Как влияет степень сжатия на мощность и экономичность двигателя: 403 — Доступ запрещён – 403 — Доступ запрещён

Содержание

как степень сжатия влияет на мощность двигателя

Увеличение степени сжатия требует использования топлива с более высоким октановым числом (для бензиновых ДВС) во избежание детонации. Повышение степени сжатия в общем случае повышает его мощность, кроме того, увеличивает КПД двигателя как тепловой машины, то есть, способствует снижению расхода топлива.

прямопропорционально

По идее чем больше степень сжатия тем больше мощность двигателя

Чем больше степень сжатия, тем выше мощность двигателя.

Прямой зависимости нет. Она конструктивно-обусловлена и должна соответсвовать параметрам цилиндров, их числу, конструкции клапанов и программе управления подачей топлива. Если она будет малая, то будет малая компрессия на рабочем такте. Если она будет завышенная, то рабочему такту будет сильно противодействовать такт сжатия и вся энергия уйдет на сжатие смеси.

чем больше, тем движок живее

все в школе прыгали через коня! Так вот если на мостик просто встать то он вас на подкинет! Если же на него прыгнуть то и он ответит! но как он ответит зависит от различных параметров! Так и тут! У любого действия есть противодействие! Элементарная физика! Выигрываешь в силе, проигрываешь во времени и т. д и т. п

сепеь сжатия величина геометрическая отношение полного объема цилиндра к объему камеры сгорания расчитывается для каждого двигла индивидуально изменяется путем изменения объемов А мощность можно увеличить путем наддува т. е. увеличением компресии

Как степень сжатия влияет на мощность

В любом отрегулированном двигателе одним из параметров, который без всякого сомнения следует изменить и обычно в сторону повышения, является степень сжатия. Поскольку повышение степени сжатия увеличивает отдаваемую эффективную мощность двигателя, поэтому желательно иметь степень сжатия как можно более высокой в определенных пределах. Верхний предел всегда определяется в зависимости от точки, в которой возникает детонация.

Поскольку детонация может очень быстро разрушить двигатель, поэтому будет лучше, если мы будем точно знать, какая степень сжатия есть или будет, чтобы можно было выдерживать разумное соотношение.

Степень сжатия определяется c помощью следующей формулы (V + C)/C = CR, где V это рабочий объем цилиндра, а С это объем камеры сгорания.

Определить рабочий объем или емкость одного цилиндра можно просто. Для этого вам нужно просто разделить рабочий объем (литраж) двигателя на число цилиндров, например, если литраж четырехцилиндрового двигателя 1100 куб. см, то емкость или рабочий объем одного цилиндра будет равняться 1100/4 = 275 куб. см. Найти значение объема камеры сгорания несколько сложнее. Для определения объема мы должны физически его измерить и для этого нам нужно иметь пипетку или бюретку, градуированные в куб. см.

Объем камеры сгорания это полный объем, который остается над поршнем, когда он находится в ВМТ. Он включает в себя объем полости в головке плюс объем, равный толщине прокладки, плюс объем между верхней частью поршня и верхней частью блока цилиндров в ВМТ и плюс объем выемки в днище поршня при использовании поршней с вогнутыми днищами или минус объем выпуклости на днище поршня при использовании поршней с выпуклыми днищами.

После того как это будет сделано, вы можете добавить объем, равный толщине прокладки. Если прокладка имеет круглое отверстие, то этот объем проще всего можно определить с помощью следующей формулы:

Vcc = [(p D2 ´ L)/4] ÷ 1,000, где

D = диам. отверстия в прокладке в мм,

L = толщина прокладки в зажатом состоянии в мм.

Если отверстие в прокладке некруглое, как это имеет место во многих случаях, то мы можем измерить нужный объем, воспользовавшись бюреткой. Для этого обжатую прокладку приклейте к листу стекла с помощью герметика, предназначенного для прокладок головок цилиндров, затем поместите стекло на горизонтальную поверхность и заполните отверстие в прокладке жидкостью с помощью бюретки.

Старайтесь это делать так, чтобы жидкость не выливалась из отверстия или покрывала полностью всю поверхность прокладки, поскольку в этом случае замеры будут неправильными. Заливать жидкость следует до тех пор, пока ее уровень не дойдет до края прокладки.

Если все отверстия круглые, то можно легко рассчитать объем между верхней поверхностью поршня и верхней частью блока. Это можно сделать с помощью указанной выше формулы, но при этом D будет равняться диам. отверстия цилиндра в мм, а L расстоянию от верхнего днища поршня до верхней части блока опять в мм.

