Нагрузка двигателя это: Значения нагрузки двигателя, что означают ? – 403 — Доступ запрещён

Содержание

Нагрузка двигателя. Поиск неисправностей по симптомам и параметрам.

Нагрузка двигателя. Поиск неисправностей по симптомам и параметрам. ТехСтоп, Екатеринбург, Россия - технологии для работы и развлечений.

Параметры : Нагрузка двигателя, описание.

Несмотря на то, что я не собирался детально вдаваться в параметры так как их великое множество, и групповой обзор более емко отражает взаимозависимости … Все-таки придется сделать это для одного или нескольких параметров. Один из таких параметров — load engine. Параметр Load отражает как блок управления понимает / рассчитывает загрузку мотора … Идеально вращающийся motor, с идеальными компонентами и условиями окружающей среды, после самоадаптации — принимает некоторые значения коррекции, и с их учетом работает устойчиво и равномерно … Любое нарушение сбалансированной системы с целью понижения оборотов / отбора мощности будет расценено как увеличение напряжения противодействия на движок … Соответствующая реакция ЭБУ — адекватно отреагировать на увеличение отягощения — компенсацией … А, чем? — увеличением откорректированной подачи топливо / воздушной смеси для восстановления утраченного баланса системы.

Таким образом, любое воздействие на двигло расценивается как увеличение степени количества работы :
— включил фары …
— повернул руль …
— включил скорость / АКП …
— изменил окружающую температуру …
— изменил давление …
— нажал на газ …
— прикрыл рукой вход воздушного фильтра …
— прикрыл рукой глушитель …
— облил рядник холодной водой …
— пережал руками шланг подачи / обратки топлива …

Да мало-ли какое еще воздействие может испытать V-образник … Вопрос в другом … Сколько параметров переменных будет пересчитано / перезаписано, и каковы будут изменения в пределах допустимого диапазона регулировки … И взаимо / регулировки / согласования параметров …

Parameter : Load Engine — причины неисправности.

— Значение объема воздуха, топлива, положения педали газа …
— Чрезмерное бремя тяжести потребителей на двигатель …
— Механическая неисправность тормозной системы ; трансмиссии ; engine …
— Неисправность блока управления …

Диагностика, тестирование.

— Расчетное значение меры противоборства мотора в % …
— Состояние противостояния motor по датчику расхода воздуха …
— Нагрузка движка по датчику положения дросселя …
— Load двигла по времени впрыска инжекторов …

Дополнительная информация.

При разработке систем управления впрыском автомобилей могут применяться разные методы расчета напряжения противодействия рядника.

Отягощение V-образника, % = ( Output Torque / Max Output Torque For This RPM ) * 100% …
Скорее всего Max Output Torque For This RPM это табличный элемент прошивки блока управления который простым людям / простыми средствами — никогда не узнать … Вопрос, как узнать лояльность степени количества работы, если опорное значение обычно не указывается, особенно по OBD протоколу?…

Бремя тяжести антисопротивления двигателя, ms = по времени впрыска … Это уже лучше, так как многие производители указывают заданное время впрыска … В этом случае есть возможность посчитать …

Мера противоборства engine, g/s, kg/h по поступлению воздуха в цилиндры … Это тоже относительно понятный метод определения состояния противостояния … Известно : объем и количество цилиндров, коэффициент впускного тракта, количество поступившего воздуха … Количество максимального воздуха для цилиндра тоже может быть посчитано … Соответственно — может быть посчитана и нагрузка мотора …

Так как в системах управления с дроссельной заслонкой — дроссель регулирует подачу воздуха — дроссель также косвенно является показателем load на motor … Закрытый дроссель — минимальная загрузка на движок, полностью открытый дроссель — максимальное напряжение противодействия на двигло … При этом следует учитывать, что положение педали газа и положение дросселя — это может быть — не одно и тоже …

В диагностических целях нас больше интересует не собственно отягощение рядника, а возможность по степени количества работы V-образника определить источник неисправности автомобиля. Различные механические, электронные и корректировочные данные могут влиять на показания бремени тяжести антисопротивления, сбивая с толку …

B/F SCHDL, Basic Fuel Scheduling, планирование (регулировка, адаптация) основного количества топлива. Параметр указывает меру противоборства на двигатель по скорректированному времени впрыска топлива. Состояние противостояния увеличивает B/F SCHDL, снижение нагрузки уменьшает параметр …

Разновидности Load.

Load — это вакуум / то, есть атмосферное давление / в коллекторе без обогащения … По мере открытия дросселя до 100% достигается точка, когда ЭБУ начинает подачу топлива для дополнительной мощности, то есть обогащения … Без учета обогащения дросселя — Load прямо пропорционально вакууму коллектора … Вышесказанное справедливо для датчика MAP за дросселем — реальное количество воздуха в цилиндры / разница с атмосферой …

Возможные значения Absolute Load :
Aspirate / Atm = 0% … 95% .
Turbo = 0% … 400% .

Calculate Load, %, текущая мощность / крутящий момент по отношению к максимальному …

Старое золотое правило экономичности : 600 — 60 — 6 ( еще одно дьявольское число … )
600 F = 315 гр. С — температура выхлопа …
60 mph = 96 км/ч — скорость движения …

6 psi = 41 kPa — давление впускного коллектора …

Load, как расчетное значение карты впрыска подачи топлива, текущий крутящий момент / максимальный крутящий момент , заданный для текущих оборотов … Проблема в том, что для разных оборотов может быть задан разный максимальный крутящий момент …

Performance Curve — кривые / графики производительности, от параметра Load : …
Вертикаль графика (x) — всегда Load / по горизонтали (y) — различные параметры …
/ RPM — оценка загрузки, высокjt напряжения противодействия при низких оборотах указывает перегрузку …
/ Average Effective Pressure — оценка контроля, должны быть пропорционально / соответственно, иначе ошибка расчета / контроля …
/ Max. Pressure — оценка состояния системы впрыска / время впрыска / компрессия …
/ Compression — оценка / состояние ЦПГ / ГРМ …
/ Turbo — оценка / состояние системы турбонаддува …

/ ( Turbo.IN / Turbo.OUT ) — энтальпия, энергия, доступная для преобразования в теплоту в турбонагнетателе … ( ! ) … Показатель эффективности турбонаддува … Избыток температуры выхода указывает на загрязнение турбо, более низкое давление турбо, высокая температура выхлопных газов …
Примечание : зачем нужно знать температуру турбо, если есть тест давления турбо? Температура указывает работоспособность турбонагнетателя, давление указывает, как engine потребляет давление …
/ Temp.Exh — оценка : горение, впрыск, фазы, компрессия, высокая температура при бедной смеси …
/ λ — инженерная оценка, по мере увеличения мощности избыток воздуха падает … Применяется для контроля турбонаддува и снижения токсичности …


© internet / service manual / car & truck diagnostics people’s allowance

9:51 04.12.2017

Контакт моя страница, общение по работе и дружба.

Познавательные развлечения. Техника. Технологии. Сайт techstop-ekb.ru

Сайт techstop-ekb.ru использует протокол HTTPS шифрования для безопасного соединения с сервером и защиты пользовательских данных.Лицензионный антивирус DrWeb надежно защищает код сайта techstop-ekb.ru от вирусов, в целях превентивной защиты пользователей от интернет угроз.Код сайта techstop-ekb.ru соответствует всемирным стандартам валидных HTML данных интернет страниц.

Сайт techstop-ekb.ru входит в рейтинг Рамблер Топ 100, категория познавательно-развлекательные сайты.Сайт techstop-ekb.ru входит в рейтинг Майл Топ 100, категория Авто Мото Информация.

techstop-ekb.ru — обзор.

Index Of — список всего.

* Меню раздела *


© techstop-ekb.ru, www, 2020.

Диагностика двигателя с помощью сканера

В помощь автовладельцам в продаже появилось множество различных сканеров для проведения самостоятельной диагностики современных двигателей. Но без знания основ работы системы впрыска вряд ли такой прибор окажет существенную помощь.

