Циклы двигателей внутреннего сгорания – 3.2.1. Действительные и теоретические циклы автомобильных двигателей. Процессы их составляющие

Теоретические циклы двигателей внутреннего сгорания

При анализе термодинамических циклов делаются следующие допущения:

    1. химический состав и количество рабочего тела – постоянны;

    2. процесс горения топлива заменен обратимым процессом подведения теплоты;

    3. выпуск продуктов сгорания заменен обратимым процессом отведения теплоты в окружающую среду;

    4. температура рабочего тела не зависит от температуры окружающей среды;

    5. рабочее тело находится в равновесии с источником теплоты и охладителем (окружающей средой).

Основные циклы ДВС:

    • со смешанным подводом теплоты при постоянном объеме и давлении (цикл Сабатэ) – отражает процесс дизеля без компрессора, который наиболее близок к реальным условиям сгорания топлива;

    • с подводом теплоты при постоянном давлении (цикл Дизеля) – отражает процесс тихоходного дизеля;

    • с подводом теплоты при постоянном объеме (цикл отто) – отражает процесс двигателя быстрого сгорания (карбюраторного и газового).

    Теоретические циклы, давая максимально возможное превращение теплоты в работу при приведенных выше условиях, схематизируют действительные явления и позволяют изучать эти явления, отмечая главные факторы, которые влияют на экономику этих явлений.

    Цикл со смешанным (комбинированным) подводом теплоты (рисунок 1)

    смешанный цикл, в котором подвод теплоты осуществляется частично при v = const, а частично при р = const был предложен советским инженером Г.В. Тринклером. Работающие по этому циклу двигатели называются без компрессорными дизелями. в настоящее время дизели строятся только с комбинированным подводом тепла.

    По этой схеме цикла ДВС работают с внутренним смесеобразованием и воспламенением рабочей смеси.

    Рисунок 1– Смешанный цикл ДВС в pv и Ts координатах

    В этом виде цикла (рисунок 1) в процессе 1-2 происходит адиабатное сжатие рабочего тела, после чего подводится теплота сначала при v =const (линия 2-3), а затем при р = const (линия 3-4). Далее происходит адиабатное расширение (линия 4-5) и, наконец, отвод теплоты при v =const (линия 5-1).

    Процессы всасывания (линия 0-1) и выхлопа (линия 1-0) в термодинамике не рассматриваются, так как это механические процессы.

    Характеристики цикла:

    ; (2)

    . (3)

    Термический кпд цикла (см. прямой цикл Карно – )

    ; (4)

    и ; (5)

    термический КПД: , если поделить числитель и знаменатель на на сv, то получим:

    . (6)

    Выразим T2, T3, T4, T5 через T1.

    Рассмотрим процессы.

    1-2 – процесс адиабатического сжатия:

    T2 = T1ε k – 1. (7)

    2-3 – процесс нагрева при ν = const:

    ;

    T3 = T2λ;

    T3 =T

    k – 1λ. (8)

    3-4 – процесс нагрева при р= const:

    ;

    T4 = T3ρ;

    T4 = T1ε k – 1λρ; (9)

    4-5 – процесс адиабатического расширения: ,

    v5 = v1, а v4 = v2, тогда .

    . (10)

    Подставив в формулу (6) t2,t3,t4,T5 через t1 из формул (7), (8), (9), (10) получим:

    . (11)

    из уравнения (11) видно, что η

    t растет с увеличением ε и k.

    Таблица 1 – Значения р2 и T2при различных значениях ε

    k

    ε

    8

    9

    12

    13

    14

    15

    16

    17

    1,30

    p2

    13,42

    15,70

    22,70

    25,20

    27,80

    30,30

    33,00

    35,80

    T2

    708

    734

    801

    822

    840

    856

    873

    889

    1,35

    p2

    14,90

    17,50

    25,70

    28,80

    31,80

    34,90

    38,20

    41,40

    T2

    795

    850

    901

    932

    956

    980

    1 004

    1 020

    Цикл с подводом теплоты при постоянном давлении

    в таких двигателях топливо распыляется сжатым воздухом.

    если сжимать один воздух, а топливо вводить в цилиндр после сжатия, то степень сжатия может быть значительно большей. Такая схема применяется в дизель-моторах, и была предложена инженером Дизелем в 1897 г.

    в цикле с подводом тепла при р = const первоначальное состояние рабочего тела в pv-координатах характеризуется точкой 1 (рисунок 2).

    В течение первого хода справа налево совершается сжатие воздуха, которое происходит без теплообмена с внешней средой (линия 1-2). На участке 2-3 к рабочему телу подводится тепло q1 таким образом, что давление при этом остается постоянным (так как увеличивается объем), что приближенно соответствует реальным условиям сгорания трудно сгораемого топлива.

    Дальнейшее расширение рабочего тела (линия 3-4) происходит без теплообмена с внешней средой (по адиабате). Для приведения рабочего тела в первоначальное состояние 1, от него отводится тепло q2 при v =const (линия 4-1).