На каких-то стадиях бывает необходимо определить, сколько нужно снять металла с торцевой поверхности головки цилиндров, чтобы получить требуемую степень сжатия. Для этого сначала нужно рассчитать требующийся полный объем камеры сгорания. Из полученного значения вы вычитаете объем, равный толщине прокладки, объем в блоке над поршнем, когда он находится в ВМТ и, если используется поршень с вогнутым днищем, объем выемки. Оставшееся значение теперь представляет собой объем, который должна иметь полость в головке для получения нужной нам степени сжатия. Чтобы было более понятно, рассмотрим следующий пример.

Предположим, что нам нужно иметь степень сжатия 10/1, а литраж двигателя равен 1000 см3 и он имеет четыре цилиндра.
СR = (V = C)/C, где
V- рабочий объем одного цилиндра, а С- полный объем камеры сгорания.

Поскольку мы знаем, что V (рабочий объем цилиндра) = 1000 см3 /4 = 250 см3 и знаем требуемую степень сжатия, поэтому преобразуем уравнение, чтобы получить полный объем камеры сгорания С. В результате вы получите следующее уравнение:

Подставим в него указанные значения

С = 250/(10 – 1) = 27,7 см3.

Таким образом полный объем камеры сгорания равен 27,7 см3. Из этого значения вы вычитаете все составляющие объема камеры сгорания, которые не находятся в головке. Предположим, что поршень имеет вогнутое днище, объем полости в днище равен 6 см3 и что оставшийся объем над поршнем, когда он находится в ВМТ, до торцевой поверхности головки равен 1,5 см3. Кроме того объем, равный толщине прокладки, равен 3,5 см3. Сумма всех этих объемов, которые не входят в объем полости в головке равна 11 см3.

Для получения нужной нам степени сжатия 10/1 мы должны иметь объем полости в головке (27,7 – 11) = 16,7 см3. Чтобы определить, сколько металла нужно снять с торцевой поверхности головки, поместите ее на горизонтальную поверхность, или точнее поместите головку таким образом, чтобы торцевая ее поверхность была горизонтальной. После того как вы это сделаете, заполните камеру количеством жидкости, равным требующемуся окончательному объему. В этом примере этот объем равен 16,7 см3. Затем измерьте расстояние от торцевой поверхности головки до поверхности жидкости и оно будет определять то количество металла, которое нужно будет удалить. Имеется одна небольшая проблема при измерении расстояния от торца головки до уровня жидкости.

Как только наконечник глубиномера приближается к поверхности жидкости, она за счет капиллярного действия поднимается к наконечнику. Это капиллярное действия имеет место при использовании парафина в качестве жидкой среды для измерения объема, когда наконечник глубиномера находится на расстоянии от 0,008 до 0,012 дюйма от поверхности жидкости и поэтому нужно делать допуск на это явление.

Из-за небольших неточностей, имеющих место при шлифовании и фасонной обработке камеры сгорания, рекомендуем проверять объем каждой камеры точно также, как и других. Если все объемы не будут одинаковыми, то следует удалить металл с головок камер, имеющих меньший объем, чтобы их объемы стали такими же, как у камеры большим объемом. Главной причиной необходимости балансировки камер является то, что она обеспечивает более плавную работу двигателя, особенно на малых оборотах, и позволяет несколько уменьшить вибрации, возникающие за счет одинаковых пусковых импульсов.

Вторая причина заключается в том, что если мы используем максимально возможную степень сжатия и при проверке находим камеру с самым большим объемом, чтобы определить количество удаляемого металла, то степени сжатия у других камер могут быть выше этого предельного значения. В результате возникнет детонация, которая может быстро привести к разрушению двигателя.

При удалении металла из камер лучше всего снимать металл в верхней части камер или со стенок около свечи.

Точность балансировки камер составляет порядка 0,2 см3. Попытки получить меньшие значения не могут быть реализованы на практике, поскольку при таких крайних значениях возможности измерений с помощью используемых измерительных инструментов ограничены из-за их погрешностей. Помимо этого ошибка, равная 0,2 см3, даже для двигателей малого литража, составляет малый процент полного объема камеры в головке.

После того как мы определились со степенью сжатия перед нами стоит вопрос как правильно добиться нужной нам степени сжатия. Для начала нужно рассчитать на сколько необходимо увеличить камеру сгорания. Это не сложно. Формула для вычисления степени сжатия имеет следующий вид:

Ɛ=(VP+VB)/VB
Где Ɛ— степень сжатия
VP — рабочий объём
VB — объём камеры сгорания

Преобразовав уравнение можно получить формулу для вычисления камеры сгорания при известной степени сжатия.
VB=VP1/Ɛ
Где VP1 — объём одного цилиндра

По этой формуле вычисляем объём имеющейся камеры сгорания и вычитаем из него объём желаемой (вычисленный по той же формуле), полученная разница и есть интересующее на значение на которое и нужно увеличить камеру сгорания.