Перед пуском и в процессе работы двигателя контроллер оценивает температуру охлаждающей жидкости и температуру воздуха на впуске. Если датчик температуры ОЖ дает неверные показания, блок управления будет излишне обогащать или, наоборот, обеднять смесь, что приведет к неустойчивой работе двигателя и трудностям при запуске. Значение температуры ОЖ перед пуском используется для оценки работы термостата по времени прогрева двигателя. Исправность датчиков можно оценить перед холодным пуском, когда температура ОЖ сравнялась с температурой наружного воздуха. Показания датчиков в этом случае также должны отличаться не более, чем на 1-2 градуса. Если оба датчика отключить, контроллер будет брать значения, заложенные в «аварийную» программу. При неисправности датчика температуры воздуха возникнут трудности при запуске мотора, особенно при низких температурах.

Величина напряжения в бортовой сети также находится под неусыпным контролем блока управления. Ее значение зависит от параметров генератора. Если напряжение ниже нормы, контроллер увеличивает продолжительность накопления энергии в катушках зажигания и время впрыска.

С помощью сканера можно снять показания с датчика скорости и сравнить их с показаниями спидометра, оценив, таким образом, его работоспособность.

При повышенных оборотах холостого хода прогретого двигателя сканером проверяется степень открытия дроссельной заслонки. Она измеряется в процентах, и изменяется от 0% в закрытом состоянии до, не менее чем 70%, в полностью открытом.

В энергозависимой памяти контроллера хранятся данные о величине напряжения на датчике положения дроссельной заслонки (ДПДЗ) в закрытом состоянии. При установке другого датчика напряжение может быть другим, и поэтому контроллер по-другому отрегулирует обороты холостого хода. Чтобы такой ошибки не происходило, перед заменой датчика необходимо снимать клемму с аккумулятора.

Показания датчика массового расхода воздуха (ДМРВ), выраженные в кг/ч, используются контроллером для расчета большинства параметров. Одновременно контроллер вычисляет и теоретическую величину количества воздуха в зависимости от нагрузки. Эти два показания на исправном двигателе не должны сильно отличаться. Слишком большая разница между данными ДМРВ и расчетным значением количества необходимого воздуха свидетельствует о неисправности двигателя.

Контроллер рассчитывает и при необходимости корректирует угол опережения зажигания (УОЗ). С помощью сканера можно проверить его величину. При возникновении детонации блок управления «подправит» УОЗ, что наглядно будет видно на экране сканера.

Нагрузку на двигатель контроллер оценивает по величине и скорости открытия дроссельной заслонки. Измеряется она в процентах. Для прогретого мотора, работающего на холостых оборотах, параметр «нагрузка на двигатель» величина постоянная. Поэтому весьма полезно запомнить это значение. Если оно резко уменьшилось, это говорит о наличии постороннего подсоса воздуха. При увеличении же значения этого параметра от стандартного причину следует, прежде всего, искать в ДМРВ. Также этот параметр может увеличиться при увеличившемся сопротивлении вращению ротора генератора или насоса охлаждающей жидкости. Современные системы управления двигателем при расчете нагрузки учитывают даже такой параметр, как высота над уровнем моря, уменьшая время открытия форсунок с повышением высоты.

Проверяя сканером время открытого состояния форсунок, помните, что в современных системах фазированного впрыска форсунка открывается один раз за два оборота коленвала. В устаревших же, где форсунки срабатывают одновременно или попарно – параллельно, впрыск производится дважды. При этом управляющий импульс по длительности вдвое короче.

В режиме торможения двигателем подача топлива либо прекращается, либо снижается до минимума. Проверить, отключена ли топливоподача, можно с помощью специального параметра, который имеет только два значения: «да» или «нет».

Важной деталью системы управления является регулятор холостого хода (РХХ). Но он задействован не только в режиме холостого хода, но и в других рабочих режимах. РХХ чутко реагирует на любые изменения нагрузки, допустим – при включении осветительных приборов. При проверке сканером задают величину перемещения штока РХХ, следя при этом за изменением частоты вращения мотора.

По уровню сигнала от датчика детонации можно оценить шумность работы двигателя. Он измеряется в вольтах. В исправном двигателе его значение находится в пределах от 0,3 до 1 вольта. В изношенном двигателе эта величина будет выше.

Одной из «экологических» систем современного автомобиля является система улавливания паров бензина. Ее исполнительный механизм – электромагнитный клапан, управляемый контроллером. Клапан располагается в подкапотном пространстве, и при его работе слышны щелчки. При проверке сканером изменяют время открытия клапана и одновременно отслеживают работу РХХ. Если он прикроется, то, следовательно, во впускной тракт поступила дополнительная порция продувочного воздуха через клапан.

Установки системы управления хранятся в энергонезависимой памяти в виде контрольной суммы (набор букв и цифр), и подкорректировать их с помощью сканера невозможно. Для этого требуется специальное программное обеспечение. Контрольная сумма может измениться при сбое в программе работы контроллера. При этом контроллер придется заменить, в лучшем случае – перепрограммировать. Время работы контроллера также фиксируется в памяти, но при снятии клеммы аккумулятора этот параметр обнуляется.

Используя данные о количестве поступающего в двигатель воздуха от датчика массового расхода воздуха (ДМРВ), контроллер рассчитывает необходимое количество топлива и время открытого состояния форсунок. Правильность расчетов проверяется с помощью датчика кислорода (лямбда – зонда), устанавливаемого в выпускной системе перед каталитическим нейтрализатором. Этот процесс коррекции состава смеси по показаниям датчика кислорода (ДК) называется лямбда – регулированием (или обратной связью).

Сразу после пуска, когда лямбда-зонд не прогрет до рабочей температуры (300°C), он не участвует в процессе регулирования состава рабочей смеси, а сигнал на его выходе постоянен и равен приблизительно 0,5 вольта. Уменьшить время прогрева позволяет дополнительный электрический подогрев датчика. Как только сигнал датчика изменит значение, контроллер тут же «заметит» это и включит лямбда-зонд в процесс корректирования состава смеси.

В процессе работы сигнал ДК постоянно изменяется в пределах 0,1 – 0,9 В. Высокий уровень напряжения соответствует богатой смеси, низкий – бедной. Это наглядно видно на экране сканера. Если же экран недостаточно велик, можно подключить сканер к монитору компьютера – сигнал датчика напоминает синусоиду с прямоугольными краями.

Сигнал ДК контроллер «преобразует» в коэффициент коррекции длительности впрыска (КД). В нормальном состоянии этот параметр колеблется в пределах от 0,98 до 1,02. Максимально допустимые пределы от 0,85 до 1,15. Меньшие значения соответствуют более богатой смеси, большие – бедной. Если коэффициент меньше единицы, контроллер уменьшает время впрыска, если больше – увеличивает. Значения, выходящие из указанного диапазона, свидетельствуют о неисправностях в работе двигателя.

Но одного лямбда – регулирования для обеспечения нужного состава смеси недостаточно. В современных двигателях конструкторы научили блок управления учитывать изменения параметров – «старение» датчиков, постепенное снижение компрессии в цилиндрах, разницу в качестве заправленного топлива и другие факторы. Таким образом, контроллеры получили функцию самообучения. Для ее реализации ввели две составляющих – аддитивную и мультипликативную. Аддитивная коррекция (АК) самообучения «работает» на холостом ходу, а мультипликативная (МК) – в режиме частичных нагрузок.

АК измеряют в процентах. Ее граничные пределы – от -10% до +10%. МК – величина безразмерная и может изменяться от 0,75 до 1,25. Если любая из этих составляющих самообучения приблизится к граничным показателям (в любую сторону), контроллер зажжет лампу «Check engine» и запишет ошибку РО171 или РО172 (слишком бедная или богатая смесь).