    Рисунок 2 – Цикл ДВС в pv и Ts- координатах с подводом тепла при р = const

    Теоретический цикл – (1-2-3-4). процессами 0-1 (процесс всасывания) и 1- 0 (процесс выхлопа) – пренебрегают, считая, что в цилиндре находится

    постоянное количество газа (механические процессы).

    В рассматриваемом цикле степень повышения давления при сгорании топлива .

    Основные величины этого цикла:

    (12)

    Тогда подставив в уравнение (173) λ = 1 в ηt цикла с комбинированным подводом теплоты получим:

    . (13)

    Выводы:

    1. термический КПД двигателя Дизеля зависит от

      степени предварительного расширения ρ и с увеличением  уменьшается экономичность цикла;

    2. с увеличением степени сжатия ε увеличивается термический КПД цикла.

    Таблица 2– Значения термического КПД цикла Дизеля при различных значениях и k = 1,35

    ε

    10

    12

    14

    16

    18

    ρ = 1,5

    ηt

    0,52

    0,54

    0,57

    0,59

    0,61

    ρ = 2,1

    ηt

    0,49

    0,52

    0,55

    0,57

    0,58

    ρ = 2,5

    ηt

    0,46

    0,49

    0,52

    0,54

    0,56

    Цикл с подводом теплоты при постоянном объеме

    13. Циклы двигателей внутреннего сгорания

    В поршневых двигателях внутреннего сгорания (ДВС) в качестве рабочего тела используются продукты сгорания органического топлива. Цилиндры этих двигателей выполняют функции камеры сгорания и устройств для сжатия и расширения рабочего тела. В качестве холодного источника теплоты в ДВС используется внешняя среда (выхлоп продуктов сгорания в атмосферу).

    Для упрощения термодинамического анализа циклов ДВС принимается ряд допущений.

    1. Количество рабочего тела в цикле ДВС будем считать неизменным и равным расходу воздуха. Это допущение объясняется малым процентным массовым расходом топлива по отношению к расходу воздуха.

    2. Свойства рабочего тела будем считать соответствующими свойствам идеального двухатомного воздуха с постоянными изобарными и изохорными теплоемкостями.

    3. Процессы выхлопа отработавших газов и процесс забора новой порции воздуха взаимно компенсируют друг друга (их нет). Это возможно, т.к. оба эти процесса идут практически при постоянном давлении окружающей среды в противоположных направлениях.

    4. Процесс отвода теплоты от рабочего тела в окружающую среду заменяется изохорным процессом охлаждения рабочего тела до температуры окружающей среды. То есть условно считается цикл замкнутым, а охлаждение рабочего тела осуществляется прямо в цилиндре при закрытых клапанах до температуры окружающей среды.

    5. Процессы расширения и сжатия рабочего дела соответствуют адиабатным процессам. Эти процессы быстротечны, поэтому можно считать их адиабатными.

    6. Процессы подвода теплоты к рабочему телу считаются в зависимости от типа двигателя изохорными или изобарными.

    Цикл двс с подводом теплоты к рабочему телу при постоянном объеме

    Цикл ДВС с подводом теплоты при постоянном объеме соответствует карбюраторному двигателю. В этом двигателе в цилиндр поступает топливно-воздушная смесь, которая сжимается и за счет искры в электрической свече воспламеняется. Процесс горения топлива быстротечен и происходит практически при постоянном объеме.

    Исходя из принятых допущений идеальный цикл ДВС с подводом теплоты при постоянном объеме можно показать в T,s — диаграмме в виде рис. 13.1.

    Для термодинамического анализа экономичности таких циклов ДВС используются следующие отношения объемов и давлений рабочего тела:

    –степень адиабатного сжатия;

    –степень повышения давления.

    Эти относительные величины позволяют по известным параметрам рабочего тела в точке 1 (состояние равновесия с внешней средой) определить все термические параметры в характерных точках цикла ДВС.

    Используя данные соотношения, определяются основные величины, характеризующие экономичность цикла:

    количество удельной теплоты, подведенной к рабочему телу,

    ; (13.1)

    количество удельной теплоты, отведенной от рабочего тела,

    ; (13.2)

    удельная работа цикла

    ; (13.3)

    термический КПД цикла

    . (13.4)

    Цикл двс с подводом теплоты к рабочему телу при постоянном давлении

    Увеличить степень сжатия в ДВС можно путем сжатия в цилиндре только воздуха с последующим впрыскиванием в него топлива. При сжатии воздуха отсутствует ограничение на температуру самовоспламенения топлива, а высокая температура воздуха в конце процесса сжатия позволяет осуществить самовоспламенение топлива, впрыскиваемого в цилиндр, без электрической свечи. Такой ДВС был предложен Дизелем (Германия), поэтому в настоящее время эти двигатели называют дизелями. Цикл дизельного ДВС показан в T,s — диаграмме на рис. 13.2.

    Определяющими характеристиками данного цикла являются: степень сжатия и степень предварительного расширения.Используя эти характеристики и параметры первой точки, можно определить остальные параметры цикла в характерных точках.