Существуют разнообразнве способы увеличения камеры сгорания но далеко не все из них верные. Камера сгорания современного автомобиля спроектирована таким образом, что при достижении поршнем ВМТ топливо воздушная смесь вытесняется к центру камеры сгорания. Это пожалуй самая действенная разработка препятствующая детонации.

Самостоятельная доработка камеры в ГБЦ под силу далеко не многим. Это обусловлено тем, что вопервых вы можите нарушить спроектированную форму камеры, так же при доработке могут «вскрыться» стенки т.к. не известна их толщина. Так же не рекомендуется «расжимать мотор» толстыми прокладками т.к. Это нарушит процессы вытеснения в камере сгорания. Наиболее простым и правельным способом считается установка новых поршней в которых задан необходимый объём камеры. Для турбо-двигателя сферическая форма считается наиболее эффективной. Лучше использовать для этих целей специально разработанные и изготовленные поршни. Возможен вариант самостоятельной доработки стоковых поршней. Но сдесь нужно учесть что толщина дна поршня не должна быть меньше 6% от диаметра.
Степень сжатия в турбо двигателе

Одной из самых важных и пожалуй самой сложной задачей при проектировании турбодвигателя является принятие решения о степени сжатия. Этот параметр влияет на большое количество факторов в общей характеристике автомобиля. Мощность, экономичность, приёмистость, детонационная стойкость (параметр от которого сильно зависит эксплуатационная надёжность двигателя в целом), все эти факторы в значительной степени определяются степенью сжатия. Также это влияет на расход топлива и состав отработавших газов. В теории, степень сжатия для турбо-мотора рассчитать не составляет большого труда.

Сначала разберём понятие «Сжатие» или «Геометрическая степень сжатия». Оно представляет собой отношение полного объёма цилиндра (рабочий объём плюс пространство сжатия, остающееся над поршнем при положении в верхней мёртвой точки (ВМТ)), к чистому пространству сжатия. Формула имеет следующий вид: Ɛ=(VP+VB)/VB

Где Ɛ— степень сжатия
VP — рабочий объём
VB — объём камеры сгорания

Не нужно забывать о существенных расхождениях между геометрической и фактической степенью сжатия даже на атмосферных моторах. В турбодвигателях к этим же процессам добавляется и предварительно сжатая компрессором смесь. На сколько фактически от этого увеличиться степень сжатия, видно из следующей формулы:
Ɛeff=Egeom*k√(PL/PO)
Где Ɛeff — эффективное сжатие
Ɛgeom — геометрическая степень сжатия
Ɛ=(VP+VB)/VB, PL — Давление наддува (абсолютное значение),
PO — давление окружающей среды,
k — адиабатическая экспонента (числовое значение 1,4)

Эта упрощённая формула будет справедлива при условии, что температура в конце процесса сжатия для двигателей с наддувом и без наддува достигает одинакового значения. Иными словами, чем выше давление наддува, тем меньше возможное геометрическое сжатие. Итак, согласно нашей формуле для атмосферного двигателя со степенью сжатия 10:1 при давлении наддува 0.3 бара степень сжатия следует уменьшить до 8.3:1, при давлении 0.8 бара до 6.6:1. Но, слава богу, это теория. Все современные двигатели с турбонаддувом работают не с такими через мерно низкими значениями. Правильная степень сжатия для работы определяется сложными термодинамическими вычислениями и всесторонними испытаниями. Всё это из области высоких технологий и сложных расчётов, но много тюнинговых моторов собрано на основе некоторого опыта, как собственного, так и взятого за пример, от известных автомобильных производителей. Эти правила будут справедливы в большинстве случаев.

Есть несколько важных факторов влияющих на расчёт степени сжатия и их нужно принимать во внимание при проектировании. Я перечислю наиболее важные. Конечно, это желаемый наддув, октановое число топлива, форма камеры сгорания, эффективность промежуточного охладителя, и, безусловно те мероприятия которые вы в состоянии провести по снижению температурной напряжённости в камере сгорания. Углом опережения зажигания (УОЗ) так же можно частично компенсировать возросшие нагрузки. Но это темы для отдельной разговора, и мы безусловно затронем их позже в следующих статьях