Смысл коэффициентов коррекции самообучения состоит в том, чтобы поддерживать коэффициент длительности впрыска (КД), близким к единице (0,98-1,02). Рассмотрим пример. Допустим, в результате старения ДМРВ смесь обедняется на 15%. Контроллер увеличит длительность впрыска, в результате чего КД возрастет до 1,13-1,17 (при среднем значении 1,15). В это время включается режим адаптации, приводя КД к номинальному значению. Значение МК хранится в энергозависимой памяти контроллера, и при последующих запусках двигателя коэффициент будет регулировать состав смеси с учетом погрешности ДМРВ. Аналогично работает и АК, но в режиме холостого хода. Когда же неисправность устранена, вновь ждать адаптации нет нужды – достаточно отключить аккумулятор, чтобы значения КД, АК и МК сбросились к начальным. Второй вариант – применить функцию сканера «сброс адаптаций».

Нагрузка — электродвигатель — Большая Энциклопедия Нефти и Газа, статья, страница 1

Нагрузка — электродвигатель

Cтраница 1

Нагрузка электродвигателя состоит из сопротивления тех механизмов, которые он приводит во вращение. По мере увеличения нагрузки будет увеличиваться ток, потребляемый электродвигателем, а скорость вращения якоря будет снижаться и, наконец, он остановится. Такое состояние электродвигателя, когда он присоединен к источнику тока, а якорь его не вращается, называется коротким замыканием электродвигателя.  [1]

Нагрузка электродвигателя определяется по амперметру Ац, включенному в цепь статора.  [2]

Нагрузка электродвигателя неравномерна во время цикла, поэтому установочная мощность электродвигателя должна выбираться по среднему квадратичному току для повторно-кратковременных нагрузок. В этом случае установочная мощность двигателя может быть полностью использована по нагрузке и по нагреву.  [4]

Нагрузка электродвигателя регулируется путем изменения силы тока в обмотках электромагнитов тормоза.  [6]

Нагрузка электродвигателя возрастает также при охлаждении дымовых газов — увеличении их плотности — вследствие подсоса холодного воздуха.  [8]

Нагрузка электродвигателя состоит из сопротивления тех механизмов, которые он приводит во вращение. По мере увеличения нагрузки будет увеличиваться ток, потребляемый электродвигателем, а скорость вращения якоря будет снижаться и, наконец, он остановится. Такое состояние электродвигателя, когда он присоединен к источнику тока, а якорь его не вращается, называется коротким замыканием электродвигателя.  [9]

Нагрузка электродвигателя шлифовального круга контролируется специальным указателем нагрузки.  [10]

Нагрузка электродвигателей подъемных механизмов зависит от веса перемещаемого груза; при этом один и тот же груз при подъеме и при спуске по-разному нагружает электродвигатель.  [11]

Если нагрузка электродвигателя в повторно-кратковременном режиме изменяется, то необходимо сначала определить эквивалентную мощность по ( И — 2) без учета времени перерывов в работе, затем определить фактическую ПВ и после этого пересчитать эквивалентную мощность на стандартную ПВ. По этой мощности уже и выбирается электродвигатель по каталогу.  [12]

Если нагрузка электродвигателя остается постоянной, то его температура ( нагрев) будет повышаться до некоторой установившейся величины. Температура ( нагрев) электродвигателя устанавливается лишь тогда, когда количество теплоты, выделяемой в нем за единицу времени, будет равно количеству теплоты, которое теряет двигатель в окружающую среду.  [13]

Определение нагрузки электродвигателя ( величины тока статора) и установление оптимального напряжения производятся по кривим второго квадранта номограммы.  [14]

Как конструкция двигателя может выдерживать огромные мощности?

Чтобы понять, почему для конструкции двигателя не является губительной увеличенная в разумных пределах при помощи турбонагнетателя мощность, необходимо рассмотреть статические нагрузки в двигателе во время его работы. К конструкции двигателя в разные моменты его работы прикладываются два вида статических нагрузок: инерционные и мощностные. Инерционные нагрузки могут быть растягивающими (произведены растягиванием) или сжимающими (произведены сжатием). Мошностная нагрузка может быть только сжимающей. Механизмы воздействия этих нагрузок должны стать понятны читателю как по отдельности, так и в совокупности. Это необходимо для ясного представления, почему турбонагнетатель не убивает кривошипно-шатунный механизм двигателя.

Инерционная нагрузка

Инерционная нагрузка возникает из-за сопротивления предмета ускоренному движению. Чтобы исследовать инерционные нагрузки, удобно разделить цилиндр на верхнюю и нижнюю части. Вообразите две половины, отделенные мнимой линией, называемой серединой хода поршня.

Zavisimost-nagruzok-na-uzly-dvigatelya

Рис. Зависимость нагрузок на узлы двигателя меняет свой характер в трёх характерных взаимных положениях поршня и коленчатого вала.

Вектор ускорения поршня всегда направлен к середине его хода даже при движении вверх или вниз от этой середины. Другими словами, когда поршень выше середины своего хода, он будет всегда ускоряться вниз. Когда он ниже середины хода (даже в мертвой точке), он будет ускоряться вверх. Самые большие ускорения достигается в верхней мертвой точке и нижней мертвой точке, когда поршень фактически останавливается. Когда ускорение самое большое, нагрузки будут самые высокие. Когда поршень проходит через середину своего хода ускорение нулевое, а скорость максимальна.

Величина нагрузок, возникающих при движении поршня, пропорциональна частоте вращения двигателя, возведенной в квадрат. Например, если число оборотов двигателя в минуту увеличено втрое, инерционная нагрузка будет в девять раз большей. Поршень, который двигается (ускоряется) к верхней мертвой точке и затем обратно к середине хода, прикладывает растягивающую инерционную нагрузку к узлу поршень/шатун. Напротив, когда поршень двигается к нижней мертвой точке и затем обратно к середине хода, инерционная нагрузка будет сжимающей. Таким образом, во время нахождения поршня выше середины хода инерционная нагрузка, будет растягивающей, а ниже середины хода — сжимающей. Самое большое растягивающее усилие, приюженное к шатуну — в верхней мертвой точке на ходе выпуска (потому что в верхней мертвой точке в конце такта сжатия ТВС уже горит и создает давление, противодействующее инерционной нагрузке). Самая большая сжимающая нагрузка — в нижней мертвой точке после впуска или рабочего такта.

Эти инерционные нагрузки огромны. В двигателе большого объема, работающем на 7000 оборотов в минуту, в шатуне могут развиваться инерционные нагрузки величиной более, чем 1,8 тонны. (Для наглядности представьте себе микроавтобус, стоящий на вашем шатунном подшипнике.)

Инерционные нагрузки

Рис. Инерционные нагрузки, прикладываемые к шатуну, приближены к синусоидальной зависимости относительно угла поворота коленчатого вала.

Мощностная нагрузка

Мощностная нагрузка возникает от давления сгорающей ТВС, приложенного к поршню. Это сжимающая нагрузка, приложенная к шатуну вследствие того, что горящие газы вынуждают поршень двигаться вниз.

Давление, созданное расширяющимися горячими газами, прикладывает к поршню силу, равную площади сечения цилиндра, помноженной на давление в камере сгорания. Например, шатун в двигателе с площадью сечения цилиндра 64,5 квадратных сантиметра (при диаметре 90 мм) при давлении в камере сгорания более 50 бар, будет испытывать сжимающую мощностную нагрузку в 3,6 тонны.

Особая зависимость инерционных и мощностных нагрузок наиболее интересна в верхней половине рабочего такта. Здесь мы имеем следующую картину: две нагрузки, действующие на шатун, нагружают его в различных направлениях. Помните, что инерционная нагрузка является растягивающей выше середины хода, в то время как мощностная нагрузка в любом случае является сжимающей. Мощностная нагрузка достигает максимума при максимуме крутящего момента, и постепенно снижается при дальнейшем увеличении оборотов двигателя, но вообще всегда больше чем инерционная нагрузка. Разность между этими двумя нагрузками и есть реальная нагрузка на шатун.

