Электродвигатель привода вентилятора – Двигатель привода вентилятора купить в Нижнем Новгороде недорого – продажа, стоимость. Заказать двигатель привода вентилятора цена в интернет магазине – Кабель.РФ

Содержание

Электродвигатели привода вентиляторов | TD-ELECTROPRIVOD.RU

Поиск прибора по параметрам

  • Назначение

    • Взрывозащищенные
    • Встраиваемые
    • Для автоматизации
    • Для вибромашин
    • Для моноблочных насосов
    • Для мотор-редукторов
    • Для стрелочных ЖД переводов
    • Крановые
    • Лифтовые
    • Многоскоростные
    • Общепромышленные
    • Охлаждение трансформаторов
    • Привод вентиляторов
    • С повышенным скольжением
    • С электромагнитным тормозом
    • Тяговые
    • Экскаваторные
    • Свернуть

  • Тип

    • Переменного тока асинхронный
    • Переменного тока синхронный
    • Постоянного тока с возбуждением от постоянных магнитов
    • Постоянного тока с независимым возбуждением
    • Постоянного тока с параллельным возбуждением
    • Постоянного тока с последовательным возбуждением
    • Постоянного тока со смешанным возбуждением
    • Свернуть

  • Напряжение питания и род тока

    • = 440 В
    • = 320 В
    • = 220 В
    • = 110 В
    • = 75 В
    • = 60 В
    • = 50 В
    • = 48 В
    • = 45 В
    • = 40 В
    • = 36 В
    • = 29 В
    • = 27 В
    • = 26 В
    • = 24 В
    • = 14 В
    • = 13,5 В
    • = 12 В
    • = 6 В
    • = 3 В
    • ~ 6000 В
    • ~ 1140 В
    • ~ 660 В
    • ~ 560 В
    • ~ 440 В
    • ~ 415 В
    • ~ 400 В
    • ~ 380 В
    • ~ 240 В
    • ~ 220 В
    • ~ 127 В
    • ~ 110 В
    • ~ 42 В
    • ~ 36 В

Вентилятор системы охлаждения автомобиля

Системы охлаждения двигателя внутреннего сгорания  разделились на две ветки в процессе своего развития: воздушное охлаждение и жидкостное охлаждение. Систему жидкостного охлаждения более корректно называть гибридной, так как вентилятор используется в обоих типах систем. Средой для рассевания избыточного тепла в процессе его отвода от разогретой силовой установки выступает воздух. Вентилятор охлаждения является устройством, которое обеспечивает стабильный и равномерный отвод тепла в окружающую среду.

Гибридная система охлаждения практически полностью вытеснила воздушную в конструкции серийных автомобилей, так что далее будем беседовать исключительно о ней. Еще стоит отметить, что функция вентилятора в той и другой системе аналогична. Вентилятор охлаждения позволяет принудительным образом реализовать эффективный обдув двигателя и радиатора гибридной жидкостной системы охлаждения.

Вентилятор служит для лучшего охлаждения мотора и жидкости в радиаторе. Такой эффект достигается благодаря обдуву ДВС и увеличению скорости потока и общей массы воздуха, который проходит через ячейки и ребра радиатора. Местом установки вентилятора в большинстве случаев становится пространство между радиатором и силовой установкой. Сам вентилятор радиатора заключен в специальный кожух.

Читайте в этой статье

Устройство вентилятора радиатора

Автомобильный вентилятор системы охлаждения ДВС имеет минимум четыре лопасти, которые закреплены на едином общем шкиве. Лопасти расположены под определенным углом относительно плоскости вращения. Это сделано для максимально эффективного забора и последующей подачи воздуха. Жестко установленных закономерностей в устройстве вентилятора нет, хотя наиболее распространенной стала такая конструкция, которая включает в себя крыльчатку на 8 лопастей.

Разновидности привода

Вентилятор радиатора может отличаться по конструкции привода. Существующие типы делятся на:

  • механический;
  • гидромеханический;
  • электрический;
Механический привод

Такой привод представляет собой конструкцию, которая является по сути постоянным приводом от коленчатого вала силовой установки. Такой привод является простейшим и реализован при помощи ременной передачи. Основным недостатком механического привода является отбор мощности у агрегата, которая расходуется на обеспечение постоянного вращения вентилятора. Сегодня механический привод практически не используется в системах охлаждения на гражданских авто.

Гидромеханический привод

Данный тип привода представляет собой решение, которое реализовано путем установки вязкостной муфты (вискомуфты) или гидравлической муфты. Указанные муфты  имеют постоянный привод от коленчатого вала двигателя. Для  того, чтобы сохранить  лопасти вентилятора в сохранности при работе ДВС на максимальных оборотах и высокой скорости вращения коленчатого вала, крыльчатку вентилятора соединяют со шкивом именно посредством гидро или вязкостной муфты. Встречается также определение термомуфты, которое применительно  зависимо от особенностей конструкции.

Муфта может частично или полностью блокироваться под воздействием увеличивающейся температуры жидкости, которой она заполнена. Такой заполняющей жидкостью выступает силикон. Увеличение температуры происходит в результате повышения оборотов коленчатого вала и возрастающей нагрузки на двигатель. Муфта блокируется и начинается вращение вентилятора охлаждения. Гидравлическая муфта отличается по принципу устройства от вязкостной муфты и блокируется зависимо от количества масла, которое находится в муфте.

