или зелёный сигнал, если и был принят «З» сигнал) для проходного светофора и кодового путевого трансмиттера предыдущего блок-участка.

При нахождении на блок-участке поезда, ток будет протекать между рельсами по колёсным парам локомотива (вагонов) не доходя до приёмника, дешифратор по отсутствию кодовых посылок определит занятость блок-участка, выдаст красный сигнал на напольный светофор и кодовым путевым трансмиттером на предыдущий блок-участок будет передаваться сигнал, соответствующий «КЖ» показанию локомотивного светофора. При этом ток, протекающий через первую колёсную пару локомотива, будет принят его приёмными катушками и обеспечит работу локомотивной аппаратуры АЛСН.

Для разделения рельсовых цепей соседних блок-участков используются изолирующие стыки. Дроссель-трансформатор предназначен для пропуска обратного тягового тока в обход изолирующего стыка. Для защиты от замыкания (схода) изолирующего стыка трансмиттеры соседних блок-участков имеют разные длительности кодовых циклов. Трансмиттеры смежных рельсовых цепей работают асинхронно, и дешифратор имеет возможность определить, из своей или из смежной рельсовой цепи поступил импульс.

Тональная автоблокировка

Упрощённая схема тональной автоблокировки с АЛСО:
Г — генераторы; П1, П2 — приёмники; Т — трансмиттеры АЛС

Типы тональных рельсовых цепей
Тип цепи Несущая, Гц Модуляция, Гц Основное применение
ТРЦ-3 420, 480 8, 12 перегоны
580 перегоны, станции, метрополитен
720, 780 станции, метрополитен
ТРЦ-4 4545, 5000, 5555 границы блок-участков

В автоблокировке с тональными рельсовыми цепями (АБТ) и с тональными рельсовыми цепями с централизованным размещением аппаратуры (ЦАБ) для определения занятости блок-участка используется амплитудно-модулированные сигналы с несущими частотами 420 Гц и 480 Гц (также может использоваться частота 580 Гц), и частотами модуляции 8 Гц и 12 Гц. На одном пути перегона используются комбинации несущей частоты и частоты модуляции 420 Гц и 8 Гц, 480 Гц и 12 Гц, на другом — 420 Гц и 12 Гц, 480 Гц и 8 Гц, что защищает рельсовые цепи от взаимного влияния.

Один генератор питает рельсовые цепи двух смежных блок-участков. Частоты соседних генераторов чередуются. Каждый приёмник выделяет как свою несущую частоту, так и свою частоту модуляции.

Благодаря утечке через балласт, ток каждого генератора постепенно затухает и установка изолирующих стыков на перегоне не требуется. Изолирующие стыки и дроссель-трансформаторы устанавливают на границах перегона.

В бесстыковых рельсовых цепях занятие и освобождение блок-участка фиксируется на некотором расстоянии от его конца. Это расстояние называется зоной дополнительного шунтирования. Длина зоны дополнительного шунтирования может составлять до 10 % длины блок-участка.

Регулирование движения на перегоне с тональной автоблокировкой может осуществляться при помощи напольных светофоров и АЛС или при помощи автоматической локомотивной сигнализации как основного средства регулирования (АЛСО). В случае установки светофоров, на границах блок-участков оборудуют дополнительные короткие рельсовые цепи ТРЦ-4 с зоной дополнительного шунтирования не более 15 м, а светофоры выносят за её пределы, на 20 м навстречу движения поезда от точки подключения генератора. Если проходные светофоры не устанавливаются, границы блок-участков обозначают табличками.

Кодирование рельсовых цепей сигналами АЛС начинается в момент вступления поезда на рельсовую цепь, трансмиттером с конца занятого блок-участка.

Аппаратура АБТ и АЛС может располагаться централизованно, на станциях примыкающих к перегону, или децентрализованно. Связь с аппаратурой, находящейся на перегоне и между станциями осуществляется по кабелям.

Автоблокировка постоянного тока

Автоблокировка постоянного тока может использоваться только на участках с автономной тягой. Импульсы постоянного тока передаются в рельсовую цепь маятниковым трансмиттером, расположенным в начале блок-участка и принимаются путевым импульсным реле, расположенным вместе с напольной аппаратурой АЛСН на противоположном конце блок-участка. Сигнал с импульсного реле через дешифратор импульсной работы поступает на путевое реле, которое фиксирует свободное или занятое состояние блок-участка. При вступлении поезда на блок-участок рельсовая цепь шунтируется, путевое реле отпускает якорь и тыловыми контактами включает кодовый путевой трансмиттер АЛСН. Импульсное реле включено в рельсовую цепь через тыловые контакты трансмиттера АЛСН, который при передаче кодовых импульсов отключает импульсное реле от рельсовой цепи и подключает во время пауз, чем исключает его ложное срабатывание от переменного тока передаваемых сигналов АЛСН. После освобождения блок-участка во время паузы между импульсами АЛСН импульсное реле получает импульс от маятникового трансмиттера, путевое реле притягивает якорь и отключает кодовый путевой трансмиттер.

Информация между сигнальными установками передаётся по кабелям. Для разделения рельсовых цепей соседних блок-участков используются изолирующие стыки. Для защиты от схода изолирующего стыка используется поляризованное путевое импульсное реле и чередуется полярность источников питания соседних блок-участков.

Станционная автоблокировка

В рельсовых цепях станционной автоблокировки используется непрерывное питание для обеспечения максимально быстрого обнаружения их занятости. Для питания станционных рельсовых цепей может использоваться постоянный ток (на участках с автономной тягой), переменный ток той же частоты, которая применяется в используемой на станции системе АЛСН, или переменный ток другой частоты (тональные рельсовые цепи). Кодирование рельсовых цепей начинается при вступлении на них поезда с питающего или релейного конца (или с двух сторон одновременно), в зависимости от направления движения поезда.

При кодировании рельсовой цепи постоянного тока с релейного конца путевое импульсное реле отключается от рельсовой цепи на время передачи импульса АЛСН, в рельсовых цепях переменного тока (частота которого совпадает с несущей частотой сигналов АЛСН), в зависимости от направления кодирования, отключается путевое реле или источник тока. Проверка освобождения рельсовой цепи производится во время большой паузы между импульсами АЛСН. При использовании тональных рельсовых цепей ни генератор, ни приёмник от рельсовой цепи не отключаются. После освобождения рельсовой цепи кодирование прекращается.

В рельсовых цепях переменного тока с частотой 25 Гц и 50 Гц применяются фазочувствительные путевые реле, которые обладают надёжной защитой от влияния тягового тока, тока из соседних цепей при сходе изолирующего стыка и других помех. Фазочувствительное реле имеет путевую обмотку, включенную в рельсовую цепь и местную обмотку, на которую подаётся напряжение той же частоты с фазой сдвинутой на угол 90°, называемый идеальным сдвигом фаз. Реле не срабатывает, если частоты токов в путевой и местной обмотке отличаются более чем на 5 Гц и при отклонении угла сдвига фаз от идеального более чем на 90°. Для защиты от схода изолирующего стыка фазы токов в смежных рельсовых цепях сдвинуты на 180°.