Итак, инерционные нагрузки частично компенсируются мощностной нагрузкой. Из вышесказанного, очевидно, что в конце такта выпуска, когда шатун/поршень достигает верхней мертвой точки и не подвергается сопротивлению сжимающихся газов (потому что все клапана открыты), достигается самое высокое растягивающее усилие. Эта нагрузка наиболее разрушительна из всех, потому что растягивающие усилия вызывают усталостное разрушение, в то время как сжимающие усилия к этому не приводят. Поэтому, когда конструктор анализирует напряжения в шатуне и шатунных бол тах, его в наибольшей степени интересуют инерционные нагрузки в верхней и нижней мертвых точках.

Sgorayushhaya-TVS

Рис. Сгорающая ТВС создает сжимающие нагрузки в шатуне.

Obedinennyj-grafik-moshhnostnoj-i-inertsionnoj-nagruzok

Рис. Объединенный график мощностной и инерционной нагрузок. Заметьте, что мощностная и инерционная нагрузка вычитаются друг из друга.

Мысль об удвоении момента двигателя (удвоении мощности при тех же оборотах двигателя) приводит к другой мысли — об удвоении мощностной нагрузки. К счастью это не так. Показать, как мощность можно удвоить без удвоения давления в камере сгорания, проще всего графически. Любые существенные изменения расчетной нагрузки будут основаны на пиковом давлении в камере сгорания. На рисунке видно, что при удвоении количества смеси в камере сгорания, пиковое давление возрастает только приблизительно на 20 %. Имеются две причины для этой непропорциональности.

Во-первьтх, мощность — функция среднего давления по всему рабочему ходу поршня, а не только пикового давления. Среднее давление может быть значи тельно увеличено за счет более высокого давления в середине или в конце хода, в то время как максимум давления существенно не возрастает.

Во-вторых, максимальное давление вообще достигается после сгорания 18-20 % смеси. Если количество смеси удвоено, те же 18-20 % этого количества сгорят при достижении максимального давления. Так как полное давления в камере сгорания состоит из давления сжатия и давления сгоревших газов, невозможно удвоить полное давление, удваивая только одну из его составных частей. (Не иначе, законы физики благосклонны к шатунам и шатунным подшипникам.)

Davlenie-v-tsilindre

Davlenie-v-tsilindre

Рис. Давление в цилиндре как функция угла поворота коленчатого вала при примерно двух атмосферах давления. Заметьте, что у двигателя с турбонаддувом максимальное давление достигается приблизительно при 20″ после ВМТ, когда сгорает около 20% смеси. Даже при высоких давлениях наддува небольшое количество сгоревшей смеси не будет давать результат в виде большого изменениях максимального давления. Когда процесс горения приблизится к завершению, большая плотность смеси может поднимать давление в три-четыре раза при углах поворота коленчатого вала около 90″, поэтому момент на валу при этом может быть вдвое больше.

Тщательное изучение рисунка показывает, что при угле поворота коленчатого вала, приближающегося к 90″, давление в камере сгорания, при работе с наддувом, в три — четыре раза больше. Оно, однако, заметно меньше чем максимальное давление. Поэтому оно не создает разрушающей нагрузки. Часть рабочего хода в районе 90″ — это тот участок, где возникают реальные увеличения мощности двигателя с турбонаддувом. Любой владеющий физикой товарищ, посмотрев на диаграмму, скажет Вам, что область под соответствующими кривыми представляет собой мощность. Таким образом, разность в площади этих двух областей представляет собой увеличение мощности от применения турбонагнетателя. Теперь очевидно, что мы можем удваивать мощность, не удваивая нагрузку на поршень и шатун!

Итак: предшествующее обсуждение показывает, что увеличенное давление в камере сгорания при использовании турбонадцува и увеличившаяся при этом мощностная нагрузка будут иметь довольно умеренное влияние на конструкцию двигателя.

Умеренное увеличение мощностной нагрузки вообще не будет серьезно влиять на конструкцию двигателя.

Нагрузочная характеристика двигателя

Нагрузочная характеристика двигателя определяется пропорциональностью главных параметров двигателя, а также показателем нагрузки при неизменных оборотах коленвала. Настоящее определение показывает деятельность мотора машины в движении в одинаковом скоростном режиме, на одной и той же передаче при различных сопротивлениях дорожного покрытия.

Нагрузочная характеристика мотораТипичный график нагрузочной характеристики мотора

Определяющими параметрами мотора по нагрузочной характеристике считаются GT и ge. Кроме этого, выделяют:

  • температуру высвобождаемого воздуха;
  • коэффициент заполнения;
  • коэффициент повышенности газов;
  • ускоренное впрыскивание;
  • токсичность выхлопных газов;
  • задымление (для дизельных двигателей).

Холостой ход при определённых оборотах соответствует крайней точке характеристики слева. Точка справа — предельной нагрузке, которую двигатель способен вынести на тех же оборотах.

В карбюраторном моторе снижение мощности при постоянном значении скорости происходит с помощью закрытия дросселя. Плотность снижается, а отсюда количество поступления топлива. Такой тип контроля именуется количественным. При закрытии дросселя экономия мотора изменяется. Её оценка, а также других параметров движка измеряется нагрузочной характеристикой.

Нагрузочная характеристика ДВС зависит от потребления горючего, удельной эффективности такого потребления, а также других параметров при равномерной скорости и режиме тепла.

Изменение часовой затраты горючего зависит от составляющих компонентов топлива, а также показателя заполнения. Одновременно с открытием дросселя сопротивление гидравлики впуска снижается, показатель заполнения поднимается, как и затраты горючего.

Вместе со всем этим процессом меняется качество впрыскиваемого топлива. Показатель избыточности воздуха меняется с требуемой мощностью и контролем экономии топлива.

Завышенные затраты горючего при максимальных параметрах нагрузки можно объяснить насыщением топлива за счёт раскрытия створок экономайзера.

Механический КПД стремится к нулю при холостых оборотах, т. к. вся деятельность движка тратится, чтобы преодолеть механические потери. Также на холостых оборотах происходит обогащение топлива, потому что при открытии дросселя давление и температура снижаются, условия для зажжения искры становятся хуже.

Вместе с открытием дросселя в месте средней нагрузки обогащённое топливо уже не требуется, происходит подача более «бедного» горючего. Это повышает индикаторный КПД.

Способы снятия нагрузки

Мотор должен прогреться на маленькой нагрузке, дроссель открывают на всю. Частота оборотов движка регулируется с помощью тормозной системы. Как только тепловой и скоростной режимы устанавливаются в определённое положение, замеряют показатели:

  • весов;
  • затраты топлива по времени;
  • частоты оборотов;
  • температуры воды;
  • температуры масла.

Значения записываются, после чего выставляют другой режим, но с заниженными показателями. Измеряют и заново сравнивают. На основе всех испытаний строится график, где видны коэффициенты изменений различных показателей — затраты горючей смеси, излишки воздуха, наполнения, температуры. С помощью подобных опытов находят оптимальный режим работы двигателя.

Определение нагрузки дизельного двигателя

Нагрузочная характеристика дизеля обуславливается затратами топлива и всеми показателями работы движка и его загруженности — мощность и давление при стабильных оборотах коленвала. Эти функции, возникшие от неизменных вращений, устанавливаются для всех скоростных режимов. Следует учитывать расходы топлива, максимально возможную подачу его и затраты за определённый период. Всем этим и характеризуются показатели двигателя.

Дизельный мотор в сборе

Различия дизельного и карбюраторного двигателей

Нагрузочные характеристики дизеля отличаются от карбюраторного из-за особенных способов сгорания, образования смеси и контролирования мощности. В дизельном моторе топливная воздушная масса образовывается за тысячные доли секунды. В таком случае средним показателем для заполненного объёма воздуха и горючего считается коэффициент лишнего газа. Когда топливо впрыскивается, то неоднородно распространяется в камере сгорания, образуя места различной консистенции газа и горючего. Именно от этого в дизельном моторе консистенция значительно беднее. Регулировка мощности возможна непосредственно до холостых ходов.