    Термический КПД цикла

    , (13.5)

    где – коэффициент Пуассона.

    Выразив температуры в выражении (13.5) через Т1 и характеристики цикла , , термический КПД ДВС

    . (13.6)

    Рабочий цикл ДВС

    Рабочий цикл одноцилиндрового двигателяРабочий цикл одноцилиндрового двигателя

    В автомобилях применяются двигатели внутреннего сгорания (ДВС) названные так потому, что сгорание топлива происходит непосредственно в цилиндре. Основными деталями ДВС, кроме цилиндра, являются поршень, шатун, коленчатый вал. На кривошипе коленчатого вала подвижно закрепляется шатун. К верхней головке шатуна шарнирно, с помощью пальца, крепится поршень. Цилиндр сверху закрывается крышкой, которая называется головкой цилиндра. В головке имеется углубление, называемое камерой сгорания. Также в головке имеются впускное и выпускное отверстия, закрываемые клапанами. К коленчатому валу крепится маховик – массивный круглый диск.

    При вращении коленвала происходит перемещение поршня внутри цилиндра. Крайнее верхнее положение поршня называется верхней мертвой точкой (В.М.Т.), крайнее нижнее положение – нижней мертвой точкой (Н.М.Т.). Расстояние, которое проходит поршень между мертвыми точками, называется ходом поршня. Пространство, находящееся над поршнем, когда он находится в н.м.т., называется рабочим объемом цилиндра. Когда поршень находится в в.м.т., над ним остается пространство, называемое объемом камеры сгорания. Сумма рабочего объема и объема камеры сгорания называются полным объемом цилиндра. В технических данных объем указывается в литрах или кубических сантиметрах. Объем многоцилиндрового двигателя равен сумме полных объемов всех его цилиндров. Отношение полного объема цилиндра к объему камеры сгорания называется степенью сжатия двигателя. Она показывает, во сколько раз сжимается рабочая смесь в цилиндре.

    Рабочий цикл двигателяРабочий цикл двигателяПараметры КШМПараметры КШМ

    Один ход поршня от одной мертвой точке к другой называется тактом. Коленвал при этом совершает полоборота. Как работает ДВС? Во время первого такта происходит впуск горючей смеси в цилиндр. Клапан впускного отверстия открыт, выпускного – закрыт. Поршень, перемещаясь от в.м.т к н.м.т, подобно насосу, создает разряжение в цилиндре и топливо, перемешанное с воздухом, заполняет его.

    Во время второго такта, при движении поршня от н.м.т. к в.м.т., происходит сжатие горючей смеси. При этом и выпускной, и впускной клапаны закрыты. В результате давление и температура в цилиндре повышаются. В конце такта сжатия, при приближении поршня к в.м.т., горючая смесь поджигается искрой от свечи зажигания (в бензиновых ДВС) или самовоспламеняется от сжатия (в дизельных ДВС).

    Порядок работы цилиндровПорядок работы цилиндров

    Во время третьего такта происходит сгорание рабочей смеси. Клапана остаются закрытыми. Воспламенившаяся рабочая смесь резко повышает температуру и давление в цилиндре, которое заставляет поршень с усилием двигаться вниз. Поршень через шатун передает усилие на коленвал, создавая на нем крутящий момент. Таким образом, происходит преобразование энергии сгорания топлива в механическую энергию, которая двигает автомобиль. Поэтому этот такт называется рабочим ходом. Маховик, закрепленный на коленчатом валу, запасает энергию, обеспечивая вращение коленвала за счет сил инерции во время подготовительных тактов.

    В ходе четвертого такта происходит выпуск отработанных газов и очистка цилиндра. Поршень, двигаясь от н.м.т. к в.м.т., выталкивает продукты горения через открытый выпускной клапан.

    Далее весь процесс повторяется. Таким образом, рабочий цикл описанного ДВС происходит за четыре такта. Поэтому он и называется четырехтактным. Коленвал за это время совершает два оборота. Существуют и двухтактные двигатели, в которых рабочий цикл происходит за два такта. Однако такие ДВС в настоящее время на автомобилях практически не применяются.

    Для плавной работы многоцилиндрового двигателя и уменьшения неравномерных нагрузок на коленчатый вал такты рабочего хода в разных цилиндрах должны происходить в определенной последовательности. Такая последовательность называется порядком работы двигателя. Он определяется расположением шеек коленчатого вала и кулачков распределительного вала. Например, в двигателях ВАЗ порядок работы 1-3-4-2. Так как в четырехтактном двигателе полный цикл в каждом цилиндре совершается за два оборота коленчатого вала, то, следовательно, в четырехцилиндровом двигателе для равномерной его работы за каждые пол-оборота коленчатого вала в одном из цилиндров должен происходить рабочий такт.

    Рассмотренные детали составляют в совокупности кривошипно-шатунный механизм. Кроме него, для обеспечения работы ДВС нужны газораспределительный механизм, система охлаждения, система смазки, система питания и система зажигания (в бензиновых двигателях).