Получается так, что вискомуфта зачастую заполнена силиконовым гелем, который имеет способность к изменению своих свойств под влиянием температуры.  В муфту  заливают силиконовое масло в количестве около 30-и или 50-и мл. Блокировка муфты оказывает влияние на скорость вращения вентилятора независимо от частоты вращения коленвала ДВС.  Если силовой агрегат выходит на режим высоких оборотов, тогда муфта замедляет вращение крыльчатки, тем самым оберегая вентилятор от разрушения при высокой скорости вращения. Главной задачей всех типов муфт, которые отличаются по принципу работы и конструктивным особенностям,  является удержание скорости вращения вентилятора в строго ограниченных рамках. Вискомуфта обеспечивает такой диапазон оборотов, который необходим крыльчатке для наиболее эффективного охлаждения.

Как уже было сказано, вентиляторы с механическим приводом стали редким явлением, но полностью не исчезли. Такое устройство еще можно встретить на некоторых моделях авто, которые имеют продольно расположенный силовой агрегат. Еще одним сегментом автомобилей, в котором установка вентилятора с подобным типом привода является повсеместной и оправданной, оказываются мощные внедорожники. Такие машины способны преодолевать водные препятствия и подготовлены  для эксплуатации в условиях крайне повышенной влажности. Дело в том, что любая электроника выходит из строя после контакта с водой, а вискомуфты являются полностью герметичными устройствами и не боятся влаги.

Электрический привод

Активное развитие и внедрение электронных устройств управления и контроля различных систем в процессе работы двигателя привело к появлению вентилятора радиатора с электрическим приводом. Данный привод имеет отдельный электродвигатель и собственную систему управления. Контроллер позволяет задавать интенсивность работы крыльчатки и гибко изменять скорость и длительность вращения вентилятора на основе показаний температурного датчика. Датчик измеряет показания температуры охлаждающей жидкости в ДВС. Такое решение повысило не только эффективность, но и позволило добиться улучшенной равномерности охлаждения двигателя сравнительно с системами, которые основаны на использовании вискомуфты.

Вентилятор охлаждения с электроприводом

Электродвигатель вентилятора питается от бортовой сети транспортного средства. Существующие решения стоит разделить на:

  • вентилятор с термовыключателем;
  • вентилятор с электронным блоком;

Автомобили на раннем этапе конструктивно не имели  электронных блоков управления. Активацию и отключение электромотора вентилятора системы охлаждения выполнял термовыключатель, который некоторые автолюбители путают с датчиком температуры. Датчик температуры зачастую встраивается в корпус блока цилиндров двигателя. Сигнал на приборную панель в салоне поступает именно от него, так как контроль температуры возле камеры сгорания намного важнее температуры ОЖ.

Термовыключатель аналогично задействуется при повышении температуры, но опирается на показания теромодатчика охлаждающей жидкости в радиаторе. Устройство работает в узком температурном  диапазоне. Например, вентилятор активируется при температуре ОЖ 85 градусов по Цельсию, а его выключение произойдет при 70 градусах. Принцип работы  устройства достаточно прост. Если температура поднялась выше заданного порога, тогда в термовыключателе смыкаются контакты, что и приведет к замыканию цепи питания вентилятора охлаждения. На электродвигатель подается ток, крыльчатка начинает вращаться. Снижение температуры до минимального порога приведет к тому, что контакты разомкнутся и вентилятор прекратит свою работу.

Примечательно то, что конструкцию электропривода вентилятора с термовыключателем можно установить практически на любой мотор. Схема управления вентилятором заметно сложнее в современных моделях с ЭБУ и включает в себя ряд элементов и исполнительных устройств, среди которых основные:

  • датчик температуры ОЖ;
  • ЭБУ;
  • реле включения вентилятора;
  • электродвигатель;

Температурный датчик измеряет температуру охлаждающей жидкости в силовом агрегате. Современные автомобили могут иметь сразу два датчика, которые установлены в разных местах. Один термодатчик ставят на выходе из мотора или в корпус термостата, другой ставится в патрубок на выходе из радиатора. Вентилятор управляется с учетом показаний обоих элементов и последующей оценкой разницы тех данных, которые поступают от датчиков. Для более эффективного управления задействованы также дополнительные устройства, среди которых стоит отметить датчик частоты вращения коленвала и воздухорасходомер. Показания этих датчиков необходимы для точного определения режима, в котором работает двигатель в определенный момент.

Комплекс сигналов от датчиков передается в ЭБУ двигателя, который производит их анализ и активирует реле включения вентилятора в нужный момент. Вентилятор работает ровно столько, сколько это необходимо для достижения оптимального температурного показателя применительно к конкретному режиму оборотов и нагрузки на ДВС.

Модели автомобилей, которые имеют климатическую установку, зачастую получают сразу два вентилятора. Для каждого из таких вентиляторов предусмотрена отдельная схема включения. Вентиляторы могут работать синхронно или по отдельности, что будет напрямую зависеть от температуры и условий эксплуатации ДВС. Реле включения вентилятора постепенно вытесняет специальный блок управления вентилятором для максимально эффективного контроля его работы.

Встречается также функция, когда реализовано автоматическое включение вентилятора уже после того, как двигатель заглушен. Это необходимо для предотвращения слишком резкого подъема температуры в ГБЦ сразу после остановки разогретого мотора, так как в результате происходит немедленное прекращения циркуляции охлаждающей жидкости в системе.