Мощность двигателя можно изменить, если меняются составляющие консистенции. Это делается при помощи снижения или повышения горючего, которое впрыскивается за конкретный отрезок времени при одинаковой подаче воздуха. Практически это делают при передвижении рейки топливного шланга.

Коэффициент наполнения не меняется, при возрастании мощности он минимизируется из-за повышения температуры. Показатель лишнего воздуха зависит от расхода топлива.

Высокая мощность у двигателей обнаруживается при пиковом показании значения, определяющего качество всего процесса работы. Отклонение в худшую сторону характеризуется задымлением выхлопных газов, накапливается нагар, снижается экономия, температура мотора возрастает в несколько раз. Отсюда видно, что эксплуатация дизеля в пределах максимальной мощности нецелесообразна.

Задымление при различных параметрах нагрузки

В дизельных движках, имеющих неисправности, чрезмерное задымление выхлопных газов образуется из-за изменения режима скорости и нагрузки. Существуют три вида задымления по цветам:

  • чёрный — масса веществ углерода, образующаяся из-за чрезмерного обогащения заряда работы. Это возникает за счёт уменьшения скорости, повышенных нагрузок и сильных форсировок;
  • белый — вещества горючего, которые не успели сгореть. Обычно бывает у непрогретого мотора;
  • голубой – углеводород не успевает сгорать и выходит с отработанными газами.

Дым из трубы

Задымление чаще происходит, если нагрузка не превышает пятьдесят процентов. Если переваливает за этот предел, то задымление прекращается. При проведении различных опытов было доказано, что дым голубого цвета не присутствует у дизельных двигателей с четырёхтактной фазой. В таких движках дым только чёрного цвета.

КПД

Повышение объёма горючего, попадающего в мотор, с одновременным повышением нагрузки является результатом уменьшения индикаторного КПД. Переходя к наименьшим нагрузкам от холостых оборотов, механический и индикаторный коэффициент полезного действия повышается. Если дальше повышать нагрузку — механический КПД возрастёт, а расход горючего будет уменьшаться. Если повысить впрыск горючего, то повышается мощность мотора, но экономия падает, происходит задымление выхлопных газов, движок сильно греется — это явный признак некачественной переработки топлива.

Можно ли снять нагрузку?

Следует дать движку прогреться достаточным образом, в это же время перемещается планка, которая регулирует впрыск горючего и контролирует тормоз, показания мотора выводятся на максимальные значения оборотов коленвала при выбранном режиме скорости. Итоговый режим соответствует предельной мощности при конкретных оборотах. Через небольшой отрезок времени после регулировки оборотов стоит измерить следующее:

  • отработанные газы, масло, показания температуры воды;
  • силу тормоза и момента вращения;
  • показания оборотов коленвала;
  • время затрат выбранной дозы горючего.

Коленвал бензинового двигателя

После всего проделанного с помощью регулирования тормоза оставляют выбранную частоту оборотов, уменьшают впрыск горючего с помощью планки топливного шланга, переходят к дальнейшему этапу и делают необходимые измерения. За счёт последовательного снижения подачи горючего и при определённом количестве оборотов образуется некоторое количество точек нагрузки. Рассчитывают оптимальную нагрузочную характеристику.

Механик возле автомобиля

Если статья оказалась полезной, напишите нам об этом.

Нагрузочная характеристика двигателя

⇐ ПредыдущаяСтр 6 из 8Следующая ⇒

Нагрузочная характеристика представляет собойзависимость часового и удельного эффективного расходов топлива от нагрузки (мощности, крутящего момента, среднего эффективного давления) двигателя при постоянной частоте вращения коленчатого вала. Она позволяет оценить экономичность двигателя на различных нагрузках при данной частоте вращения вала.

Условия снятия характеристики:

— нормальное тепловое состояние двигателя;

— постоянная частота вращения коленчатого вала;

— установившийся температурный режим двигателя;

— исправные системы зажигания и питания двигателя.

Общий вид нагрузочной характеристики двигателя показан на рис.18.

 

Теоретическая часть

Особенности работы двигателя на режимах холостого хода и малых
 нагрузок.

Работа двигателя на режимах холостого хода и малых нагрузок имеет ряд характерных особенностей. Так, например, к моменту открытия выпускного клапана давление в цилиндре может быть ниже давления в выпускной трубе. Тогда после открытия выпускного клапана происходит перетекание газа из выпускной трубы в цилиндр до выравнивания давлений и лишь затем начинается выталкивание газа из цилиндра в выпускную трубу (рис. 19).

В момент открытия впускного клапана давление газов в цилиндре превышает давление во впускной трубе. Поэтому происходит заброс продуктов сгорания из цилиндра во впускной трубопровод.

 

Рис. 18 Нагрузочная характеристика

Положение усугубляется в период перекрытия клапанов, когда может происходить достаточно интенсивное перетекание газов из выпускной трубы в полость цилиндра и из цилиндра во впускную трубу. Все это приводит к заметному увеличению коэффициента остаточных газов и значительно повышает вероятность пропуска воспламенения.

Отличие режимов холостого хода и малых нагрузок от режимов полной и средней нагрузок — это не только уже отмеченная в несколько раз большая доля остаточных газов, но и непосредственная зависимость состава заряда от полноты сгорания топлива в предшествующем цикле. Так, при пропуске воспламенения и неполном сгорании топлива остаточные газы содержат неокисленное топливо, свободный кислород и химически активные продукты неполного сгорания.

С этим связана характерная для режимов глубокого дросселирования двигателя цикловая неидентичность процесса сгорания смеси. Как правило, после циклов с более полным сгоранием в рабочем заряде последующего цикла увеличивается инертная составляющая, что приводит к ухудшению процесса сгорания в этом цикле.

Рис. 19 Развернутая индикаторная диаграмма при работе двигателя на холостом ходу

Следствием плохого сгорания на режимах холостого хода и малых нагрузок является повышенный выброс вредных веществ, уменьшение индикаторного КПД двигателя. Низкое давление во впускном трубопроводе, обусловленное сильно прикрытой дроссельной заслонкой, означает большие насосные потери. Механические потери двигателя, абсолютная величина которых не зависит от нагрузки, при малой нагрузке относительно нее то же становятся большими. Все это приводит к увеличению удельного эффективного расхода топлива. Улучшить эти показатели позволяет использование переменных фаз газораспределения (уменьшение продолжительности перекрытия клапанов), повышение степени сжатия двигателя, увеличение угла опережения зажигания и обогащение горючей смеси.

Сохранение частоты вращения вала при повышении нагрузки двигателя осуществляется за счет открытия дроссельной заслонки и, соответственно, увеличения наполнения цилиндров свежим зарядом. При этом повышаются давление в цилиндре и качество процесса сгорания, уменьшаются насосные, относительные механические потери и удельный эффективный расход топлива. Часовой расход топлива при этом плавно возрастает.

Наилучшая топливная экономичность должна наблюдаться при полной нагрузке.

Однако на практике горючую смесь на нагрузках, близких к полной, обычно обогащают для получения максимально возможной мощности при данной частоте вращения вала. Обогащение смеси обусловливает химическую неполноту сгорания топлива и, соответственно, снижение экономичности двигателя. В этом случае минимальный удельный эффективный расход топлива имеет место при нагрузках, составляющих 85…90% от полной. Обогащение смеси ведет и к более быстрому росту часового расхода топлива на больших нагрузках.

 

Экспериментальная часть

Нагрузочную характеристику снимают при постоянной частоте вращения коленчатого вала, изменяя положение дросселя от минимального открытия его, соответствующего холостому ходу, до полного открытия. Поскольку автомобильный двигатель работает в широком диапазоне частот вращения, то для выявления его топливной экономичности необходимо снять несколько нагрузочных характеристик при различных значениях частоты вращения вала. Нагрузку при испытаниях варьируют с помощью тормозной установки, а изменением степени открытия дроссельной заслонки поддерживают постоянной частоту вращения вала.