Входные и выходные светофоры, в отличие от проходных, открываются не автоматически, а дежурным по станции после установки маршрута приёма или отправления. При этом аппаратурой электрической централизации проверяются зависимости, обеспечивающие безопасность движения по маршруту: положение стрелок, свободность путей и стрелочных переводов, отсутствие заданных враждебных маршрутов. Показание входного светофора будут зависеть от маршрута приёма (на главный или на боковой путь) и от показания выходного светофора, показание выходного светофора — от показания первого проходного светофора.

См. также

Примечания

Литература

  • Ю. А. Кравцов, В. Л. Нестеров, Г. Ф. Лекута и др. Системы железнодорожной автоматики и телемеханники / Под ред. Ю. А. Кравцова. — М.: Транспорт, 1996. — 400 с. — ISBN 5-277-01688-0.

Принцип действия автоматической блокировки

Автоматическая блокировка наиболее распространенная система интервального регулирования движения поездов, позволяющая отправить на перегон несколько поездов. Средством регулирования движения поездов на железнодорожном транспорте является комплекс устройств автоматики, состоящий из автоблокировки и автоматической локомотивной сигнализации с автостопами.

При автоблокировке перегон делится на несколько блок-участков, на каждом может одновременно находиться не более одного поезда (рис. 2.2). На границах блок-участков расположены путевые автоматически действующие светофоры, у каждого в релейном шкафу расположена аппаратура СЦБ для управления огнями светофора. Показания путевых светофоров взаимосвязаны между собой и их показания зависят от нахождения или отсутствия на блок-участках поездов. Светофоры связаны между собой по воздушным или кабельным цепям.

Рис. 2.2. Схема автоматической блокировки

Для автоматического воздействия поезда на показания проходных светофоров в пределах каждого блок-участка устраивают электрические рельсовые цепи, контролирующие не только свободность и занятость блок-участков, но и целостность рельсовых нитей в пределах этих участков. При занятости или повреждении рельсовой нити блок-участка светофор, ограждающий этот участок, автоматически закрывается и ограждает возникшее препятствие на пути попутно следующего поезда.

Основным регулирующим средством при автоблокировке являются сигнальные показания путевых светофоров. Аппаратура автоблокировки осуществляет автоматическое переключение огней путевых светофоров под воздействием движущегося поезда. Сигнальные показания каждого путевого светофора указывают машинисту поезда, приближающегося к светофору, координаты впереди идущего поезда (рис. 2.3). Красный огонь светофора означает, что первый за светофором блок-участок занят и необходимо остановиться перед этим светофором; желтый огонь — первый блок-участок свободен, а следующий за ним занят — после проследования светофора с желтым огнем необходимо снизить скорость, чтобы остановить поезд у следующего светофора с красным огнем; зеленый огонь — впереди свободны не менее двух блок-участков — разрешается движение с установленной скоростью.

Рис. 2.3. Сигнальные показания путевых и локомотивного светофоров

Существуют несколько систем автоматической локомотивной сигнализации: трех и четырехзначная АЛСН числового кодирования, многозначная АЛСМ частотно-числового кода, АЛСУ — унифицированная АЛС частотного кода, АЛС-ЕН — микропроцессорная АЛС цифрового кода единого ряда с непрерывным каналом связи, МАЛС — маневровая автоматическая локомотивная сигнализация.

В устройствах АЛС в качестве канала связи между путевыми и локомотивными устройствами используются рельсовые цепи автоблокировки.

Рельсовой цепью называют совокупность рельсовой линии и аппаратуры, подключаемой к ней в начале и конце линии (блок-участок). С помощью рельсовых цепей определяется свободность блок-участков на перегонах и станционных участков, контролируется целостность рельсовых нитей, передается информация о показаниях путевых светофоров на локомотив и МВПС для работы автоматической локомотивной сигнализации, обеспечивается увязка между светофорами в кодовых системах автоблокировки, исключается перевод стрелок в устройствах электрической централизации при движении по ним подвижных единиц, осуществляется сигнализация о приближении поездов к переездам и управление автошлагбаумами, контролируется на диспетчерском посту и на посту дежурного по станции состояние блок-участков на перегонах и приемо-отправочных путях.

В настоящее время используют более 30 типов и 800 разновидностей рельсовых цепей. Рельсовая цепь состоит из рельсовой линии, включающей рельсовые нити и стыковые соединители; изолирующих стыков, обеспечивающих электрическое разделение смежных рельсовых цепей; аппаратуры питающего конца, состоящей из регулируемого резистора,аккумулятора и выпрямителя, размещенных в батарейном шкафу; аппаратуры релейного конца, содержащей приемник — путевое реле,расположенное в релейном шкафу. Аппаратура питающего и релейного концов в релейных шкафах соединяется с кабельными стойками, жилами кабеля и далее стальными тросами с рельсовыми нитями.

При свободном состоянии рельсовой цепи ток аккумуляторной батареи протекает по рельсовой линии и замыкается через обмотку путевого реле. Якорь реле притягивается, фронтовые контакты замыкаясь, сигнализируют о свободности и исправности участка рельсовой цепи, ограниченного изолирующими стыками. Когда подвижной состав вступает на рельсовую цепь рельсовые нити закорачиваются через малое сопротивление колесных пар подвижного состава. Ток в обмотке путевого реле снижается, якорь отпадает и замыкаются тыловые контакты, сигнализирующие о занятости участка. Снижение тока в обмотках реле под действием колесных пар подвижного состава называют шунтовым эффектом, а колесные пары — поездным шунтом.

На станции с интенсивным движением поездов и большой маневровой работой выполняется разбивка станционных путей на путевые и стрелочные участки (секции).

Основными параметрами РЦ являются: активное сопротивление рельсов, напряжение источника питания и сопротивление балласта, определяющее величину тока утечки (так как рельсы изолированы не полностью от шпал, а местами даже частично касаются балластного слоя, постоянно происходит утечка сигнального тока от одной рельсовой нити в другую).

Рельсовая цепь может работать в нескольких режимах:

нормальном — соответствующем свободному (незанятому) ее состоянию;

шунтовом — соответствующем ее занятому состоянию;

контрольном — контролирующем целостность рельсовой колеи;

короткого замыкания — при нахождении подвижного состава непосредственно на питающем конце РЦ;

АЛСН — обеспечивающем протекание сигнального тока кодирования при вступлении поезда на блок-участок.

Для передачи сигнальной информации с пути на локомотив применяют методы кодирования:

числовой код в виде определенного сочетания импульсов тока. Частота кодового тока на участках с автономной тягой или с электротягой постоянного тока составляет 50Гц, а на участках с электротягой переменного тока — 25Гц;

частотный код в виде различных частот в диапазоне 125-400Гц, когда сигнальная информация передается по рельсовой цепи на разных частотах;

частотный комбинированный код в виде комбинации из двух частот диапазона 125-400Гц;

частотный код в виде разных частот в диапазоне 60-120Гц, модулированных сигнальными частотами.

С введением скоростного движения появились новые требования к обеспечению безопасности движения. Новые системы строятся на новой элементной базе с применением интегральных микросхем и тональных рельсовых цепей. Автоблокировка с тональными рельсовыми цепями имеют высокую надежность, высокий коэффициент возврата путевого приемника, высокую помехозащищенность и защищенность от влияний тягового тока.

Тональные РЦ не требуют установки изолирующих стыков и позволяют отказаться от применения дроссель-трансформаторов. В этом случае в РЦ подаются два сигнала: тональный — для функционирования системы автоблокировки и код АЛСН — для работы локомотивных устройств.