Распространенные неисправности и диагностика

Помните, что диагностировать неисправность вентилятора системы охлаждения стоит с предельной осторожностью, так как вращающаяся крыльчатка может серьезно повредить пальцы рук или другие части тела! Не редки случаи, когда неисправный вентилятор неожиданно приходит в движение!

Вентиляторы системы охлаждения устанавливаются как перед радиатором, так и за ним, со стороны моторного отека. Устоявшегося единого стандарта касательно места установки  среди конструкторов не существует. Многие владельцы автомобилей также часто задаются вопросом о том, в каком направлении дует вентилятор. Бытует мнение, что он осуществляет обдув радиатора для лучшего охлаждения ОЖ. Стоить запомнить, что дует вентилятор исключительно на двигатель независимо от места его расположения. Установка перед радиатором никак не означает, что обдувается только сам радиатор. Изменение направления обдува недопустимо.

Любой электрический двигатель или вискомуфта разной мощности и технологии производства, а также электронный блок или регулятор, созданный для управления, не могут обеспечить 100% гарантию защиты от неисправностей. Проблема усугубляется еще и тем, что вышедший из строя вентилятор системы охлаждения силового агрегата немедленно повлечет за собой серьезные последствия в виде перегрева мотора. Даже контрольные приборы, созданные для своевременного информирования водителя в критический момент, выходят из строя. Контролировать состояние вентилятора и его исправность нужно с завидной регулярностью. В движении также стоит лишний раз взглянуть на указатель температуры на панели приборов при первой такой возможности. 

Более простые системы с термовыключателем легко поддаются диагностике неисправностей. Что касается современных авто, тогда очень важно правильно определить не только саму поломку вентилятора, но и выявить вышедший из строя элемент в цепи из нескольких устройств. В самом начале диагностики нужно обнаружить проблему, по причине которой перестал работать вентилятор. Выйти из строя может любой из датчиков, блок управления или сам электрический мотор. Диагностировать неисправность вполне можно самостоятельно, придерживаясь приведенных ниже рекомендаций.

Системы с механическим приводом диагностируются быстро. Просто понаблюдайте за вентилятором, который должен вращаться постоянно. Если Вы видите вращение и лопасти крыльчатки целы, тогда ищите проблему в другом месте. Перегреваются двигатели с вискомуфтой из-за неисправного вентилятора только в том случае, если муфта не обеспечивает достаточной блокировки крыльчатки в режиме высоких оборотов коленвала. Результатом становится низкая скорость вращения вентилятора и такой обдув, который не соответствует нагрузке на мотор. Определить неисправность  муфты можно путем анализа скорости вращения вентилятора на низких и высоких оборотах.

Если в автомобиле установлен электрический вентилятор охлаждения, тогда начните с контроля его работы. Когда вентилятор не включается при очевидном перегреве, можно воспользоваться следующим методом диагностики систем с термовыключателем:

  • нужно отсоединить разъем термовыключателя, который зачастую ввинчен в нижнюю часть бачка радиатора;
  • далее понадобится немного проволоки. Соблюдая осторожность, используем указанную проволоку в роли перемычки, которой необходимо замкнуть 2 гнезда отсоединенного разъема;

Если вентилятор после такой операции принудительно заработал, тогда вполне очевидна неисправность термомвыключателя. Неработающий же вентилятор будет означать неисправность именно в нем или в других участках цепи. Конструкция может также состоять из двойного термодатчика. Проверку стоит производить в два этапа, хотя принцип остается таким же. В самом начале замыкают первые два контакта, после чего вентилятор должен вращаться на малых оборотах. Далее замыкается вторая пара, после чего скорость вращения должна заметно возрасти.

Бывает и так, что вентилятор охлаждения радиатора дует постоянно, без видимых пауз. Такие симптомы являются достаточно распространенными. Это может указывать на выход из строя датчика включения. Проверку стоит осуществлять при включенном зажигании путем дальнейшего удаления соответствующего разъема с датчика. Если вентилятор после этого не выключился, тогда регулятор отключения следует заменить. Дополнительно можно выполнить проверку предохранителя в  том случае, если возникшие проблемы с работоспособностью вентилятора охлаждения не исчезли.

Главное запомнить, что как и в любой другой электроцепи, стоит диагностировать неисправность отдельных составных частей методом исключения. Не меньшего внимания потребует и состояние проводки, разъемов и штекеров. В ряде случаев поломка быстро устраняется благодаря простому ремонту кабеля, который требует изоляции, а также чисткой контактов. Не менее продуктивной может оказаться и замена штекера. Если после всех диагностических процедур вентилятор так и не заработал, тогда его нужно демонтировать и заменить.

Указанные выше способы нельзя рекомендовать тем автовладельцам, которые обладают машиной с электронным устройством для контроля скорости вращения вентилятора охлаждения. Самостоятельно неискушенному водителю можно проверить только исправность  предохранителя, который отвечает за данный участок. Дальше необходимо обратиться за помощью в автосервис.

 Профилактика, снятие и ремонт

Обеспечение максимально эффективного охлаждения ДВС и радиатора возможно только тогда, когда вентилятор проходит периодическую чистку, устраняются его мелкие поломки и  загрязнения. Выполнять такую проверку желательно не реже одного раза в год. Чистят вентилятор при помощи обычной щетки, которой с него удаляют грязь и пыль.