    Газораспределительный механизм, управляя работой клапанов, обеспечивает своевременное их открытие и закрытие. Система охлаждения отводит тепло от деталей двигателя, нагревающихся при работе. Система смазки подает масло к трущимся поверхностям. Система питания служит для приготовления рабочей смеси и подачи ее в цилиндры. Система зажигания преобразует низковольтное напряжение от АКБ в высоковольтное и подает его на свечи для воспламенения рабочей смеси.

    Циклы двигателей внутреннего сгорания | Рабочие циклы д.в.с.

          Здравствуйте! Двигатель внутреннего сгорания (ДВС) — это тепловая машина, в которой подвод теплоты к рабочему телу осуществляется за счет сжигания топлива внутри самого двигателя. Рабочим телом в таких двигателях является на первом этапе воздух или смесь воздуха с легковоспламеняемым топливом, а на втором этапе — продукты сгорания.В поршневых двигателях внутреннего сгорания подвод теплоты происходит непосредственно в цилиндре в процессе сгорания топлива. Эти двигатели имеют сравнительно высокую экономичность, малые габариты и вес, приходящийся на единицу мощности, и поэтому в основном применяются в качестве транспортных двигателей: в авиации, автомобильном, водном и железнодорожном транспорте. Кроме того, они используются в стационарных энергетических установках малой мощности.

         Недостатком поршневых двигателей является необходимость применения кривошипного механизма, предназначенного для преобразования поступательного движения поршня во вращательное. Наличие несбалансированных масс в кривошипном механизме при увеличении числа оборотов приводит к возникновению больших механических нагрузок. Поэтому мощные двигатели внутреннего сгорания выполняются тихоходными, что увеличивает их габариты и вес.

         Различные требования, предъявляемые к двигателям внутреннего сгорания в зависимости от их назначения, привели к созданию самых разнообразных типов этих двигателей. Однако с термодинамической точки зрения их можно классифицировать по характеру процессов. Циклы, которые применяются в двигателях, можно подразделить на следующие три вида:

    1) цикл с подводом теплоты при постоянном объеме;

    2) цикл с подводом теплоты при постоянном давлении;

    3) смешанный цикл, в котором теплота подводится при постоянном объеме и при постоянном давлении.

    Цикл с подводом теплоты в процессе при постоянном объеме.

         Особенностью двигателей, работающих по этому циклу, является внешнее приготовление рабочей смеси, которая затем подается в цилиндр, где сжимается и воспламеняется от электрической искры, причем сгорание происходит очень быстро и процесс можно рассматривать как происходящий при постоянном объеме. Так как внешнее смесеобразование осуществляется при низкой температуре, двигатель может работать только на легких топливах, которые хорошо смешиваются с воздухом. Такой двигатель впервые был построен в 1876 г. немецким изобретателем Отто и работал на газовой смеси.

         Теоретический цикл с подводом теплоты при υ = const состоит из двух адиабат и двух изохор (рис. 2). В процессе 1—2 происходит адиабатное сжатие рабочей смеси, которая в точке 2 воспламеняется с помощью электрической искры и сгорает в процессе 2—3 при постоянном объеме. В процессе 3—4 адиабатного расширения продуктов сгорания топлива происходит перемещение поршня и производится работа расширения. В точке 4 открывается выхлопной клапан, и давление в цилиндре падает до атмосферного pa.

          При этом часть отработавших продуктов сгорания покидает полость цилиндра. В дальнейшем в результате возвратно-поступательного движения поршня выталкиваются остатки продуктов сгорания и всасывается следующая порция рабочей смеси. На теоретической диаграмме (рис. 2) эти процессы совпадают с изобарой ра, однако условно их совмещают с изохорным процессом 4—1, в котором отводится количество теплоты q2, фактически уносимой вместе с удаляемыми газами.

         Реальные циклы двигателей внутреннего сгорания заметно отличаются от теоретических, поэтому при теоретическом анализе вводятся также и другие допущения. В качестве рабочего тела при исследовании циклов двигателей внутреннего сгорания принимается идеальный газ, количество и свойства которого неизменны (в действительности они изменяются в результате сгорания распыленного топлива).

         Процессы сжатия и расширения не являются адиабатными, потому что в реальном двигателе существует трение и происходит теплообмен между стенками цилиндра и газом. Процесс 2—3 в действительности также отличается от изохорного из-за перемещения поршня за время горения топлива. Вследствие развития всех процессов во времени определенные точки перехода от одного процесса к другому (точки 1, 2, 3 и 4) в реальных циклах отсутствуют, и процессы сменяют друг друга постепенно (рис. 1).

    Однако при термодинамическом анализе циклов двигателей внутреннего сгорания эти отклонения от идеальных условий не учитываются, что существенно упрощает теоретическое исследование циклов.

          В соответствии с формулой

    термический к. п. д. цикла с подводом теплоты при постоянном объеме возрастает с увеличением степени сжатия ε, которая равна отношению υ1/υ2 (рис.2) и показывает, во сколько раз уменьшается объем рабочей смеси при ее сжатии. Однако величина ε ограничивается температурой самовоспламенения рабочей смеси.