Регулировки состава горючей смеси и угла опережения зажигания при снятии нагрузочной характеристики обеспечиваются автоматической работой соответствующих систем двигателя. Стенд оснащен устройством, позволяющим фиксировать дроссельную заслонку в произвольном положении, начиная от положения на упоре при работе на холостом ходу и до ее полного открытия.

Первый опыт проводят при наименьшем открытии дроссельной заслонки, обеспечивающем устойчивую работу двигателя в режиме холостого хода на заданной частоте вращения коленчатого вала.

Во втором и последующих опытах увеличивают нагрузку двигателя, приоткрывая дроссельную заслонку на 10…12°. Последний опыт проводят при полностью открытой дроссельной заслонке. Для более точного определения показателей в зоне минимальных удельных расходов топлива, (при нагрузке более 70 % от максимальной) желательно проводить опыты более часто.

По результатам испытаний строят графики нагрузочной характеристики.

Графически определяют показатели и регулировки двигателя в характерных точках:

• часовой расход топлива на режиме холостого хода;

• часовой и удельный расход топлива, соответствующие максимальной мощности при полном открытии дроссельной заслонки;

• минимальный удельный расход топлива и соответствующую степень нагрузки двигателя;

• коэффициенты избытка воздуха при работе двигателя на холостом ходу, максимальной нагрузке и при минимальном удельном расходе топлива.

 

Контрольные вопросы

1. Каковы условия снятия нагрузочной характеристики?

2. Почему при увеличении нагрузки на двигатель удельный эффективный расход топлива уменьшается?

3. Почему при открытии дросселя, больше чем  на 85 – 95%, расходы топлива могут резко возрасти?

4. Чему равен удельный эффективный расход топлива на холостом ходу?

5. Как будет выглядеть кривая удельного эффективного расхода топлива, если на всех нагрузках использовать обогащенную смесь?

6. Как зависит давление во впускном трубопроводе от нагрузки на двигатель?

7. Что такое мощностной и экономичный составы горючей смеси?

ЛАБОРАТОРНАЯ РАБОТА №4




Мощность двигателя на нагрузке — Энциклопедия по экономике

Модернизация оборудования 210 Момент готовности изделий 46 Мощность двигателя на нагрузке 117  [c.313]
При неполной нагрузке требуются более мощные трансформаторы, а низкое значение косинуса фи вдобавок увеличивает потребную мощность трансформаторов. Способы улучшения косинуса фи разнообразны. Основное мероприятие — это нормальная нагрузка двигателя (перегруппировка машин, замена двигателей на меньшую мощность). Повышают значение косинуса фи переход от группового привода к индивидуальному и установка. специального синхронного компенсатора, статических конденсаторов. Синхронные двигатели по капитальным и эксплуатационным затратам экономичнее статических конденсаторов.  [c.186]

Для всех промышленных потребителей, расходующих электроэнергию на силовые цели, с присоединенной мощностью трансформаторов выше 50 ква или мощностью двигателей выше 50 кет, применяется двухставочный тариф. Он состоит из основной платы,,, взимаемой вне зависимости от количества потребленной энергии за суммарную присоединенную мощность электрооборудования или за установленную по договору максимальную нагрузку, и из дополнительной платы за каждый отпущенный киловатт-час активной энергии, учтенной счетчиком. Двухставочный тариф стимулирует потребителей к максимальной загрузке своих трансформаторов и к замене их меньшими в условиях систематической недогрузки. В его основе лежит себестоимость 1 квт-ч электроэнергии, которая применительно к конденсационной электростанции выражается как  [c.185]

В связи с этим была издана специальная инструкция по замене недогруженных асинхронных двигателей. Согласно указанной инструкции, если средняя нагрузка асинхронных двигателей по мощности не превышает 45% номинальной мощности, то их следует заменять двигателями меньшей мощности. Если средняя нагрузка составляет 70% и выше, то замену на двигатели меньшей мощности производить не следует. Если средняя нагрузка составляет 45—70% номинальной мощности, то должна быть произведена технико-экономическая проверка целесообразности замены на двигатель меньшей мощности.  [c.262]

Мощностью трения двигателя называется разность между его индикаторной и эффективной мощностью, т. е. мощностью, развиваемой газами в цилиндрах двигателя, и мощностью, отдаваемой коленчатым валом трансмиссии. В частном случае, при работе двигателя на холостом ходу, эффективная мощность равна мощности трения. С увеличением частоты вращения коленчатого вала мощность трения резко возрастает, но она довольно мало изменяется при изменении нагрузки, если частота вращения постоянна.  [c.181]

Например, при разработке оборудования для самолетов, космических кораблей и спутников возрастание веса в любом электронном блоке AG3. б может на порядок увеличить вес G всей системы, а следовательно, и ее стоимость z . По приводимым в литературе данным, на каждый килограмм полезной нагрузки может требоваться до AGe = 10 кг веса самолета или AG = 50 кг веса ракеты в основном за счет увеличения мощности двигателя. Соответственно возрастает и стоимость системы z . Поэтому в вариантах оборудования повышенной надежности для самолетов и космических кораблей необходимо учитывать, как скажется возрастание веса аппаратуры на стоимости всей системы.  [c.112]

Мощность, которую двигатель может развивать на нагрузке, подразделяют на нормальную, максимально длительную и максимально кратковременную. Нормальной, или экономической называют ту мощность, при которой агрегат (двигатель, котел) работает с наилучшими экономическими показателями. Максимально длительной называют ту наибольшую мощность, которую агрегат может развивать неопределенно долгое время без существенного износа и перегрева частей, без угрозы аварии. Изготовители энергетического оборудования рассчитывают его на механическую прочность, исходя именно из максимально длительной мощности. Однако, учитывая, что обычная нагрузка двигателей будет ближе к нормальной, конструирование ведется с таким расчетом, чтобы именно при нормальной, а не максимально длительной нагрузке агрегат имел наилучшие технико-экономические показатели. Максимально кратковременной (перегрузочной) называют такую наибольшую мощность для данного двигателя, которую допустимо развивать лишь на очень короткое время, например на 30 мин. Из приведенных определений ясно, что для учета мощности энергетического аппарата в народном хозяйстве следует принимать максимально длительную мощность.  [c.177]

Коэффициент интенсивной нагрузки двигателя — относительная характеристика использования максимально-длительной мощности двигателя, исчисляется делением средней фактической мощности двигателя за данный период на максимально-длительную эффективную мощность двигателя.  [c.503]

Опыт показывает, что при нагрузке двигателя менее 45% его однозначно следует заменить на мотор меньшей мощности. Если нагрузка составляет 45-70%, то для замены потребуется технико-экономическое обоснование. При нагрузке более 70% от номинальной мощности двигателя его замена нецелесообразна. Необходимые капиталовложения зависят от схемы, по которой осуществляется замена более мощных моторов на менее мощные.  [c.560]

Расчеты показывают, что, например, при одинаковой номинальной мощности двигателей 1500 кВт и коэффициенте загрузки 0,86 потери активной мощности непосредственно в асинхронном двигателе примерно на 30% выше, чем в синхронном (при os ф = 1,0). Но если дополнительно учесть потери активной мощности во внешней сети от реактивной нагрузки АД, то суммарные потери оказываются уже на 140% больше, чем у СД. В этом случае при трехсменной работе период окупаемости дополнительных капиталовложений в электропривод с СД получается немногим более одного года (при условии, что стоимость синхронного мотора на 50% больше, чем асинхронного).  [c.563]

Затраты на реализацию функции самые низкие Большие нагрузки на станину и узел крепления двигателя вследствие повышенного натяжения ремней и большой мощности двигателя  [c.125]