Если потребовался демонтаж вентилятора охлаждения, тогда:

  • отсоедините от АКБ провод массы;
  • отключите все разъемы, которые подключены к устройству,
  • открутите болты крепления кожуха;.
  • сдвиньте кожух вентилятора или демонтируйте узел;

Демонтаж вентилятора позволяет устранить большинство поломок посредством ремонта. Очень часто требуется зачистка или замена проводов, так как их нарушенный контакт становится причиной неисправности или отклонений от нормы в процессе работы вентилятора. Может потребоваться ремонт щеток, который подразумевает их замену. Указанный элемент чаще остальных выходит из строя. Щетки подвержены быстрому износу, так как на них собирается грязь с дороги.

Не редко возникает необходимость устранения замыкания или обрыва обмотки ротора. Случается, что обмотка в рабочем состоянии, но функциональность все равно нарушена по причине обильного скопления загрязнений. Данную проблему решают очисткой обмоток при помощи растворителя. Также подойдут специальные щетки, предназначенные для глубокой чистки.

В процессе эксплуатации возникают и такие случаи, которые потребуют замены электромотора. Неисправность часто проявляется на прогретом двигателе, вся цепь исправна, но вентилятор охлаждения не запускается. Как показывает практика, ремонтировать эту деталь нецелесообразно. Электродвигатель имеет приемлемую стоимость, так что его сразу меняют на новый.

Читайте также

Для привода вентиляторов

Для привода вентиляторов

Наименование Мощность,
кВт
Синхронная частота
вращения, об/мин
Напряжение, В

АЗ-3000-10-1000УХЛ4

3000

1000

10000


Наши конкурентные преимущества:

  • концерн разрабатывает и изготавливает электрические машины по индивидуальным заказам без увеличения сроков изготовления
  • более высокий КПД относительно продукции иных производителей России и стран СНГ
  • изготовление электродвигателей с промежуточной нестандартной мощностью, что сокращает издержки без потери качества и гарантийного срока
  • показатель уровня обслуживания покупателей 95%
  • изготовление электродвигателей под вашей торговой маркой
  • условия оплаты и поставки с учетом особенностей склада на вашей территории
  • процедура trade in, которая распространяется не только на двигатели, но и на агрегаты

При заказе вы можете выбрать:

  • изготовление сертифицированных двигателей для работы в составе частотно-регулируемого привода
  • подшипники различных производителей – SKF, FAG или отечественные. При необходимости в двигателе могут устанавливаться токоизолированные подшипники
  • смазку различных производителей. Унификация еще на этапе поставки смазки с принятой на предприятии эксплуатации позволяет запускать в эксплуатацию двигатель без замены смазки и требующейся при этом промывки подшипник
  • необходимую конфигурацию мест под датчики вибрации. Наиболее частыми являются заказы двигателей с местами под датчики вибрации и датчики ударных испульсов SPM, SLD. При заказе нами предлагается удобная графическая схема выбора осей измерения вибрации. Для установки уровней вибрации «Предупреждение» и «Отключение» рекомендуется использовать нормы, установленные ГОСТ Р ИСО 10816-3
  • диаметр кабельного ввода силовой коробки выводов
  • овальные установочные размеры в лапах
  • необходимый цвет двигателя или поставку в загрунтованном виде
  • протокол приемо-сдаточных испытаний

Электродвигатель градирни. Привод вентилятора | Агростройсервис

В вентиляторных градирнях для обеспечения эффективного процесса тепломассообмена искусственная тяга воздуха создается за счет работы вентиляторной установки. Вращение рабочего колеса  осуществляется с помощью электродвигателя градирни. Его правильный выбор позволяет обеспечить правильную бесперебойную долговечную работу градирни.

Различают два основных вида привода вентилятора – прямой привод, когда колесо находится на валу двигателя, и зависимый, когда вращение на колесо передается от двигателя с помощью мотор-редуктора, угловой или ременной передачи. Рассмотрим оба вида подробнее.

При прямом приводе используются общепромышленные двигатели для колес малого диаметра (не более 2500 мм) и тихоходные двигателя для рабочих колес большего диаметра (до 8000 мм).

Основными плюсами использования прямого привода вентилятора являются:

  • Более высокий КПД
  • Герметичность двигателя
  • Высокая компактность конструкции
  • Высокая надежность за счет малого количества узлов в конструкции
  • Простота обслуживания

В настоящее время возможны варианты двухскоростных электродвигателей или электродвигателей, предназначенных для работы с частотным регулированием скорости вращения. Это позволяет изменять скорость вращения рабочего колеса в зависимости от внешних условий для достижения необходимых параметров работы градирни. Кроме того, использование частотных преобразователей позволяет добиться существенной экономии электроэнергии.

Зависимый привод в градирнях чаще всего реализуется при помощи общепромышленного двигателя, связанного с редуктором с помощью композитного вала.

Главный плюс такого решения — расположение электродвигателя вне диффузора градирни. Так воздействие влажной среды на двигатель снижается, что облегчает его обслуживание.

Кроме того, общепромышленные двигатели обычно более легкие по сравнению с тихоходными осевыми двигателями.

Обе системы могут оснащаться преобразователем частоты, который позволяет исключить повышенные пусковые нагрузки на привод, а также обеспечивает значительную экономию электроэнергии в холодный период времени. В качестве альтернативы частотно-регулируемому приводу возможно использование устройства плавного пуска или гидромуфты.