В тональных рельсовых цепях использован амплитудно-модулированный сигнал. Он обеспечивает надежную защиту приемных устройств от воздействия гармонических и импульсных помех тягового тока и других источников. В качестве несущей частоты используются частоты: 420, 480, 580, 720, 780Гц и 4,5; 5,0; 5,5кГц. В качестве модулирующей частоты использованы частоты 8 или 12Гц.

Возможные неисправности автоматической локомотивной сигнализации.

На локомотивном светофоре появился белый огнь при следовании по кодированному участку. Это свидетельствует об отсутствии кодирования. Возможны следующие причины:

неисправность путевых устройств;

прекращение протекания сигнального тока из-за разрыва рельсовой колеи при следовании поезда по этому блок-участку. Необходимо отметить, что появление на локомотивном светофоре белого огня возможно только в случае возникновения неисправности после проследования локомотивом путевого светофора, ограждающего неисправный участок. Дело в том, что при разрыве рельсовой колеи путевой светофор, ограждающий неисправный участок, примет запрещающее показание, а локомотивный светофор будет сигнализировать желтым огнем с красным;

искажение (значительное уменьшение) сигнального тока или появление помех;

неисправность локомотивных устройств.

В подобном случае машинисту важно четко зафиксировать места потери кодирования и его восстановления.

На локомотивном светофоре появился желтый с красным огонь. Причинами могут быть:

перекрытие по каким-либо причинам на запрещающее показание путевого светофора, к которому приближается поезд;

появление в рельсовой цепи кода желтого с красным огня из-за неисправности путевых устройств АЛСН или вследствие помех;

неисправность локомотивных устройств АЛСН.

На локомотивном светофоре внезапно появился красный огонь. Красный огонь на локомотивном светофоре появляется при проследовании светофора с запрещающим показанием. Поскольку блок-участок в данном случае занят, кодирование в РЦ под приемными катушками локомотива отсутствует. Таким образом, красный огонь появляется только после прекращения кодирования по каким-либо причинам, если перед этим принимался код КЖ.

На локомотивном светофоре появилось менее разрешающее показание. Кроме стандартных ситуаций, когда это происходит непосредственно после проследования путевого светофора, сиг­нализирующего зеленым или желтым огнем, что свидетельствует о следовании поезда по удалению за впереди идущим, данный переход возможен уже при движении по блок-участку как из-за измене­ния показания путевого светофора, к которому приближается поезд, так и вследствие неисправности устройств АЛСН.

Машинист должен выяснить причину возможного изменения показания путевого светофора, связавшись по радиосвязи с дежурным впереди лежащей станции, а на участках, оборудованных диспетчерской централизацией — с поездным диспетчером. Если это не удалось, и при езде по блок-участку на локомотивном светофоре вновь изменилось показание на более запрещающее, то можно предположить следование навстречу подвижного состава.

Внезапно погасли огни локомотивного светофора. Причиной может быть неисправность локомотивных устройств АЛСН или прекращение их питания. Поэтому для предотвращения автостопного торможения машинисту необходимо отключить устройства АЛСН ключом ЭПК. Если после повторного включения их нормальная работа не восстанавливается, то необходимо определить и устранить причину возможного нарушения питания устройств (осмотреть предохранители или автоматические выключатели).



Дата добавления: 2016-05-28; просмотров: 9199;


Похожие статьи:

Автоматическая блокировка Википедия

Автоматическая блокировка (автоблокировка) — система автоматического регулирования интервалов между железнодорожными поездами, попутно следующими по железнодорожному перегону.[1]

Классификация

Автоматическая блокировка по регулируемому направлению движения делится на:

  • одностороннюю;
  • двустороннюю.

По способу контроля состояния блок-участка различают автоматическую блокировку на основе:

  • рельсовых цепей;
  • счётчиков осей.

По способу разграничения железнодорожных поездов на перегоне различают автоматическую блокировку:

  • с фиксированными границами блок-участков;
  • с изменяемым интервальным разграничением.

Различают автоматическую блокировку по типу используемых рельсовых цепей.

По используемой элементной базе различают автоматическую блокировку:

  • релейную;
  • электронную;
  • на основе программно-аппаратных средств.

По способу размещения оборудования различают автоматическую блокировку:

  • с централизованным размещением;
  • с децентрализованным размещением.

Сигналы автоблокировки

Полуавтоматическая блокировка

  • Зелёный огонь — Перегон до следующей станции (путевого поста) свободен.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Полуавтоматическая блокировка (ПАБ) — система интервального регулирования движения поездов, применяемая на малодеятельных участках железных дорог (на одно- и двухпутных перегонах).

Полуавтоматическая блокировка не применяется на метрополитене.

Трёхзначная АБ

  • Зелёный огонь — свободны два и более блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал. Следующий блок-участок занят.

Четырёхзначная АБ

  • Зелёный огонь — свободны три или более блок-участка.
  • Жёлтый и зелёный огонь — свободны два блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Расстановка светофоров

На железнодорожных линиях с трёхзначной автоблокировкой длина блок-участка должна быть не менее тормозного пути при полном служебном и автостопном торможении для максимальной скорости движения, но не более 80 км/ч для грузовых и 120 км/ч для пассажирских поездов. При более высоких скоростях движения длина двух смежных блок-участков должна быть не менее тормозного пути для максимальной реализуемой скорости[2]. На участках с четырёхзначной автоблокировкой длина блок-участка должна быть достаточна для остановки пригородного поезда, а длина двух смежных блок-участков – для остановки грузового поезда.

При трёхзначной автоблокировке расстановка светофоров выполняется по засечкам времени на кривой скорости расчётного поезда или по максимальным тормозным путям поездов. При четырёхзначной автоблокировке используется более сложный способ расстановки светофоров по кривым времени, построенным для хвоста первого и головы второго поездов. Расчётные длины блок-участков корректируются в допустимых пределах с учётом видимости светофоров и расположения мостов, тоннелей, нейтральных вставок, платформ.

Принцип действия автоблокировки

Основные функции автоблокировки:

  • определение занятости блок-участков, станционных путей и целостности рельсового пути, контролируя протекание тока через рельсовую цепь;
  • включение огней напольных светофоров в зависимости от занятости блок-участка за этим светофором или от количества свободных блок-участков за ним, при перегорании лампы красного огня в светофоре, запрещающее показание автоматически переносится на впереди стоящий светофор;
  • передача информации в систему АЛС для кодирования рельсовых цепей, передача информации поездному диспетчеру, дежурному по станции посредством аппаратуры электрической централизации и диспетчерского контроля.

Числовая кодовая автоблокировка

Упрощённая схема числовой кодовой автоблокировки:
1 — изолирующий стык; 2 — рельс; 3 — дроссель-трансформатор; 4 — проходной светофор; 5 — импульсное реле (приёмник сигнала) и дешифратор; 6 — кодовый путевой трансмиттер

Кодовая автоблокировка действует совместно с АЛСН, образуя единое комплексное средство сигнализации. Кодовый сигнал АЛСН, соответствующий показанию напольного светофора, формируется кодовым путевым трансмиттером, находящимся в конце блок-участка, и через дроссель-трансформатор передаётся в рельсовую цепь. При свободности блок-участка, сигнал дойдёт до его начала, будет принят и расшифрован напольной аппаратурой, которая выдаст более разрешающее показание (или зелёный сигнал, если и был принят «З» сигнал) для проходного светофора и кодового путевого трансмиттера предыдущего блок-участка.