    Если в процессе адиабатного сжатия 1—2 температура в цилиндре превысит температуру самовоспламенения, то рабочая смесь воспламенится преждевременно, что не только снизит экономичность двигателя, но и приведет к весьма опасным перегрузкам. Поэтому степень сжатия в двигателях со сгоранием при υ = const не превышает ε = 6—9 (выбирается в зависимости от свойств топлива).

    Цикл с подводом теплоты при постоянном давлении.

          В двигателях, работающих по этому циклу, сжатию подвергается не рабочая смесь, а воздух, температура которого в конце процесса сжатия (точка 2 на рис. 3) превышает температуру самовоспламенения топлива и составляет 600—800° С. Благодаря этому подаваемое в цилиндр распыленное жидкое топливо, смешиваясь с воздухом, самовоспламеняется и горит, причем подача топлива регулируется таким образом, чтобы горение шло при постоянном давлении (изобара 2—3). Распыливание подаваемого в цилиндр топлива производится сжатым воздухом (давление 5—9 МПа), поступающим из специального компрессора (такие двигатели часто называют компрессорными). В процессе 3—4 происходит адиабатное расширение продуктов сгорания, а процесс 4—1 аналогичен такому же в цикле со сгоранием при υ=const. Этот цикл был впервые предложен и осуществлен Дизелем.

          Ввиду того что сжатию подвергается только воздух, преждевременное воспламенение (детонация) топлива исключается, двигатели работают с большими степенями сжатия (порядка 15—20) и имеют большой к. п. д. Так как образование горючей смеси происходит при высокой температуре, в этих двигателях сжигаются более тяжелые виды топлива.

          Недостатком этих двигателей является наличие компрессора высокого давления, снижающего надежность, а также усложняющего конструкцию и потребляющего некоторую часть мощности двигателя. Поэтому они в настоящее время вытеснены бескомпрессорными двигателями, в которых распыливание топлива осуществляется топливным насосом.

    Смешанный цикл.

         Двигатели, работающие по смешанному циклу, являются более совершенными по сравнению с двигателями с изобарным сгоранием, так как у них отсутствует компрессор. Первый патент на бескомпрессорный двигатель высокого давления был выдан в 1901 г. русскому инженеру Г. В. Тринклеру. Однако эти двигатели получили широкое распространение значительно позже, когда удалось осуществить тонкое распыливание топлива с помощью топливного насоса и форсунок специальной конструкции. В настоящее время по смешанному циклу работают преимущественно транспортные двигатели, в которых используется тяжелое топливо.

         В смешанном цикле, как и в цикле с изобарным сгоранием, сжатию подвергается воздух. Топливо подается в цилиндр с помощью насоса в конце сжатия (точка 2 на рис. 4) при давлении 30—150 МПа и вследствие высокой температуры воздуха самовоспламеняется. Подача топлива под большим давлением создает благоприятные условия для хорошего распиливания и перемешивания его с воздухом, что обеспечивает достаточно полное сгорание топлива и повышение экономичности двигателя. Процесс горения идет сначала при постоянном объеме (изохора 2—3), а затем при постоянном давлении (изобара 3—3′).

    Сравнение циклов.

          Как уже отмечалось раньше, сравнение экономичности двигателей целесообразно проводить с помощью Ts-диаграммы, так как эта диаграмма позволяет по соответствующим площадям определить количество теплоты. На рис. 5 выполнено сравнение рассмотренных выше циклов двигателей при одинаковом количестве отводимой теплоты q2, которой соответствует площадь 1—4—b—a—1, и одинаковых максимальных параметрах цикла в точке 3.

          Степень сжатия для цикла со сгоранием топлива при p = const (определяется положением точки 2″ в конце адиабатного сжатия воздуха) больше, чем для цикла со сгоранием при υ = const (точка 2). Это соответствует действительным условиям работы двигателей, так как отличительной особенностью и преимуществом двигателей с подводом тепла при р = const является возможность использования больших степеней сжатия.

          Поэтому целесообразно сопоставить двигатели при одинаковых максимальных давлениях и температурах (точка 3 на рис. 2—4), поскольку эти параметры определяют величину механических и термических напряжений, а следовательно, и конструктивные особенности двигателей.При одинаковых максимальных параметрах в цикле 1—2″— 3—4—1 (рис. 5) с подводом теплоты при p = const работа, равная площади цикла, больше работы в цикле 1—2—3—4—1 с подводом теплоты при υ=const. Так как количество отводимой теплоты q2, которой соответствует площадь 1—4—b—а—1, в обоих циклах одинаково, то термический к. п. д. в условиях одинаковых максимальных параметров для цикла с подводом теплоты при p = const выше.