Использование выносного привода получило большое применение на специальных отдельностоящих градирнях с большой площадью орошения, таких как СК-400 и СК-1200. Для вращения колеса большого диаметра (от 10 до 20 м) требуется двигатель большой мощности. Тихоходные двигатели плохо подходят для такой задачи ввиду своих больших размеров и высокой массы.

Современное оборудование (редукторы, композитные валы), специально разработанное для использования в градирнях, обеспечивает высокую надежность выносного привода. Однако наличие большого количества узлов в такой конструкции увеличивает риск выхода из строя отдельных элементов и, как следствие, остановки градирни на ремонт.

Узнать больше о частотном регулировании

Мы поможем подобрать вам

градирню, очистные сооружения и КНС

Электродвигатели для привода вентиляторов градирен производства Русэлпром

Для привода вентиляторов градирен

Наименование Мощность,
кВт
Синхронная частота
вращения, об/мин
Напряжение, В

2АСВО710S-32У1

30

187,5

380; 380/220; 415/240; 660

2АСВО710S-40У1

30

180

380/220; 440

2АСВО710L-34У1

75

176,5

380; 380/220; 415/240; 660

2АСВО710L-42У1

75

171,5

380/220; 440

2АСВОу710S-32У1

30

187,5

380; 380/220

2АСВОу710L-34У1

75

176,5

380; 380/220

2АСВОу710LD-34У1

90

176,5

380

2АСВО710LD-34У1

90

176,5

380/660

3АСВО710S-32МУ1

30

187,5

380/220

3АСВО710L-34МУ1

75

176,5

380/220

3АСВОрт90-32МУ1

90

187,5

380; 380/660

3АСВОрт110-32МУ1

110

187,5

380

3АСВОрт132-32МУ1

132

187,5

380

3АСВОу710S-32МУ1

30

187,5

380/220

3АСВОу710L-34МУ1

75

176,5

380/220


Наши конкурентные преимущества:

  • концерн разрабатывает и изготавливает электрические машины по индивидуальным заказам без увеличения сроков изготовления
  • более высокий КПД относительно продукции иных производителей России и стран СНГ
  • изготовление электродвигателей с промежуточной нестандартной мощностью, что сокращает издержки без потери качества и гарантийного срока
  • показатель уровня обслуживания покупателей 95%
  • изготовление электродвигателей под вашей торговой маркой
  • условия оплаты и поставки с учетом особенностей склада на вашей территории
  • процедура trade in, которая распространяется не только на двигатели, но и на агрегаты

При заказе вы можете выбрать:

  • изготовление сертифицированных двигателей для работы в составе частотно-регулируемого привода
  • подшипники различных производителей – SKF, FAG или отечественные. При необходимости в двигателе могут устанавливаться токоизолированные подшипники
  • смазку различных производителей. Унификация еще на этапе поставки смазки с принятой на предприятии эксплуатации позволяет запускать в эксплуатацию двигатель без замены смазки и требующейся при этом промывки подшипник
  • необходимую конфигурацию мест под датчики вибрации. Наиболее частыми являются заказы двигателей с местами под датчики вибрации и датчики ударных испульсов SPM, SLD. При заказе нами предлагается удобная графическая схема выбора осей измерения вибрации. Для установки уровней вибрации «Предупреждение» и «Отключение» рекомендуется использовать нормы, установленные ГОСТ Р ИСО 10816-3
  • диаметр кабельного ввода силовой коробки выводов
  • овальные установочные размеры в лапах
  • необходимый цвет двигателя или поставку в загрунтованном виде
  • протокол приемо-сдаточных испытаний

Элетродвигатели и приводы агрегатов автомобиля

На современном автомобиле установлено большое число агрегатов, требующих для приведения в действие затрат механической энергии. Эту энергию они получают в большинстве случаев от электродвигателей.

Электродвигатель с механизмом передачи механической энергии и схемой управления электродвигателем образуют систему электропривода автомобиля. Для передачи энергии в автомобильном электроприводе используются зубчатые и червячные передачи, кривошипно-шатунные механизмы. Часто электродвигатель и механизм передачи механической энергий объединяют в моторедуктор или электродвигатель совмещают с исполнительным элементом.

Электроприводы автомобиля приводят в действие вентиляторы отопителей и системы охлаждения двигателя, стеклоподъемники, устройства выдвижения антенн, стеклоочистители, насосы омывателей, фароочистители, подогреватели, топливные насосы и т.п. Расмотрим требования предъявляемые к электродвигателям и типы электрических двигателей используемых в системах электропривода агрегатов автомобиля.

Электродвигатели приводов агрегатов автомобиля

Требования, предъявляемые к электродвигателям, весьма разнообразны. Электродвигатели отопителей и вентиляторов автомобиля имеют продолжительный режим работы и малый пусковой момент; электродвигатели стеклоподъемника обладают большим пусковым моментом, но работают кратковременно; электродвигатели стеклоочистителей воспринимают переменные нагрузки и, следовательно, должны обладать жесткой выходной характеристикой, частота вращения вала не должна существенно меняться при перемене нагрузки; электродвигатели предпусковых подогревателей должны нормально работать при очень низких температурах окружающего воздуха.

В приводах агрегатов автомобиля применяют электродвигатели только постоянного тока. Их номинальные мощности должны соответствовать ряду 6, 10, 16, 25, 40, 60, 90, 120, 150, 180, 250, 370 Вт, а номинальные частоты вращения валов ряду 2000, 3000, 4000, 5000, 6000, 8000, 9000 и 10 000 об/мин.