При нахождении на блок-участке поезда, ток будет протекать между рельсами по колёсным парам локомотива (вагонов) не доходя до приёмника, дешифратор по отсутствию кодовых посылок определит занятость блок-участка, выдаст красный сигнал на напольный светофор и кодовым путевым трансмиттером на предыдущий блок-участок будет передаваться сигнал, соответствующий «КЖ» показанию локомотивного светофора. При этом ток, протекающий через первую колёсную пару локомотива, будет принят его приёмными катушками и обеспечит работу локомотивной аппаратуры АЛСН.

Для разделения рельсовых цепей соседних блок-участков используются изолирующие стыки. Дроссель-трансформатор предназначен для пропуска обратного тягового тока в обход изолирующего стыка. Для защиты от замыкания (схода) изолирующего стыка трансмиттеры соседних блок-участков имеют разные длительности кодовых циклов. Трансмиттеры смежных рельсовых цепей работают асинхронно, и дешифратор имеет возможность определить, из своей или из смежной рельсовой цепи поступил импульс.

Тональная автоблокировка

Упрощённая схема тональной автоблокировки с АЛСО:
Г — генераторы; П1, П2 — приёмники; Т — трансмиттеры АЛС

Типы тональных рельсовых цепей
Тип цепи Несущая, Гц Модуляция, Гц Основное применение
ТРЦ-3 420, 480 8, 12 перегоны
580 перегоны, станции, метрополитен
720, 780 станции, метрополитен
ТРЦ-4 4545, 5000, 5555 границы блок-участков

В автоблокировке с тональными рельсовыми цепями (АБТ) и с тональными рельсовыми цепями с централизованным размещением аппаратуры (ЦАБ) для определения занятости блок-участка используется амплитудно-модулированные сигналы с несущими частотами 420 Гц и 480 Гц (также может использоваться частота 580 Гц), и частотами модуляции 8 Гц и 12 Гц. На одном пути перегона используются комбинации несущей частоты и частоты модуляции 420 Гц и 8 Гц, 480 Гц и 12 Гц, на другом — 420 Гц и 12 Гц, 480 Гц и 8 Гц, что защищает рельсовые цепи от взаимного влияния.

Один генератор питает рельсовые цепи двух смежных блок-участков. Частоты соседних генераторов чередуются. Каждый приёмник выделяет как свою несущую частоту, так и свою частоту модуляции.

Благодаря утечке через балласт, ток каждого генератора постепенно затухает и установка изолирующих стыков на перегоне не требуется. Изолирующие стыки и дроссель-трансформаторы устанавливают на границах перегона.

В бесстыковых рельсовых цепях занятие и освобождение блок-участка фиксируется на некотором расстоянии от его конца. Это расстояние называется зоной дополнительного шунтирования. Длина зоны дополнительного шунтирования может составлять до 10 % длины блок-участка.

Регулирование движения на перегоне с тональной автоблокировкой может осуществляться при помощи напольных светофоров и АЛС или при помощи автоматической локомотивной сигнализации как основного средства регулирования (АЛСО). В случае установки светофоров, на границах блок-участков оборудуют дополнительные короткие рельсовые цепи ТРЦ-4 с зоной дополнительного шунтирования не более 15 м, а светофоры выносят за её пределы, на 20 м навстречу движения поезда от точки подключения генератора. Если проходные светофоры не устанавливаются, границы блок-участков обозначают табличками.

Кодирование рельсовых цепей сигналами АЛС начинается в момент вступления поезда на рельсовую цепь, трансмиттером с конца занятого блок-участка.

Аппаратура АБТ и АЛС может располагаться централизованно, на станциях примыкающих к перегону, или децентрализованно. Связь с аппаратурой, находящейся на перегоне и между станциями осуществляется по кабелям.

Автоблокировка постоянного тока

Автоблокировка постоянного тока может использоваться только на участках с автономной тягой. Импульсы постоянного тока передаются в рельсовую цепь маятниковым трансмиттером, расположенным в начале блок-участка и принимаются путевым импульсным реле, расположенным вместе с напольной аппаратурой АЛСН на противоположном конце блок-участка. Сигнал с импульсного реле через дешифратор импульсной работы поступает на путевое реле, которое фиксирует свободное или занятое состояние блок-участка. При вступлении поезда на блок-участок рельсовая цепь шунтируется, путевое реле отпускает якорь и тыловыми контактами включает кодовый путевой трансмиттер АЛСН. Импульсное реле включено в рельсовую цепь через тыловые контакты трансмиттера АЛСН, который при передаче кодовых импульсов отключает импульсное реле от рельсовой цепи и подключает во время пауз, чем исключает его ложное срабатывание от переменного тока передаваемых сигналов АЛСН. После освобождения блок-участка во время паузы между импульсами АЛСН импульсное реле получает импульс от маятникового трансмиттера, путевое реле притягивает якорь и отключает кодовый путевой трансмиттер.

Информация между сигнальными установками передаётся по кабелям. Для разделения рельсовых цепей соседних блок-участков используются изолирующие стыки. Для защиты от схода изолирующего стыка используется поляризованное путевое импульсное реле и чередуется полярность источников питания соседних блок-участков.

Станционная автоблокировка

В рельсовых цепях станционной автоблокировки используется непрерывное питание для обеспечения максимально быстрого обнаружения их занятости. Для питания станционных рельсовых цепей может использоваться постоянный ток (на участках с автономной тягой), переменный ток той же частоты, которая применяется в используемой на станции системе АЛСН, или переменный ток другой частоты (тональные рельсовые цепи). Кодирование рельсовых цепей начинается при вступлении на них поезда с питающего или релейного конца (или с двух сторон одновременно), в зависимости от направления движения поезда.

При кодировании рельсовой цепи постоянного тока с релейного конца путевое импульсное реле отключается от рельсовой цепи на время передачи импульса АЛСН, в рельсовых цепях переменного тока (частота которого совпадает с несущей частотой сигналов АЛСН), в зависимости от направления кодирования, отключается путевое реле или источник тока. Проверка освобождения рельсовой цепи производится во время большой паузы между импульсами АЛСН. При использовании тональных рельсовых цепей ни генератор, ни приёмник от рельсовой цепи не отключаются. После освобождения рельсовой цепи кодирование прекращается.

В рельсовых цепях переменного тока с частотой 25 Гц и 50 Гц применяются фазочувствительные путевые реле, которые обладают надёжной защитой от влияния тягового тока, тока из соседних цепей при сходе изолирующего стыка и других помех. Фазочувствительное реле имеет путевую обмотку, включенную в рельсовую цепь и местную обмотку, на которую подаётся напряжение той же частоты с фазой сдвинутой на угол 90°, называемый идеальным сдвигом фаз. Реле не срабатывает, если частоты токов в путевой и местной обмотке отличаются более чем на 5 Гц и при отклонении угла сдвига фаз от идеального более чем на 90°. Для защиты от схода изолирующего стыка фазы токов в смежных рельсовых цепях сдвинуты на 180°.

Входные и выходные светофоры, в отличие от проходных, открываются не автоматически, а дежурным по станции после установки маршрута приёма или отправления. При этом аппаратурой электрической централизации проверяются зависимости, обеспечивающие безопасность движения по маршруту: положение стрелок, свободность путей и стрелочных переводов, отсутствие заданных враждебных маршрутов. Показание входного светофора будут зависеть от маршрута приёма (на главный или на боковой путь) и от показания выходного светофора, показание выходного светофора — от показания первого проходного светофора.