         Термический к. п. д. смешанного цикла 1—2’—3’—3 —4—1 имеет среднее значение между термическими коэффициентами полезного действия рассмотренных циклов. В действительности для смешанного цикла и цикла Дизеля оптимальная степень сжатия одинакова и составляет ε = 16—18, поэтому бескомпрессорные двигатели работают при более высоких максимальных параметрах (точка 3 на рис. 5 расположена выше) и, следовательно, являются наиболее экономичными. Исп. литература: 1) Теплоэнергетика и теплотехника, Общие вопросы, Справочник под ред. В.А. Григорьева и В.М. Зорина, Москва, «Энергия», 1980. 2)Теплотехника, Бондарев В.А., Процкий А.Е., Гринкевич Р.Н. Минск, изд. 2-е,»Вышейшая школа», 1976.


    Термодинамические циклы поршневых двигателей внутреннего сгорания

    В термодинамических циклах поршневых ДВС процессы сжатия и расширения рабочего тела принимаются адиабатными, а рабочим телом является идеальный газ. Различают термодинамические циклы поршневых ДВС с изохорным подводом теплоты – цикл Отто (рис. 3а), изобарным подводом теплоты – цикл Дизеля (рис. 3б) и со смешанным подводом теплоты – цикл Сабатэ–Тринклера (рис. 3в).

    Основными характеристиками термодинамических циклов поршневых ДВС являются:

    Рис. 3. Термодинамические циклы поршневых ДВС:

    а) Отто, б) Дизеля, в) Сабатэ–Тринклера

    Термический КПД цикла ДВС со смешанным подводом теплоты определяется по соотношению

    . (36)

    Анализ соотношения (36) свидетельствует, что термический КПД цикла возрастает с повышением степени сжатия , показателя адиабаты, степени повышения давленияи с уменьшением степени предварительного расширения.

    При одинаковых исходных значениях параметров рабочего тела и степени сжатия справедливо следующее неравенство:

    . (37)

    В то же время следует отметить, что более корректно проводить сравнение значений термического коэффициента полезного действия циклов в условиях одинаковых максимальных параметров рабочего тела (,).

    В этом случае справедливо неравенство

    . (37а)

    Термический КПД циклов ДВС может достигать 60–65%.

    В реальных двигателях внутреннего сгорания, вследствие необратимых потерь работы, действительный КПД меньше термического и в среднем составляет 30-40% для дизелей и 20-30% для карбюраторных двигателей.

    Термодинамические циклы газотурбинных установок

    Различают два термодинамических цикла ГТУ: циклы с изобарным подводом теплоты – цикл Брайтона (рис. 4а) и с изохорным подводом теплоты – цикл Гемфри (рис. 4б).

    Рис. 4. Термодинамические циклы ГТУ:

    а) Брайтона, б) Гемфри

    Основными характеристиками термодинамических циклов ГТУ являются:

    Термический коэффициент полезного действия цикла Гемфри может быть определен из соотношения

    , (38)

    а термический КПД цикла Брайтона по формуле

    . (39)

    Сопоставление значений термических КПД циклов газотурбинных установок при одинаковых исходных параметрах и степени повышения давления рабочего тела в процессе сжатия показывает, что

    . (40)

    Следует отметить, что циклы поршневых ДВС характеризуются изохорным отводом, а циклы ГТУ – изобарным отводом теплоты.

    В реальных ГТУ и ДВС процессы сжатия и расширения не являются адиабатными. С достаточной для технических расчетов точностью их можно считать политропными с постоянными показателями политропы.

    Термодинамические циклы двигателей внутреннего сгорания (ДВС)

     

    Первые поршневые двигатели внутреннего сгорания (ДВС) работали на газообразном топливе, используя светильный газ. Значительный вклад в развитие таких двигателей внес немецкий изобретатель Н.Отто, разработавший двигатель с предварительным сжатием и искровым зажиганием.

    Несколько позднее Рудольф Дизель разработал двигатель, до сих пор носящий его имя, в котором используется специальное дизельное топливо. Благодаря высокой концентрации энергии в единице объема, оно практически вытеснило газообразное топливо в двигателях внутреннего сгорания.

    Рассмотрим следующие основные циклы ДВС, работающие на жидком топливе при различных способах воспламенения топлива или при различных способах подвода теплоты.

    Различают следующие циклы ДВС. Двигатели с подводом теплоты при постоянном объеме (V = const), двигатели с подводом теплоты при постоянном давлении (Р = const) и двигатели, работаю-

    щие по смешанному циклу.

    Идеальный цикл ДВС при подводе теплоты V = const (цикл Отто) в P-V и T-S диаграммах представлен на рис.7.1.

     

    Рис.7.1. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при V = const в P-V и T-S диаграммах

     

    В этом цикле процесс сжатия рабочей смеси происходит по адиабате 1-2. Изохора 2-3 соответствует горению топлива, воспламеняемого от электрической искры и подводу теплоты q1. Рабочий ход поршня осуществляется при адиабатическом расширении продуктов сгорания, изображен линией 3-4. Отвод теплоты q2 осуществляется по изохоре 4-1, соответствующей выхлопу отработанных газов в атмосферу.