Электродвигатели с электромагнитным возбуждением в системе электропривода агрегатов автомобиля имеют последовательное, параллельное или смешанное возбуждение. Реверсивные электродвигатели снабжены двумя обмотками возбуждения. Однако применение электродвигателей с электромагнитным возбуждением в настоящее время сокращается. Более широко распространены электродвигатели с возбуждением от постоянных магнитов.

Конструкции электродвигателей чрезвычайно разнообразны.


Рис. 2. Электродвигатель отопителя

На рис. 2 показано устройство электродвигателя отопителя. Постоянные магниты 2 закреплены на корпусе 12 электродвигателя пружинами 10. Вал якоря 11 установлен в металлокерамических подшипниках 1 и 5, расположенных в корпусе и в крышке 8. Крышка крепится к корпусу винтами, ввернутыми в пластины 9. Ток к коллектору 6 подводится через щетки 4, помещенные в щеткодержатель 3. Траверса 7 из изоляционного материала, объединяющая все щеткодержатели в общий узел, прикреплена к крышке 8.

На электродвигателях мощностью до 100 Вт общим является применение подшипников скольжения с металлокерамическими вкладышами, щеткодержателей коробчатого типа и коллекторов, штампованных из медной ленты с опрессовкой пластмассой. Применяют и коллекторы, изготовленные из трубы, имеющей на внутренней поверхности продольные пазы.

Крышки и корпус изготовляют цельнотянутыми из листовой стали. В электродвигателях стеклоомывателей крышки и корпус — пластмассовые. Статор электродвигателей электромагнитного возбуждения набирают из пластин; причем оба полюса и ярмо штампуют как одно целое из листовой стали.

Постоянные магниты типов 1 и 2 (см. табл. ниже) устанавливают в магнитопровод, залитый в пластмассовый корпус. Магниты типов 3, 4 и 5 прикрепляют к корпусу плоскими стальными пружинами или приклеивают. Магнит типа 6 устанавливают и приклеивают в магнитопровод, который размещается в крышке электродвигателя. Якорь набирают из пластин электротехнической стали толщиной 1-1,5 мм.

Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов

таблица 1. Основные типы электродвигателей в электроприводах отечественных автомобилей.

Электродвигатель Тип магнита Назначение Напряжение, В Полезная мощность, Вт Частота вращения вала, об/мин Масса, кг
МЭ268 1 Привод омывателей 12 10 9000 0,14
МЭ268Б 1 То же 24 10 9000 0,15
45.3730 4 Привод отопителей 12 90 4100 1
МЭИ 3 То же 12 5 2500 0,5
МЭ237 4 » 24 25 3000 0,9
МЭ236 4 » 12 25 3000 1
МЭ255 4 » 12 20 3000 0,8
19.3730 5 » 12 40 2500 1,3
МЭ250 5 » 24 40 3000 1,3
МЭ237Б 4 Привод стекло-
очистителей
12 12 2000 0,9
МЭ237Е 4 То же 24 12 2000 0,9
МЭ251 2 Привод вентиляра 24 5 2500 0,5
МЭ272 6 То же 12 100 2600 2,25

Технические данные основных типов электродвигателей с электромагнитным возбуждением

таблица 2. Основные типы электродвигателей в электроприводах отечественных автомобилей.

Электродвигатель Назначение Напряжение, В Полезная мощность, Вт Частота вращения вала, об/мин Масса, кг
МЭ201 Привод отопителей 12 11 5500 0,5
МЭ208 То же 24 11 5500 0,5
МЭНА Привод стеклоочисти-телей
12 15 1500 1,3
МЭ202 Привод предпускового
12 11 4500 0,5
МЭ202Б То же 24 11 4500 0,5
МЭ252 » 24 180 6500 4,7
32.3730 » 12 180 6500 4,7
МЭ228А Привод антенны 12 12 4000 0,8

Электродвигатели мощностью более 100 Вт близки по конструкции к генераторам постоянного тока. Они имеют корпус, изготовленный из полосовой малоуглеродистой стали или из трубы, на котором винтами закреплены полюса с обмоткой возбуждения. Крышки стянуты между собой болтами. В крышках расположены шариковые подшипники. Реактивные щеткодержатели обеспечивают стабильную работу щеток на коллекторе.

Двухскоростные двигатели с электромагнитным возбуждением имеют выводы каждой катушки возбуждения, электродвигатели с постоянными магнитами оборудованы третьей дополнительной щеткой, при подаче питания на которую частота вращения вала увеличивается.

Технические данные основных типов электродвигателей с возбуждением от постоянных магнитов представлены в табл. 1, а с электромагнитным возбуждением в табл. 2.

Электродвигатели АВВ для аппаратов воздушного охлаждения

С точки зрения конструкции электропривода все АВО можно разделить на три основных типа (рис. 1) – АВО с прямой посадкой вентилятора на вал электродвигателя, АВО с ременной передачей и АВО с редукторным приводом (соосный или перпендикулярный вал).

Классификация АВО по типу привода

Рис. 1. Классификация АВО по типу привода

Каждый из типов привода обладает своими преимуществами и недостатками, которые сведены в таблицу.