См. также

Примечания

Литература

  • Ю. А. Кравцов, В. Л. Нестеров, Г. Ф. Лекута и др. Системы железнодорожной автоматики и телемеханники / Под ред. Ю. А. Кравцова. — М.: Транспорт, 1996. — 400 с. — ISBN 5-277-01688-0.

4. Традиционные Системы автоматической блокировки

    1. Суть и эффективность автоблокировки

Автоматической блокировкой (автоблокировкой) называют систему регулирования движения поездов на перегонах. При автоблокировке перегон делят на блок-участки (БУ), каждый из которых ограждается автоматически действующим проходным светофором.

Показание каждого светофора зависит от числа свободных впередилежащих БУ, то есть блок-участков за этим светофором. Если ограждаемый БУ занят, включается красный огонь светофора, при свободности одного блок-участка – желтый, при свободности двух или более – зеленый.

Состояние БУ контролируется при помощи рельсовых цепей. Для обеспечения автоматического действия светофоров между сигнальными точками, на которых установлены проходные светофоры, организуется передача информации. Информация передается в направлении, встречном движению поезду, то есть от каждого светофора к предыдущему. Способ передачи (по линейным цепям или по рельсам) зависит от типа автоблокировки.

Светофоры АБ расставляются на перегоне [2, 3, 10, 11] исходя из заданной величины межпоездого интервала и скорости движения расчетного поезда в каждой точке пути таким образом, чтобы между поездами в процессе движения всегда сохранялся заданный временной интервал. При трехзначной АБ минимальная величина межпоездного интервала составляет 6 минут.

Светофоры устанавливают справа по направлению движения поездов. Нумеруются проходные светофоры в пределах каждого перегона четными или нечетными числами в зависимости от направления. Нумерация убывает от станции отправления к станции приема таким образом, что предвходной светофор имеет литер 1 или 2. Это позволяет машинисту заблаговременно узнать о приближении к станции.

Внедрение АБ обеспечивает:

  1. Повышение уровня безопасности движения поездов за счет автоматического контроля состояния блок-участков и целости рельсовых нитей.

  2. Повышение пропускной способности перегонов за счет уменьшения величины межпоездного интервала.

  3. Увеличение участковой скорости грузовых поездов за счет уменьшения времени их стоянки на промежуточных станциях под обгоном.

    1. Классификация систем автоблокировки

Многообразие систем АБ, применяемых на российских железных дорогах, объясняется, во-первых, различными требованиями к ним в различных условиях, во-вторых, разработкой и внедрением новых, более совершенных систем с сохранением в эксплуатации систем старого типа. Знание классификации систем позволяет лучше понять особенности конкретных типов, их достоинства и недостатки, а также наметить пути устранения этих недостатков при модернизации или разработке новых систем. Рассмотрим основные факторы, влияющие на принцип построения автоблокировки, и разновидности систем АБ.

1. Основным фактором, влияющим на структуру и функциональные возможности АБ, является тип используемых рельсовых цепей. В автоблокировке, в принципе, могут применяться любые РЦ. В прежние годы широко использовались системы АБ с импульсными РЦ постоянного тока, в ограниченном объеме применялись РЦ частотного кода и фазочувствительные рельсовые цепи, делались попытки использования рельсовых цепей с гетеродинными приемниками. В настоящее время наибольшее распространение имеют РЦ числового кода. В новом строительстве начали внедрять перспективные тональные РЦ. Достоинства и недостатки перечисленных РЦ при использовании в АБ можно выяснить на основании их сравнительного анализа (см. п. 2.2).

2. Способ передачи информации между сигнальными установками. По способу передачи информации различают проводные и беспроводные системы автоблокировки.

2.1. В беспроводных (кодовых) системах АБ информация передается по рельсовой линии путем использования кодовых РЦ. В кодовых рельсовых цепях сигнальный ток, применяемый для контроля состояния блок-участка, одновременно служит для передачи информации между светофорами и для передачи информации на локомотив. Это позволяет применить один общий источник питания и передающее устройство для решения всех трех указанных задач. Причем информация передается по рельсам без использования отдельных линейных цепей.

Однако для передачи информации на локомотив требуется большее напряжение питания, чем для контроля состояния участка пути. Это приводит к излишнему расходу электроэнергии и к необходимости гашения избытка мощности на путевом приемнике. Кроме того, рельсовая линия в качестве линии связи обладает серьезными недостатками – низким сопротивлением изоляции между рельсовыми нитями и относительно высоким индуктивным сопротивлением рельсовой линии. Это приводит к существенному затуханию сигнала и необходимости подачи большой мощности в РЛ. Приходится учитывать также мешающее влияние обратного тягового тока, протекающего по рельсовым нитям.

2.2. В проводных системах АБ информация передается по воздушным или кабельным линиям. Этот способ обеспечивает лучшие условия для передачи сигналов, но требует дополнительных расходов на организацию линий связи.

Ранее предлагались технические решения для передачи информации с использованием радиоканалов, которые не нашли практического применения. В настоящее время в связи с успехами в области сотовой и спутниковой связи вновь начаты работы в этом направлении.

3. Вид кода для формирования сообщений. Системы АБ относятся к системам с малопозиционными объектами управления. Это позволяет при передаче информации между сигнальными установками (СУ) использовать простые коды или элементарные сигналы. Однако в перспективных системах для увеличения объема информации и обеспечения ее достоверности приходится применять более сложные коды. В настоящее время на сети железных дорог России эксплуатируются следующие виды кодовых систем АБ:

3.1. С числовым кодом. Для формирования сообщений в этих системах предусмотрены три кодовые комбинации, условно называемые КЖ, Ж и З (соответственно 1, 2 и 3 импульса в кодовой посылке). Для повышения достоверности передачи и расшифровки сигналов импульсы и паузы между импульсами в кодовых посылках имеют определенные длительности. Недостатком числового кода, используемого в кодовой АБ, является большая длительность кодовых комбинаций (1,6 или 1,9 с) и большое время их расшифровки, что исключает возможность дальнейшего увеличения числа сообщений для передачи информации.

3.2. С частотным кодом. В частотной АБ применяется частотно-комбинационное кодирование, при котором сообщения формируются выбором двух частот из пяти предусмотренных. Это позволяет использовать до 10 сообщений при длительности расшифровки каждого сообщения 0,5 с. Недостатком является громоздкость аппаратуры, что особенно существенно для локомотивных приемников, и сложность регулировки рельсовых цепей. В эксплуатируемых устройствах наблюдались опасные отказы, что, однако, не является недостатком принятого метода кодирования.

3.3. С двоичным помехозащищенным кодом. Двоичный код является в настоящее время наиболее совершенным и обеспечивает передачу любого практически необходимого объема информации при использовании современных методов модуляции.

В проводных системах АБ при кодировании и передаче информации используется полярный признак сигнала, что позволяет сформировать три сообщения и применить простой дешифратор в виде реле комбинированного типа.

Как в проводных системах, так и в кодовых с целью увеличения объема информации или повышения достоверности ее передачи возможна комбинация различных признаков электрического сигнала для кодирования сообщений.