    Термический КПД рассматриваемого цикла, характеризующий эффективность использования теплоты сжигаемого топлива, вычисляется следующим образом:

    . (7.1)

    Сравнение адиабат 1-2 и 3-4 позволяет сделать вывод, что

    (7.2)

    и, следовательно, получить

    . (7.3)

    Отношение всего объема рабочего цилиндра V1 к объему камеры сжатия V2 называется степенью сжатия и является основной характеристикой цикла Отто

    . (7.4)

    Для адиабатического процесса справедливо следующее соотношение, устанавливающее связь между V и Т:

    , (7.5)

    которое позволяет записать уравнение для термического КПД в следующем виде:

    . (7.6)

    Из последнего соотношения видно, что термический КПД двигателей, работающих по циклу Отто, зависит только от степени сжатия и с ее увеличением возрастает. При этом температура в конце сжатия Т2 не должна достигать температуры самовоспламенения горючей смеси. Поэтому степень сжатия в реальных двигателях такого типа не превышает 10 и зависит от характеристик применяемого топлива.

    Степень сжатия в цикле может быть повышена, ес­ли сжимать не горючую смесь, а воздух, и затем, полу­чив высокие давление и температуру, обеспечить само­воспламенение распыленного в цилиндре топлива. В этом случае процесс горения затягивается и двигатели такого типа характеризуются постепенным (или медленным) сгоранием топлива при постоянном давлении. Идеальный цикл такого двигателя внутреннего сгорания называется циклом Дизеляи осуществляется следую­щим образом (рис. 7.2). Рабочее тело (воздух) сжи­мается по адиабате 1-2, изобарный процесс 2-3 соот­ветствует процессу горения топлива, т.е. подводу теп­лоты q1 а рабочий ход выражен адиабатным расшире­нием продуктов сгорания 3-4. Наконец, изохора 4-1характеризует отвод теплоты q2, заменяя для четырех­тактных двигателей выхлоп продуктов сгорания и вса­сывание новой порции воздуха.

    Формула для расчета термического КПД в этом слу­чае принимает вид

    . (7.7)

    Кроме степени сжатия , у цикла Дизеля имеется еще одна характеристика — степень предварительного расширения :

    . (7.8)

     

    Рис.7.2. Идеальный цикл двигателя внутреннего сгорания с подводом теплоты при Р = const (цикл Дизеля) в P-V и T-S диаграммах

     

    Для изобары 2-3 можно записать V3/V2=Т32. Рас­сматривая изохору 4-1 и учитывая, что P4Vk4=P3Vk3, P1Vk1=P2Vk2 и V4=V1 , получаем

    . (7.9)

    Окончательно с учетом соотношения (7.9) формула для расчета термического КПД цикла Дизеля имеет вид:

    . (7.10)

    Выражение (7.10) показывает, что основным факто­ром, определяющим экономичность двигателей, рабо­тающих по циклу Дизеля, также является величина степени сжа­тия , с увеличением которой термический КПД цикла возрастает. Как указывалось, нижний предел опреде­лен необходимостью получения в конце сжатия темпе­ратуры, значительно превышающей температуру само­воспламенения топлива. Верхний предел (до 20) огра­ничен допустимым давлением в цилиндре, превышение которого приводит к утяжелению конструкции и увели­чению потерь на трение. Повышение степени предварительного расширения вызывает снижение термиче­ского КПД цикла с подводом теплоты при постоянном давлении. Отсюда следует, что с увеличением нагрузки и удлинением процесса горения топлива экономичность двигателя уменьшается. Это следует учитывать наряду с другими обстоятельствами при определении оптималь­ного режима работы двигателя.

    Цикл Тринклера или цикл со смешанным подводом теплоты, по которому работают современные беском­прессорные дизели (рис.7.3), осуществляется по сле­дующей схеме. Адиабата 1-2соответствует сжатию в цилиндре воздуха до температуры, превышающей тем­пературу самовоспламенения топлива. Изохора 2-3 со­ответствует процессу горения топлива, впрыскиваемого в цилиндр, а изобара 3-4 изображает процесс горения остальной части топлива по мере поступления его из форсунки. Расширение продуктов сгорания идет по адиабате 4-5, а изохора 5-1соответствует выхлопу отработавших газов в атмосферу. Таким образом, теп­лота q1подводится в двух процессах 2-3 и 3-4.

    q1= q11 + q12 . (7.11)

     

     

    Рис.7.3. Идеальный цикл Тринклера со смешанным подводом теплоты в P-V и T-S диаграммах

     

    Выражение для термического КПД цикла со смешанным подводом теплоты записывается в следующем виде:

    . (7.12)

    Параметр называется степенью повышения давления в изохорном процессеи рассчитывается по формуле

    = Рз/Р2 . (7.13)

    В двигателях, работающих по циклу Тринклера, рас­пыление топлива производится топливным насосом высоко­го давления, а компрессор, применяемый при пневма­тическом распылении топлива, отсутствует. Степень сжатия в рассматриваемом цикле может достигать 18.