Таблица. Преимущества и недостатки АВО с разными типами приводов

Тип привода АВО

 

Положительные стороны Отрицательные стороны
Прямая посадка вентилятора на вал
  •  Отсутствие  дополнительных узлов: выше надежность, меньше эксплуатационные расходы
  • Допускается низкая температура эксплуатации (до -60°С)
  • Простой монтаж с минимумом операций
  • Низкооборотистый электродвигатель: высокая масса и стоимость, низкий КПД
Клиноременная передача
  • Компактный высокоскоростной электродвигатель
  • Минимальное ТО
  • Невозможность работы при низкой температуре (ниже -40°С)
  • Пониженная надежность в связи с увеличением количества элементов (ременная передача, подшипниковый узел)
  • Необходимость настройки силы натяжения ремней перед пуском
Редукторная передача
  • Стандартная конструкция электродвигателей
  • Требуется специальное исполнение для низкой температуры
  • Низкая надежность – много конструкционных элементов
  • Высокие расходы на ТО
  • Низкий суммарный КПД системы

В Российской Федерации имеется около двух десятков предприятий, выпускающих различные типы АВО, а также несколько зарубежных компаний, поставляющих свои аппараты на территорию РФ. В каждой отрасли исторически используется определенный тип электропривода. Например, нефтеперерабатывающие заводы и газотранспортировочные узлы предпочитают АВО с прямой посадкой, реже – с ременной передачей. Нефтехимические и химические предприятия чаще всего используют ременную передачу. Редукторный привод применяется в сельском хозяйстве и пищевой отрасли, а также в генерации электрической энергии, которая наряду с редукторным использует и АВО с прямой посадкой.

С точки зрения электродвигателей наиболее благоприятными решениями являются редукторная и клиноременная передача, так как в этих случаях используются стандартные электродвигатели с частотой вращения 1500 или 1000 об/мин (реже 3000), которые распространены и имеют более высокий КПД.

Электродвигатели с прямой посадкой на вал имеют низкооборотистое исполнение (500 об/мин и ниже), а также специальное монтажное исполнение, которое позволяет крепить его на раму АВО или на фундамент под аппаратом. В конце прошлого года компания АВВ разработала конструкцию электродвигателя с прямой посадкой на вал для АВО, чтобы предоставить производителям наиболее полное предложение, которое может включать электродвигатель, механические компоненты и преобразователь частоты для управления скоростью вращения вентилятора.

 

Конструкция электродвигателей компании АВВ для АВО с прямой посадкой на вал

В настоящее время компания АВВ выпускает электродвигатели на 500 об/мин (12 полюсов) с диапазоном мощностей от 6,5 до 18,5 кВт. Кроме того, ведутся разработки по изготовлению 14-ти-полюсных электродвигателей (428 об/мин).

Двигатели рассчитаны на напряжение питающей сети 380В (+/- 10%) с частотой 50 Гц, но возможно исполнение и на другие напряжения. Питание допускается как напрямую от сети, так и от преобразователя частоты.

В стандартном исполнении электродвигатели выпускаются со степенью защиты IP55, но по дополнительному заказу она может быть увеличена до IP56 или IP65.

Двигатели имеют метод охлаждения IC 0041 А (полностью закрытый корпус воздушного охлаждения, без вентилятора): охлаждение происходит за счет перемещения воздушного потока, создаваемого вентилятором АВО.

Монтажное исполнение двигателя — IM V3. В стандартном варианте электродвигатели поставляются со специальной переходной платформой для удобного монтажа на местах установки в АВО, но можно заказать их и без данной платы с фланцем в соответствии со стандартом DIN. Вал электродвигателя может быть выполнен как в цилиндрической, так и в конической форме.

Двигатели предназначены для применения в условиях окружающей среды от -55 до +40°С  при относительной влажности до 100% как внутри, так и вне помещений. Возможна эксплуатация при более высокой температуре по дополнительному согласованию с производителем оборудования. Двигатели имеют нагревательные элементы в обмотке статора, которые служат для ее просушки с целью увеличения сопротивления изоляции.

Для подключения двигателя к сети и вывода сигналов с датчиков двигатели оснащены двумя силовыми выводами M50 и двумя вспомогательными M20 с кабельными сальниками Exd IIB для небронированного кабеля (стандартно). Клеммная коробка имеет достаточно внутреннего места для удобного подведения и подключения силовых и сигнальных кабелей (рис. 2).

Рис. 2. Внешний вид клеммной коробки, габариты 200-225

Рис. 2. Внешний вид клеммной коробки, габариты 200-225

 

Конструкция подшипниковых узлов

Одними из наименее надежных узлов электродвигателя являются подшипники. Помимо того, что они требуют постоянного технического обслуживания, они также достаточно чувствительны к внешним воздействиям – температуре, попаданию влаги и грязи вовнутрь, механическим воздействиям.

Электродвигатели АВВ для АВО оснащены шариковыми подшипниками с обоих сторон производства SKF или FAG. Конструкция электродвигателя позволяет производить замену смазки подшипников без снятия подшипникового щита. Интервалы, количество и тип необходимой смазки указаны в инструкции по монтажу и эксплуатации, поставляемой совместно с электродвигателем, а также непосредственно на его паспортной табличке. Срок службы подшипников при соблюдении надлежащих условий монтажа и эксплуатации составляет 100 000 моточасов.