4. Способ организации движения поездов. В зависимости от путевого развития и функциональных возможностей системы АБ различаются следующим образом:

4.1. Односторонние. Односторонние системы применялись ранее на каждом пути двухпутного перегона и обеспечивали регулирование движения поездов только в одном направлении. Такие системы не удовлетворяют современным потребностям перевозочного процесса. Поэтому эксплуатируемые системы АБ были модернизированы для обеспечения временного двустороннего движения.

4.2. Двусторонние. Применяются на однопутных участках и осуществляют регулирование движения поездов в обоих направлениях. Перспективные системы АБ в соответствии с новыми эксплуатационно-техническими требованиями обеспечивают двустороннее регулирование по каждому пути двухпутного перегона. Это повышает гибкость в пропуске поездопотоков при суточной неравномерности следования поездов по направлениям, при сбоях в движении или при неисправности одного из путей.

4.3. Односторонние с временной организацией двустороннего движения. Применяются на двухпутных участках и предназначены для организации двустороннего движения по одному из путей двухпутного перегона при капитальном ремонте второго пути. В обычном режиме автоблокировка работает как односторонняя. При подготовке к капитальному ремонту перегонного пути система настраивается на двустороннее действие. К такому типу автоблокировки относятся все современные традиционные системы АБ.

5. Способ размещения аппаратуры. По способу размещения аппаратуры различают системы:

5.1. Децентрализованные. Аппаратура автоблокировки размещается в релейных шкафах, устанавливаемых у каждого проходного светофора. Подавляющее большинство систем АБ являются децентрализованными.

5.2. Централизованные. Вся аппаратура АБ (кроме некоторых устройств согласования и защиты) размещается в станционных помещениях и соединяется с напольными устройствами при помощи кабеля.

Централизованное размещение аппаратуры приводит к увеличению расхода кабеля и снижает живучесть системы в целом, однако обладает рядом существенных достоинств:

  • обеспечивает работу оборудования в благоприятных условиях отапливаемого помещения, что повышает надежность и долговечность приборов;

  • исключает необходимость передачи информации между светофорами, на переезды и на станцию, что упрощает схемные зависимости АБ, схем диспетчерского контроля и схемы смены направления; в конечном итоге повышается надежность системы;

  • облегчает техническое обслуживание устройств и снижает затраты на обслуживание, значительно сокращает время поиска и устранения неисправностей;

  • облегчает труд обслуживающего персонала, существенно уменьшает время работы на открытом воздухе и в зоне повышенной опасности в непосредственной близости от движущихся поездов;

  • снижает стоимость системы за счет исключения расходов на оборудование сигнальных точек релейными шкафами, линейными трансформаторами высоковольтных линий и кабельными ящиками, а также за счет упрощения схем.

6. Способ передачи информации машинисту. Машинисту передается информация об условиях движения, то есть о состоянии впередилежащих блок-участков. По способу передачи такой информации различают системы:

6.1. С проходными светофорами. Напольный светофор при этом является основным средством регулирования. Информация передается машинисту по оптическому каналу с использованием цвета и режима горения огней светофора. Для повышения безопасности движения в соответствии с Правилами технической эксплуатации железных дорог РФ системы АБ дополняются устройствами АЛС.

6.2. Без проходных светофоров. Информация передается машинисту по каналам автоматической локомотивной сигнализации и отображается на локомотивном светофоре. При этом снижаются затраты на установку напольных светофоров и их обслуживание, исключаются такие ненадежные элементы, как лампы накаливания. За автоблокировкой сохраняются функции обнаружения препятствия и формирования управляющих команд для устройств АЛС. Однако с точки зрения безопасности движения поездов и психологии работы машинистов применение проходных светофоров является предпочтительным. Кроме того, при отсутствии напольных светофоров основным и единственным средством регулирования становится система АЛС. Поэтому к ее надежности приходится предъявлять более высокие требования. Системы АБ без проходных светофоров экономически целесообразно применять при централизованном размещении аппаратуры, так как это позволяет сократить расход кабеля.

7. Наличие изолирующих стыков на границах блок-участков. В автоблокировке изолирующие стыки обеспечивают четкое разграничение блок-участков, но, как уже отмечалось, являются самым ненадежным элементом систем железнодорожной автоматики. Поэтому предпринимались неоднократные попытки создания РЦ и систем АБ без изолирующих стыков. В соответствии с этим различают системы АБ:

7.1. С изолирующими стыками. С изолирующими стыками построены все традиционные системы АБ.

7.2. Без изолирующих стыков. Достоинства РЦ без изолирующих стыков изложены в п. 2.4. Однако наличие зоны дополнительного шунтирования приводит к тому, что подвижная единица, приближающаяся к границе БУ, шунтирует РЦ впередилежащего БУ. При этом на светофоре, к которому приближается поезд, ложно включается запрещающий сигнал. В системах АБ без изолирующих стыков приходится использовать дополнительные технические решения для исключения такой ситуации.

8. Элементная база. Традиционные системы АБ, которые в настоящее время имеют наибольшее распространение, построены на релейно-контактных устройствах. Это объясняется следующими причинами:

  • требование обеспечения безопасности функционирования устройств СЦБ наиболее просто выполняется с использованием электромагнитных реле 1-го класса надежности;

  • недостаточный уровень развития электроники в период разработки и массового внедрения традиционных систем АБ;

  • экономическая нецелесообразность демонтажа или реконструкции действующих устройств АБ, не выработавших свой ресурс, с заменой их на новые бесконтактные системы.

В настоящее время все большее внимание уделяется разработке и внедрению систем СЦБ с использованием микроэлектронных элементов. Особенно большие преимущества дает микропроцессорная техника с программируемой логикой.

Реализация устройств АБ на основе микропроцессоров позволяет существенно повысить надежность и быстродействие систем, расширить их функциональные возможности, выполнять алгоритм любой практически необходимой сложности, создавать универсальные блоки и легко адаптировать их к конкретным условиям применения, изменять алгоритм или исходные данные при изменении параметров объекта управления.

Широкие возможности программируемой логики позволяют решать задачи самопроверки и реконфигурации собственной структуры при отказах, осуществлять диагностику объектов управления, а также реализовать большое число сервисных функций.

Микроэлектронные и микропроцессорные системы АБ обеспечивают взаимодействие и простое согласование с устройствами автоматизированных систем управления верхнего уровня и устройствами локальной автоматики, производят регистрацию и документирование информации о неисправностях, нештатных действиях эксплуатационных работников и о других существенных событиях.

9. Значность проходных светофоров (система сигнализации автоблокировки) [1, 2, 3, 10, 11]. От числа сигнальных показаний (значности) проходных светофоров зависит пропускная способность перегонов, уверенность работы машинистов и уровень безопасности движения. В зависимости от значности светофоров системы АБ бывают:

9.1. Двузначные. В двузначных АБ используются два сигнальных показания – красный и зеленый. При этом длина БУ должна быть

,

где — путь, проходимый поездом за время восприятия сигнала машинистом;

— тормозной путь полного служебного торможения при максимальной реализуемой в данном месте скорости.

Поезда разграничиваются двумя блок-участками (рис. 4.1, а), что обеспечивает высокую пропускную способность. Однако двузначная сигнализация приводит к напряженной работе машиниста, а в условиях плохой видимости огней светофора не гарантирует безопасность движения поездов. Поэтому она нашла ограниченное применение на линиях метрополитенов.