Кроме того, в машиностроительных предприятиях значительное количество вырабатываемой электроэнергии потребляется I электродвигателями различной мощности, с низким коэффициентом использования. Как правило, мощность установленных электродвигателей выбирается в расчете на максимальную производительность оборудования, несмотря на то, что часы пиковой нагрузки составляют всего 10-15% общего времени его работы. В результате среднесуточное потребление электроэнергии двигателями, работающими с постоянной скоростью без регулирования частоты, оказывается (иногда на 60%) больше требуемого для обеспечения оптимального технологического процесса.  [c.164]

Изучение работы силового оборудования начинается с определения его мощности. При характеристике мощности оборудования необходимо разрешить вопрос, по какому звену или на каком этапе работы оборудования нужно определять его мощность. Энергия зарождается в первом звене машинного агрегата, который может работать с различной-нагрузкой. Эта энергия не доходит целиком до рабочей машины, часть ее теряется в пути от первичного двигателя к ее потребителю, т. е. к рабочей машине. Вследствие этого различаются следующие виды мощности  [c.138]

В ряде случаев эффективной мерой по снижению потребления реактивной мощности является переключение обмоток недогруженного асинхронного двигателя с треугольника на звезду. Поскольку при этом пусковой и. вращающий моменты уменьшаются в 3 раза, переключение можно производить при низкой загрузке двигателя — до 35% номинальной мощности. Для выпускаемых в нашей стране двигателей предельно допускаемая нагрузка переключаемого на звезду асинхронного двигателя должна быть не выше 38—45% номинальной мощности. Переключение загруженных на 25% электродвигателей приводит к приближению их коэффициента мощности к номинальному.  [c.263]

Как известно, с повышением напряжения в сети растет потребление реактивной мощности, и наоборот. Поэтому иногда в питающей незагруженные асинхронные двигатели сети применяется снижение напряжения за счет переключения ответвлений на трансформаторах. К этому мероприятию можно прибегать лишь в случаях, когда в сети держится чрезмерно высокое напряжение. Если же этого нет, то при совместном питании осветительной и силовой нагрузки понижение напряжения в сети с целью повышения коэффициента мощности приведет к понижению напряжения на лампах, уменьшению их светоотдачи, снижению освещенности  [c.263]

Выпуск 1 млн. кет синхронных двигателей вместо асинхронных дает возможность снизить реактивные нагрузки потребителей примерно на 725 тыс. квар, а при работе с опережающим коэффициентом мощности получить дополнительно реактивную мощность.  [c.266]

Большую часть времени эксплуатации двигатель работает на средних нагрузках, развивая 60-75 % его номинальной мощности для обеспечения высокой экономичности и» полного сгорания смеси на средних нагрузках карбюратор должен готовить горючую смесь состава а — 1,05-1,1, т. е. слегка обедненную.  [c.127]

Чем выше скорость сгорания, тем большую мощность будет развивать двигатель при одинаковом расходе топлива. Это происходит потому, что при увеличении скорости сгорания рабочий цикл двигателя приближается к теоретическому, в котором предполагается мгновенное сгорание всего заряда в в. м. т. Чем ближе к в.м.т. сгорает топливо, тем более полно происходит последующее расширение продуктов сгорания и, следовательно, меньше тепла отводится с обработавшими газами. Однако при очень быстром протекании процесса сгорания возникают большие ударные нагрузки на детали шатунно-кривошипного механизма, характеризуемые жесткой работой двигателя.  [c.139]

Должен знать принцип работы и устройство обслуживаемого трактора правила уличного движения правила погрузки, укладки, строповки и разгрузки различных грузов правила производства работ с прицепными приспособлениями и устройствами способы выявления и устранения недостатков в работе трактора мощность обслуживаемого двигателя и предельную нагрузку прицепных приспособлений порядок оформления приемо-сдаточных документов на перевозимые грузы или выполненные работы.  [c.168]

Для синхронных двигателей удельные потери мощности на реактивную составляющую в зависимости от нагрузки при номинальном os фн = 0,9 приведены в табл. 5-9.  [c.399]

Нагрузка электродвигателя. Снижение нагрузки электромотора по отношению к его номинальной мощности вызывает уменьшение кпд и коэффициента мощности os

[c.560]

Следует подчеркнуть, что за рубежом основную группу двигателей с повышенными кпд составляют моторы переменного тока мощностью до 150 кВт, прежде всего двигатели с номинальной мощностью 4-15 кВт. Конечно, как сказано выше, при покупке нового двигателя необходимо обращать внимание на модели с высокими энергетическими характеристиками. Однако надо иметь в виду, что возможная экономия на этом пути существенно меньше той, которую можно получить при правильном выборе типоразмера двигателя в расчете на определенную нагрузку.  [c.564]

Основными потребителями реактивной мощности на промышленных предприятиях являются асинхронные двигатели, индукционные печи, вентильные преобразователи, сварочные агрегаты. При этом доля асинхронной нагрузки в потребляемой реактивной мощности на промышленных предприятиях достигает 60-70%. Крупными потребителями реактивной мощности также являются трансформаторы всех ступеней трансформации — 20-25%. В табл. 26.6 приведены примерные значения коэффициентов мощности ( os ф) для разных электроустановок.  [c.568]

На рис. 26.7, а показан случай, когда при потреблении реактивной мощности из электросети асинхронным электродвигателем возрастает токовая нагрузка на сеть и трансформатор это, как сказано выше, ведет к потерям активной мощности в элементах системы электроснабжения предприятия и недоиспользованию мощности трансформаторов. Двигатель работает с пониженным коэффициентом мощности ( os ф).  [c.569]

В подшипниках двигателей и других машин масло является, с одной стороны, смазывающим, а с другой — теплоотводящим агентом. Известно, что смазка сама по себе требует малых количеств масла и даже у машин большой мощности с высокими удельными нагрузками на подшипниках можно было бы ограничиться устройством ванной или кольцевой смазки. Необходимость придания современным двигателям циркуляционной системы смазки, содержащей значительные количества масла, непрерывно омывающего подшипники, диктуется в основном вторым назначением масла — отводить от подшипника образующееся при трении тепло. Укажем для примера, что развивающееся в опорном подшипнике количество тепла равно  [c.145]

При выборе номинальной мощности двигателя на замену необходимо учитывать опасность его недопустимых перегрузок в периоды максимальных нагрузок электропривода. Кроме того, надо иметь в виду, что при прочих равных условиях двигатели повышенной мощности всегда обладают более высокими кпд и os ф и при этом требуют относительно меньших удельных капиталовложений на приобретение и установку. Поэтому, выбирая номинальную мощность электромотора, следует ориентироваться на не более чем 70-75%-ный уровень его нагрузки. Более точные оценки дает специальное технико-экономическое обоснование замены конкретного малозагруженного двигателя.  [c.561]

Использование силового оборудования характеризуется показателями использования его во времени и по мощности. На осночв е этих показателей определяется общий показатель его использования путем вычисления трех коэффициентов нагрузки двигателей экстенсивной, интенсивной и интегральной. Коэффициент экстенсивной нагрузки характеризует использование оборудования во времени. Он исчисляется путем отношения количества проработанных двигателем часов к календарному или к запланированному числу часов. Коэффициент интенсивной на-груз-ки характеризует использование мощности оборудования. Он исчисляется путем отношения среднефактической мощности,, с которой работал двигатель в отчетном периоде, к его эффек-тивдой максимально длительной мощности, величина которой указывается в паспорте машины. Среднюю фактическую мощность можно получить путем деления фактически выработанной или потребленной энергии на число отработанных часов. Третий коэффициент—интегральной нагрузки — характеризует общее использование двигателя во времени и по мощности. Он может быть исчислен двояким путем либо путем перемножения двух предыдущих коэффициентов, л.ибо как отношение количества выработанной или потребленной энергии к максимальному количеству энергии, которую мог бы выработать или потребить двигатель при полном его использовании во врем-ени и по мощности.  [c.142]

Было показано [159], что масла вязкостного класса 10 мм2/с, имеющие ИВ 85 и 97, отличаются по расходу масла на 22, 12,5 и 2,5% при работе дизельного двигателя ЯМЗ-238Н с нагрузкой 0,5,0,7 и 0,9 номинальной мощности.  [c.208]