Для защиты от проникновения влаги и грязи переднего подшипника электродвигателя, который установлен вертикально валом вверх, компания АВВ разработала ряд специальных защит: в частности, все двигатели уже в стандартном исполнении имеют лабиринтное уплотнение, которое не позволяет попасть внутрь грязи и влаге во время простоя двигателя, а также специальную «тарелку», установленную перед подшипником, которая защищает его во время работы. Данная конструкция прошла серьезные испытания и показала свою состоятельность.

Кроме того, электродвигатели имеют специальный фланец с отверстиями для стока воды, чтобы она не задерживалась в районе подшипниковых узлов (рис. 3).

 

abb

Рис. 3. Лабиринтное уплотнение и специальный фланец

Питание электродвигателей от преобразователя частоты

Сегодня всё большее количество электродвигателей комплектуется преобразователями частоты, которые, помимо основной функции (управления скоростью вращения электродвигателем) имеют ряд дополнительных преимуществ: энергосбережение, дополнительная защита двигателя и сети от аварийных режимов, реализация простых алгоритмов АСУ ТП и т.д.

Электродвигатели для АВО производства АВВ имеют универсальную конструкцию и могут питаться как напрямую от сети, так и от преобразователя частоты. Однако при питании от преобразователя частоты во внимание должны быть приняты следующие моменты.

1. Перегрузочная способность электродвигателей, а также минимальная и максимальная частоты вращения вала электродвигателя.

При регулировании электродвигателя от преобразователя частоты в области частот вращения ниже номинальной охлаждение происходит менее интенсивно, что в конечном итоге может привести к перегреву электродвигателя. Для оценки эффекта ухудшения охлаждения электродвигателя в компании АВВ применяются нагрузочные диаграммы, показывающие допустимый максимальный момент нагрузки на вал двигателя в зависимости от частоты вращения (рис. 4).

Нагрузочные характеристики при питании от преобразователя частоты АВВ с режимом управления DTC (слева) и любого другого преобразователя частоты (справа)

Рис. 4. Нагрузочные характеристики при питании от преобразователя частоты АВВ с режимом управления DTC (слева) и любого другого преобразователя частоты (справа)

 При чрезмерном повышении частоты вращения следует учитывать закон постоянства мощности, т.е. снижать момент нагрузки на вал электродвигателя в линейной зависимости от увеличения частоты вращения.

Для квадратичной зависимости нагрузки на вал электродвигателя (которой обладают АВО) снижение частоты вращения не является критичным, так как при этом значительно падает нагрузка на вал, что, в свою очередь, вызывает уменьшение потребляемого тока и, следовательно, температуру обмотки. А вот увеличение частоты вращения на вентиляторе может привести к перегреву электродвигателя. При увеличении частоты вращения с 50 до 60 Гц мощность нагрузки на вал увеличивается в 1,7 раз. Поэтому ТЗ на электродвигатели для АВО изначально должно учитывать повышение частоты вращения двигателя выше номинальной, если это может потребоваться для обеспечения параметров технологического процесса.

2. Перенапряжение обмотки статора.

При питании от преобразователя частоты на обмотку электродвигателя могут подаваться пики перенапряжения малой продолжительности, но с большой амплитудой – до двукратного значения напряжения питающей сети. Стандартная обмотка электродвигателей компании АВВ выдерживает такие перенапряжения без последствий при питающей сети 500 В и ниже. В случае, если питающая сеть имеет напряжение более 500 В, применяется специальная усиленная изоляция, предотвращающая преждевременный выход электродвигателя из строя (рис. 5).

ABB  Максимально допустимое напряжение на обмотке электродвигателя

Рис. 5. Максимально допустимое напряжение на обмотке электродвигателя

3. Подшипниковые токи.

При питании электродвигателя от преобразователя частоты в связи с асимметрией подаваемого на обмотки электродвигателя трехфазного напряжения формируется разность потенциалов, которая преобразуется в протекание тока по контуру «корпус двигателя – подшипники – ротор». Особенно неблагоприятно данный ток влияет на подшипники (вернее, их смазку) – в течение короткого времени они перегреваются и выходят из строя. Для уменьшения негативного влияния подшипниковых токов существует ряд мер. Компания АВВ, например, применяет изолированный подшипник с неприводной стороны, который значительно уменьшает или даже прерывает ток через подшипники, значительно увеличивая срок их службы. Изолированный подшипник устанавливается на электродвигатели мощностью от 100 кВт и высотой оси вращения выше 280 мм

4. Защита поверхности электродвигателя от перегрева.

В случае, когда электродвигатель питается от преобразователя частоты, также необходим контроль температуры поверхности электродвигателя с целью недопущения превышения температуры выше указанного класса (ГОСТ Р МЭК 60079-14 — 2008). Его можно реализовать двумя способами – проведением типовых испытаний конкретного типа электродвигателя с конкретным типом преобразователя частоты или с помощью непосредственного контроля температуры поверхности электродвигателя.

Компания АВВ провела типовые испытания со всеми преобразователями частоты серий ACS8, имеющими алгоритм прямого управления моментом (DTC – Direct Torque Control), которые подтвердили отсутствие перегрева поверхности электродвигателя в заданном рабочем диапазоне. В случае комплексного применения взрывозащищенных электродвигателей с данными преобразователями необходимости в применении датчиков температуры поверхности нет. Во всех остальных случаях компания АВВ может оснастить свои электродвигатели датчиками температуры поверхности типа PTC или Pt100.

Facebook

Twitter

Вконтакте

Google+

Отправить ответ

avatar
  Подписаться  
Уведомление о