Рис. 4.1. Системы сигнализации при автоблокировке

9.2. Трехзначные. Каждый проходной светофор является предупредительным к следующему светофору, что обеспечивает уверенную работу машиниста, плавное ведение поезда и достаточно высокий уровень безопасности движения. Длина БУ должна быть не менее длины тормозного пути полного служебного торможения при максимальной реализуемой скорости и не менее тормозного пути автостопного торможения с учетом времени срабатывания приборов АЛС, но не менее 1000 м. Нормально поезда разграничиваются тремя БУ, что позволяет поезду постоянно следовать «под зеленый огонь светофора на зеленый огонь впередистоящего светофора» (рис. 4.1, б). В местах движения с пониженной скоростью (прием на станцию с остановкой, отправление после остановки, затяжной подъем) с целью сохранения заданного межпоездного интервала применяется двухблочное разграничение поездов (рис. 4.1, в). Трехзначные системы АБ обеспечивают величину межпоездного интервала до 6 мин и получили подавляющее распространение на сети железных дорог России.

9.3. Четырехзначные. Четырехзначные системы автоблокировки предназначены для участков с высокой интенсивностью движения поездов разных категорий (тихоходные пригородные поезда с короткими тормозными путями и скоростные с длинными тормозными путями) и обеспечивают величину межпоездного интервала до 2…3 мин. В основном это пригородные участки больших городов. Существенное сокращение межпоездного интервала достигнуто за счет применения более коротких БУ при четырехблочном разграничении поездов (рис. 4.1, г).

В четырехзначных системах АБ используется дополнительное сигнальное показание светофора – одновременно горящие желтый и зеленый огни. Это показание соответствует свободности двух впередилежащих БУ. Зеленый огонь включается при свободности трех и более блок-участков.

Остановка поездов разных категорий перед закрытым светофором гарантируется тем, что машинисты грузовых и пассажирских поездов расценивают сигнал «желтый и зеленый», как желтый, и должны проследовать его с уменьшенной скоростью, а машинисты пригородных поездов – как зеленый и могут проследовать его с максимальной установленной скоростью.

Длина БУ при четырехзначной сигнализации должна быть достаточной для снижения скорости быстроходного поезда с максимальной до допустимой скорости проследования светофора с желтым сигналом; для снижения скорости от последней до полной остановки поезда в пределах БУ полным служебным или автостопным торможением. Длина двух смежных БУ должна быть не меньше тормозного пути до остановки при максимальной реализуемой скорости движения в данном месте.

Эффект, достигаемый от внедрения четырехзначной АБ, заключается в следующем:

  • повышение пропускной способности за счет уменьшения интервала сближения поездов, что видно из расстановки поездов при трехзначной (рис. 4.1, б) и четырехзначной (рис. 4.1, г) сигнализации;

  • повышение ходовой скорости пригородных поездов за счет проследования сигнала «желтый и зеленый» без снижения скорости; повышение ходовой скорости также приводит к повышению пропускной способности.

Недостатком четырехзначной сигнализации в традиционных системах АБ является более высокая стоимость и неполное соответствие показаний светофоров и кодовых сигналов АЛС (см. рис. 4.1, г).

В перспективных многозначных системах АБ предусмотрен контроль состояния большего числа БУ. В этих случаях дополнительная информация передается машинисту по каналам АЛС при сохранении трех- или четырехзначной сигнализации напольных светофоров.

Автоблокировка Википедия

Автоматическая блокировка (автоблокировка) — система автоматического регулирования интервалов между железнодорожными поездами, попутно следующими по железнодорожному перегону.[1]

Классификация

Автоматическая блокировка по регулируемому направлению движения делится на:

  • одностороннюю;
  • двустороннюю.

По способу контроля состояния блок-участка различают автоматическую блокировку на основе:

  • рельсовых цепей;
  • счётчиков осей.

По способу разграничения железнодорожных поездов на перегоне различают автоматическую блокировку:

  • с фиксированными границами блок-участков;
  • с изменяемым интервальным разграничением.

Различают автоматическую блокировку по типу используемых рельсовых цепей.

По используемой элементной базе различают автоматическую блокировку:

  • релейную;
  • электронную;
  • на основе программно-аппаратных средств.

По способу размещения оборудования различают автоматическую блокировку:

  • с централизованным размещением;
  • с децентрализованным размещением.

Сигналы автоблокировки

Полуавтоматическая блокировка

TZ D8-Kutno.jpg
  • Зелёный огонь — Перегон до следующей станции (путевого поста) свободен.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Полуавтоматическая блокировка (ПАБ) — система интервального регулирования движения поездов, применяемая на малодеятельных участках железных дорог (на одно- и двухпутных перегонах).

Полуавтоматическая блокировка не применяется на метрополитене.

Трёхзначная АБ

  • Зелёный огонь — свободны два и более блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал. Следующий блок-участок занят.

Четырёхзначная АБ

  • Зелёный огонь — свободны три или более блок-участка.
  • Жёлтый и зелёный огонь — свободны два блок-участка.
  • Жёлтый огонь — свободен один блок-участок.
  • Красный огонь — «Стой!». Запрещающий сигнал.

Расстановка светофоров

На железнодорожных линиях с трёхзначной автоблокировкой длина блок-участка должна быть не менее тормозного пути при полном служебном и автостопном торможении для максимальной скорости движения, но не более 80 км/ч для грузовых и 120 км/ч для пассажирских поездов. При более высоких скоростях движения длина двух смежных блок-участков должна быть не менее тормозного пути для максимальной реализуемой скорости[2]. На участках с четырёхзначной автоблокировкой длина блок-участка должна быть достаточна для остановки пригородного поезда, а длина двух смежных блок-участков – для остановки грузового поезда.

При трёхзначной автоблокировке расстановка светофоров выполняется по засечкам времени на кривой скорости расчётного поезда или по максимальным тормозным путям поездов. При четырёхзначной автоблокировке используется более сложный способ расстановки светофоров по кривым времени, построенным для хвоста первого и головы второго поездов. Расчётные длины блок-участков корректируются в допустимых пределах с учётом видимости светофоров и расположения мостов, тоннелей, нейтральных вставок, платформ.

Принцип действия автоблокировки

Основные функции автоблокировки:

  • определение занятости блок-участков, станционных путей и целостности рельсового пути, контролируя протекание тока через рельсовую цепь;
  • включение огней напольных светофоров в зависимости от занятости блок-участка за этим светофором или от количества свободных блок-участков за ним, при перегорании лампы красного огня в светофоре, запрещающее показание автоматически переносится на впереди стоящий светофор;
  • передача информации в систему АЛС для кодирования рельсовых цепей, передача информации поездному диспетчеру, дежурному по станции посредством аппаратуры электрической централизации и диспетчерского контроля.

Числовая кодовая автоблокировка

Упрощённая схема числовой кодовой автоблокировки:
1 — изолирующий стык; 2 — рельс; 3 — дроссель-трансформатор; 4 — проходной светофор; 5 — импульсное реле (приёмник сигнала) и дешифратор; 6 — кодовый путевой трансмиттер

Кодовая автоблокировка действует совместно с АЛСН, образуя единое комплексное средство сигнализации. Кодовый сигнал АЛСН, соответствующий показанию напольного светофора, формируется кодовым путевым трансмиттером, находящимся в конце блок-участка, и через д

Автоблокировка, полуавтоблокировка, электрожезловая система – назначение и принцип действия

Автоматика, телемеханика и связь на ж/д тр-те.