    Выражение (7.12) является об­щим для циклов поршневых ДВС и при =1 и =1 пе­реходит в соответствующие формулы для термического КПД циклов с подво­дом теплоты при постоян­ном давлении или посто­янном объеме. Сравнение эффектив­ности рассмотренных цик­лов проведем с помощью T-S диаграммы (рис. 7.4), пред­положив, что в каждом из них достигается одинако­вая максимальная темпе­ратура Т3. Одинаковы и количества отведенной теплоты q2в каждом цикле (площадь 14ав). При таких условиях полезно используемая теплота цикла, равная полезной ра­боте цикла, будет наибольшей для цикла Дизеля 12’34 и наименьшей для цикла Отто 1234. Цикл Тринклера 1dс34занимает промежуточное положение.

     

    Рис.7.4. Идеальные циклы ДВС при V=const, P=const и цикл Тринклера с одинаковой температурой Т3

     

    Таким образом, термический КПД, характеризую­щий степень термодинамического совершенства цикла, будет наибольшим для цикла с подводом теплоты при постоянном давлении и наименьшим для цикла с под­водом теплоты при постоянном объеме.

     



    Дата добавления: 2017-04-05; просмотров: 9217;


    Похожие статьи:

    1Цикл двс с подводом теплоты при постоянном объеме (цикл Отто)

    В качестве топлива в таких двигателях применяются легкое топливо и газообразное (бензин, керосин, генераторный или светильный газ).

    В поршневых двигателях рабочим телом являются смесь воздуха и паров жидкого топлива (на начальном участке цикла) и газообразные продукты сгорания на остальных участках цикла.

    На рис.11.1 приведен термодинамический цикл ДВС с подводом теплоты при постоянном объеме в vP— и sT-диаграммах для 1 кг рабочего тела.

    Цикл состоит из следующих процессов: 1-2 – адиабатное сжатие рабочего тела в цилиндре; 2-3 – подвод теплоты при постоянном объеме; 3-4  адиабатное расширение рабочего тела; 4-1 – отвод теплоты при постоянном объеме.

    Параметрами, характеризующими данный цикл, являются:

    — степень адиабатного сжатия; — степень повышения давления. Термический КПД цикла определяется по формуле:

    . (11.3)

    Рис. 11.1. Термодинамический цикл двигателя внутреннего сгорания с подводом

    Теплоты при постоянном объеме:

    а — в vP— диаграмме; б – в sT-диаграмме.

    Количество теплоты, подводимое к рабочему телу в процессе 2-3:

    . (11.4)

    Количество теплоты, отводимое в изохорном процессе 4-1:

    . (11.5)

    Количество подведенной теплоты и отведеннойможно определить через параметры цикла. Для этого температурыивыражаются через температуруи параметры циклаи.

    Таблица 11.1 — Определение температуры в характерных точках цикла с изохорным подводом теплоты

    Процесс

    Формулы

    1-2 — адиабатный

    2-3 – изохорный

    3-4- адиабатный

    После преобразований:

    ; .

    . (11.6)

    Из выражения (11.6) видно, что термический КПД цикла с подводом теплоты при зависит от степени сжатия рабочего тела(конструкции двигателя) и показателя адиабатыk рабочего тела, совершающего цикл. От степени повышения давления термический КПД не зависит. В современных двигателях=712. При значениях =1012 темп возрастания уменьшается. Степень сжатия ограничивается температурой самовоспламенения горючей смеси. При высоких степенях сжатия значительно повышаются температура и давление в конце сжатия. Так, при некоторых значенияхчасто еще до прихода поршня в левое крайнее положение происходит воспламенение горючей смеси, т.е. возникает ее детонация. При этом процесс сгорания нарушается, мощность двигателя падает, расход топлива возрастает. Поэтому каждому виду топлива соответствует своя степень сжатия.

    На рис. 11.2 приведены два цикла с различной степенью сжатия . Из рисунка видно, что при равенствепл. 67810 = пл. 6235, но при разных степенях сжатиятермический КПД больше у цикла с большей степенью сжатия, т.к. в окружающую среду отводится меньшее количество теплоты, т.е. пл. 61910 пл. 6145.

    Работа цикла:

    (11.7)

    Из выражения (11.7) видно, что работа, получаемая за цикл, зависит от начальной температуры и параметров циклаи.

    Рис. 11.2. Влияние степени сжатия на величинуцикла двигателя внутреннего сгорания

    С подводом теплоты при и

    11.2 Цикл двс с подводом теплоты при постоянном давлении (цикл Дизеля)

    В двигателях с подводом теплоты при производится раздельное сжатие воздуха и жидкого топлива (горючего), что исключает самовоспламенение и позволяет получить высокие степени сжатия. Давление в конце сжатия порядка 3-4 МПа. Степень сжатия=1418.

    На рис. 11.3 приведен термодинамический цикл ДВС с подводом теплоты при постоянном объеме в vP— и sT-диаграммах для 1 кг рабочего тела.

    Цикл состоит из следующих процессов: 1-2 – адиабатное сжатие рабочего тела в цилиндре; 2-3 – подвод теплоты при постоянном давлении; 3-4  адиабатное расширение рабочего тела; 4-1 – отвод теплоты при постоянном объеме.

    Рис. 11.3. Термодинамический цикл двигателя внутреннего сгорания

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о