Определение коэффициентов использования и анализ работы электростанции за месяц, квартал или год ничем не отличается от анализа работы за сутки. Эти же методы пригодны для определения использования других генерирующих установок — котлов, двигателей, а также преобразующих и потребляющих установок — трансформаторов, электромоторов и пр. Все.показатели использования режима работы и нагрузки можно наглядно представить на графике (см. рис. 8.1). Площадь графика,. расположенная ниже прямой установленной мощности, изображает в некотором масштабе максимально возможную выработку электроэнергии площадь графика, расположенная ниже кривой нагрузки в том же масштабе, — фактическую выработку электроэнергии. Действительно, площадь прямоугольника измеряется произведением основания на высоту, т. е. киловатт на часы. Это и есть энергия в киловатт-часах. Отношение этих площадей характеризует использование установленной мощности.  [c.181]

Характеристика работ. Обслуживание силовых и осветительных установок с особо сложными схемами включения. Разборка и сборка схем вторичной коммутации и простой релейной защиты максимально-токовой, дифференциальной и др. Замена контрольно-измерительных приборов и измерительных трансформаторов на ведомственных подстанциях, трансформаторных электроподстанциях. Обслуживание электрооборудования и схем машин и агрегатов, включенных в поточную линию, а также оборудования с автоматическим регулированием технологического процесса. Обслуживание статических преобразователей частоты, тиристорного преобразователя-двигателя с обратными связями по току, напряжению и скорости. Проверка и устранение неисправностей в сложных схемах и устройствах электротехнического оборудования подстанции и технологических машин, приборах автоматики и телемеханики. Обслуживание электросхем автоматизированного управления поточно-транспортных технологических линий. Обслуживание сварочного оборудования с электронными схемами управления, а также высокочастотных ламповых генераторов. Обслуживание и устранение неисправностей в работе схем управления кон такторно-релейного, ионного и электромагнитного привода, а также высоковольтной аппаратуры технологического оборудования. Обслуживание электрооборудования агрегатов и станков с системами электромашинного управления, с обратными связями по току и напря-зкению. Производство работ в распределительных устройствах без снятия напряжения свыше 1000 В. Разработка мероприятий с выполнением расчетов по улучшению косинуса фи при различных режимах и нагрузках. Наладка ртутных твердых выпрямителей и высокочастотных установок мощностью свыше 1000 кВт. Наладка сложных командо-аппаратов датчиков, реле на технологическом оборудовании.  [c.185]

Характеристика работ. Испытание двигателей внутреннего сгорания мощностью свыше 73.6 до 736 кВт (100 до 1000л. с.) со снятием внешних характеристик. Монтаж и установка двигателей различных марок и типов на испытательные стенды. Установка и регулирование газораспределения, угла подачи топлива и воздухо-распределения.1 Чтение сложных чертежей и схем. Выявление и устранение дефектов двигателей. Обкаточные испытания гидромеханических передач под нагрузкой.  [c.183]

У трансформаторов в распределительных сетях, прежде всего у трансформаторов небольших мощностей, установка термоэлементов или контактного термометра неэкономична. Рациональнее всего для их защиты от коротких замыканий применять предохранители или выключатели, снабженные расцепителями прямого или косвенного действия (автоматы) защита от перегрузок, аналогичная устанавливаемой на двигателях, до сих пор на таких трансформаторах обычно не ставится. Широко применяющееся термическое реле не может полностью удовлетворить поставленным условиям. Оценка нагрузки трансформатора только с помощью термометра, контролирующего температуру масла, затруднена тем, что температурная постоянная масла намного больше постоянной обмотки. В связи с этим обмотка будет длительное время перегреваться до того, как  [c.102]

Показателями централизации энергоснабжения и электрификации производства являются коэффициенты централизации энергоснабжения (удельный вес получаемой в централизованном порядке энергии в общем количестве энерши, потребляемой предприятием) и электрификации производства (удельный вес электроэнергии в общем потреблении энергии). Показателями, характеризующими использование топливно-энергетических ресурсов, являются удельный расход энергии (норма расхода энергоносителя на. единицу продукции) КПД установок, потребляющих энергию потери энергии в сетях мощность имеющихся двигателей (пиковая мощность, величина коэффициента. мощности, коэффициент нагрузки двигателей). Эти показатели необходимы для контроля потребления энергии и соблюдения, оптимальных параметров технологического процесса. Они являются основой для планирования энергопотребления.  [c.134]

Первый фактор зависит от структуры и типа электроприем-ликов на различных предприятиях, характера работы приводимых механизмов и наличия или отсутствия в них устройств регулирования нагрузки, от степени загрузки двигателей и т. д. Второй и третий факторы определяются дефицитом мощности в энергосистеме, временем его устранения, формой суточных графиков нагрузки. Четвертый фактор выражает результат действия трех предыдущих.  [c.62]

Снижение мощности потерь регулируемых станов. Для приводов существующих станов широко применяются каскадные схемы и системы Г—Д. Наиболее рациональным решением является реконструкция приводов с установкой системы управляемый ртутный выпрямитель двигатель УРВ—Д.при этом снижение расходов энергии достигает до 12%, на 10— 12% увеличивается к. п. д. Стоимость электрооборудования на 40%, а строительной части вдвое ниже, чем при системе Г—Д, вес машин меньше. По расчетам замена вентильного каскада на крупносортном стане 780 безредукторным приводом по системе УРВ—Д обеспечит повышение производительности на 28% и снижение удельного расхода энергии по главному приводу на 8% с окупаемостью за пять месяцев. Недостатком системы УРВ—Д является резкое ухудшение- os q> при глубоком сеточном регулировании, os q> можно повысить сужением диапазона сеточного регулирования за счет снижения напряжения переменного тока с помощью автотрансформатора, регулируемого под нагрузкой. Для сортопрокатных станов с широким сортаментом проката из легированных и рядовых сталей характерным является длительная работа при пониженных скоростях и общем диапазоне регулирования порядка 3 1. В этом случае существенное значение имеет выбор основной скорости прокатного двигателя, так как при снижении напряжения УРВ ухудшается его к. п. д. Результаты сравнения приводов стана 780 с двигателями МП-7000-50, Р = 5 150 кет, п = 50 — 120 об/мин и МП-6200, Р = 4 560 кет, п = 80 — 160 об/мин (табл. 4-39) показывают, что следует устанавливать двигатель с меньшей номинальной скоростью.  [c.293]

Применение конденсаторов основано на том, что они потребляют от источника энергии опережающий реактивный ток1, в то время как трансформаторы, асинхронные двигатели и т. п. потребляют отстающий реактивный ток. В идеальном случае, когда реактивная мощность, потребляемая нагрузкой с индуктивным характером, равна реактивной мощности, потребляемой конденсаторной установкой, os ф равен единице и дополнительные потери в сети и трансформаторах отсутствуют. По экономическим и техническим условиям идеальные условия не достигаются.  [c.389]

Здесь Sp — относительный прирост расхода мощности на собственные нужды (тягодутьевые устройства, циркуляционные насосы, прочие двигатели собственных нужд). Анализ и практика работы показывают, что только некоторые из указанных составляющих собственного расхода оказывают существенное влияние на характеристику относительных приростов (питательные электронасосы, пылеприготовление). Так, например, по циркуляционным насосам значение р близко к нулю, так как повышение их нагрузки приводит к росту вакуума в конденсаторе турбины и увеличению мощности турбоагрегата. У дежурного персонала имеется график поддержания оптимального вакуума путем изменения числа работающих циркуляционных насосов (на ряде электростанций вводится автоматическое поддержание оптимального вакуума). В итоге мощность, отдаваемая с шип электростанции, практически не меняется при изменении числа работающих циркуляционных насосов.  [c.196]

Отправить ответ

avatar
  Подписаться  
Уведомление о