Тех. ср-ва обеспечения без-ти на ж/д тр-те.

Автоблокировка, полуавтоблокировка, электрожезловая система – назначение и принцип действия

 

Автоблокировка— автоматическая система регулирования движения поездов.

При автоблокировке перегоны делятся на блок-участки длиной от 1000 до 2600 м, ограждаемые проходными сигналами, открывающимися и закрывающимися автоматически под действием поезда. Это позволяет находиться на перегоне не одному, а нескольким попутно следующим поездам.

АБ не допускает открытия выходного или проходного сигнала до освобождения ограждаемого блок-участка.

Во время отправления поезда со станции разрешение машинисту занять блок-участок подается выходным светофором, открываемым дежурным по станции. Блокирование первого блок-участка происходит в тот момент, когда выходной светофор при проходе его головой поезда автоматически закрывается и тем самым замыкается ограждаемый им блок-участок. Деблокирование первого блок-участка тоже происходит автоматически после того, как участок будет фактически освобожден поездом и можно, открывая выходной светофор, отправлять следующий поезд.

Поезда, находящиеся на перегоне, движутся по сигналам проходных светофоров. Нормально проходной светофор открыт, разрешая занять блок-участок. Как только поезд вступает на ограждаемый им участок, светофор автоматически закрывается, запрещая следующему поезду движение на этот участок пути до полного его освобождения. Проверка освобождения блок-участка поездом, а также открытие проходного светофора происходят автоматически.

В зависимости от условий эксплуатации на железных дорогах страны сейчас применяются однопутная, двухпутная и двусторонняя системы автоблокировки.

Однопутная автоблокировка применяется на однопутных участках и служит для разграничения поездов при движении по одному пути в любом из направлений и исключает встречное одновременное движение.

Двух пут пая автоблокировка используется при движении поездов по каждому пути двухпутного участка только в одном направлении. Это позволяет организовывать движение поездов в попутном направлении через 8 мин и даже меньше и увеличивать тем самым пропускную способность двухпутных линий по перегонам.

На отдельных грузонапряженных линиях предусматривается двустороннее движение поездов по обоим путям двухпутного перегона или участка. Только тогда, когда возникает временная необходимость в пропуске поездов преимущественно в одном направлении, организуется движение поездов в одну сторону по обоим путям перегона. Автоблокировку, предназначенную для таких целей, называют двусторонней. Светофоры неустановленного направления при однопутной и двусторонней автоблокировке погашены.

Полуавтоматическая путевая блокировка —система интервального регулирования движения поездов.

При ПАБ блок-участком является весь перегон между соседними станциями.

Разрешением на занятие перегона, на котором может находиться только один поезд, служит зелёный огонь выходного или проходного светофора. Дежурный станции приёма (блокпоста), убедившись в прибытии поезда, подаёт на станцию отправления электрический блокировочный сигнал, который деблокирует светофоры. Это необходимо, так как на однопутных участках выходные светофоры соседних станций, ограничивающих перегон, закрыты и для отправления поезда нужно предварительно получить блокировочный сигнал согласия от дежурного станции приёма.

ПАБ широко применяется на железных дорогах преимущественно на однопутных линиях. Если для увеличения пропускной способности межстанционный перегон делится раздельным пунктом (блокпостом) на два межпостовых перегона, то на блокпосту устанавливают проходные светофоры и аппараты полуавтоматической блокировки, обслуживаемые дежурным по этому раздельному пункту или действующие автоматически. При ПАБ, как и при автоблокировке, для машиниста правом на занятие поездом перегона служит разрешающий сигнал выходного или проходного светофора. Дежурный по станции выполняет ряд действий при отправлении поезда.

Первое действие — открывает выходной светофор, что ведет к блокированию (исключению возможности вторичного открытия) не только его, но и выходного светофора с любого другого пути станции для отправления на этот же перегон, т. е. открытие выходного светофора расценивается как отправление поезда.

Второе действие — подает блокировочный сигнал отправления (блокирование перегона) либо отдельным действием после закрытия выходного светофора, либо одновременно с открытием выходного светофора. Прибытие поезда на следующую станцию фиксируется на ней устройством электрического контроля входа поезда с перегона на станцию, чтобы предупредить преждевременную подачу сообщения о прибытии на станцию, отправившую прибывший поезд. Однако прибытие или проследование поезда в полном составе определяется дежурным по станции фактически по хвостовым сигналам или автоматически приборами. Подача прибытия станцией, на которую прибыл поезд, является конечным действием, подтверждающим освобождение перегона —его деблокирование.

Полуавтоматическая блокировка существует двух видов: релейная и электромеханическая.

Релейная ПАБ называется так потому, что в ней все зависимости осуществляются при помощи электрических реле.

Электромеханическая ПАБ. При этой системе станции связаны друг с другом блок-механизмами.

 

Электрожезловая система (ЭЖС) является средством сообщений между раздельными пунктами железных дорог, предназначенная для регулирования движения поездов на однопутных участках. Правом на занятие перегона при этой системе служит жезл, относящийся к этому перегону и вручаемый дежурным по станции машинисту локомотива. При этом изъятие жезла из аппарата возможно только с разрешения дежурного соседней станции, в направлении которой должен следовать поезд.

При ЭЖС на каждой станции для одного и того же перегона имеется по одному жезловому аппарату одной серии, которые связаны между собой электрически линейным проводом, обратным проводом служит земля.

Зависимость между жезловыми аппаратами осуществлена таким образом, что изъять жезл для отправления поезда можно только в том случае, если в обоих аппаратах в сумме находится четное количество жезлов и если дежурный соседней станции дает согласие на изъятие жезла электрическим блокировочным сигналом.

При извлечении жезла внутри аппарата проворачиваются кодовые диски, и вся система автоматически блокируются. С этого момента ни на одной, ни на другой станции, ни одного жезла больше извлечь невозможно. Следовательно, невозможно и отправить следующий поезд. Система остаётся заблокированной до тех пор, пока перевезённый машинистом на следующую станцию жезл не будет помещён в электрожезловой аппарат станции приёма.

Для отправления следующего поезда необходимо, чтобы отправленный поезд прибыл на соседнюю станцию, а привезенный жезл был вставлен в аппарат станции прибытия.

Если произошла отмена маршрута и поезд не отправлялся, то изъятый жезл вкладывается в аппарат, из которого был изъят.

Все жезлы представляют собой круглый стальной стержень, на котором расположены 3 кольцевидных утолщения. Чтобы исключить возможность вкладывания жезла в аппарат, относящийся к другому перегону, а, следовательно, отправить поезд на занятый перегон, жезловые аппараты имеют различные серии. Это отличие состоит в различном расположении выточек и углублений на жезлах относительно кольца 1.

Всего существует 6 основных серий (A, B, C, D, E, F) и 3 дополнительные (К, М, Р) аппаратов.

Главный недостаток ЭЖС в том, что необходимый уровень безопасности движения поездов обеспечивается лишь при безупречной дисциплине локомотивных бригад и дежурных по станции.

Другой недостаток ЭЖС – необходимость остановки поезда на каждой станции для обмена жезлами быстро был преодолён изобретением специальных жезлоподавателей и жезлообменивателей.


Читайте также:


Рекомендуемые страницы:

Поиск по сайту

Отправить ответ

avatar
  Подписаться  
Уведомление о