  • Мотоциклы
  • Обзоры/Тесты
  • Jawa
  • ИЖ
  • Минск
  • Урал/Днепр
  • Восход
  • Скутеры
  • Литература
  • Jawa
  • ИЖ
  • Минск
  • Урал/Днепр
  • Восход
  • Скутеры
  • Тюнинг
  • Jawa
  • ИЖ
  • Минск
  • Урал/Днепр
  • Восход
  • Скутеры
  • Фотографии
  • Видео
  • Автомобили
  • Обзоры/Тесты
  • ВАЗ
  • УАЗ
  • ГАЗ
  • Audi
  • Alfa Romeo
  • Volkswagen
  • Peugeot
  • Renault
  • Mercedes
  • BMW
  • CITROEN
  • Fiat
  • Ford
  • Skoda
  • SEAT
  • Honda
  • Mazda
  • Nissan
  • Opel
  • Volvo
  • Toyota
  • Mitsubishi
  • Daewoo
  • Литература
  • ВАЗ
  • УАЗ
  • ГАЗ
  • Audi
  • Alfa Romeo
  • Volkswagen
  • Peugeot
  • Renault
  • Mercedes
  • BMW
  • CITROEN
  • Fiat
  • Ford
  • Skoda
  • SEAT
  • Honda
  • Mazda
  • Nissan
  • Opel
  • Volvo
  • Toyota
  • Mitsubishi
  • Daewoo
  • Тюнинг
  • ВАЗ
  • УАЗ
  • ГАЗ
  • Audi
  • Alfa Romeo
  • Volkswagen
  • Peugeot
  • Renault
  • Mercedes
  • BMW
  • CITROEN
  • Fiat
  • Ford
  • Skoda
  • SEAT
  • Honda
  • Mazda
  • Nissan
  • Opel
  • Volvo
  • Toyota
  • Mitsubishi
  • Daewoo
  • Фотографии
  • Видео
  • Прочее
  • Видеоматериалы
  • Мотоциклы
  • Автомобили
  • Ремонт
  • Передачи
  • Общая литература
  • Тюнинг
  • Журналы
  • Карты дорог
  • История
  • Полезные статьи
  • Фотогалерея
  • Новости
  • Календарь
    Друзья сайта

    Увеличения степени сжатия, увеличивает мощность

    Термическая эффективность и, следовательно, эффективность, с которой топливо используется для совершения полезной работы, непосредственно связана со степенью сжатия. Чем выше степень сжатия, тем меньше топлива будет использовано для получения той же самой мощности. Типичные значения степеней сжатия от 18:1 до 22:1, используемые в дизельных двигателях, частично объясняют, почему они так эффективно работают. Вдобавок к этому, для полной реализации преимуществ этой высокой степени сжатия, на дизельном двигателе никогда не используется дроссельная заслонка.

    Другими словами, он всасывает как можно больше воздуха, практически так же, как и бензиновый двигатель при широко открытой дроссельной заслонке. Вместо ограничения количества воздуха, поступающего в двигатель, с помощью дроссельной заслонки мощность двигателя регулируется с помощью изменения количества топлива, впрыскиваемого в цилиндр. Это значит, что даже при низких уровнях мощности (когда в камеру сгорания впрыскивается очень малое количество топлива), дизельный двигатель сжимает воздух в цилиндре очень сильно; при этом выделяется столько тепла, что его достаточно для воспламенения даже очень обедненной смеси. Однако когда дросселируется двигатель с искровым зажиганием (бензиновый двигатель), то количество воздуха, втягиваемого в цилиндры, уменьшается, и так как это эффективная степень сжатия, то в результате топливная эффективность при частично закрытой дроссельной заслонке тоже уменьшается.

    Нет сомнений в том, что высокая степень сжатия увеличивает мощность. Изображенная далее схема показывает, что мощность при полном открывании дроссельной заслонки теоретически улучшается при увеличении степени сжатия. Приведенные данные предполагают, что увеличение степени сжатия не создает проблем в других областях, таких как детонация т. д. Вы заметите, что закон уменьшения приводит к довольно простому выводу: когда степень сжатия идет вверх, то при каждом увеличении прирост мощности будет все меньше. К примеру, увеличение компрессии от 8,0:1 до 9,0:1 приводит к большему увеличению мощности, чем увеличение сжатия с 11,0:1 до 12,0:1 (2% роста мощности против 1,3%).

    Указанные значения являются типичными для двигателей, использующих распределительные валы с относительно коротким периодом впуска, подобные валам во многих форсированных двигателях. Когда продолжительность такта впуска увеличивается (путем установки распределительного вала с более длительным периодом впуска), прирост мощности от увеличения степени сжатия становится даже больше. Это происходит оттого, что данные базируются на механических степенях сжатия (т.е. определенных путем математических расчетов из фиксированного объема), а не на динамических степенях сжатия, которые продолжают увеличиваться, когда эффективность впуска увеличивается. Когда система впуска модифицируется для улучшения наполнения, то динамическая степень сжатия увеличивается очень похожим образом, как и при увеличении размера поршня, т. к. в цилиндр поступает дополнительное количество воздуха и топлива. Эффективность впуска может продолжать увеличиваться даже до точки «упаковки« цилиндра (объемная эффективность выше 100%), как это предполагается некоторыми комбинациями впускного и выпускного коллекторов. Максимальное давление внутри камеры сгорания перед воспламенением изменяется, когда изменяется плотность подаваемой смеси. Когда система впуска работает с низкой эффективностью, т. е. когда дроссельные заслонки закрыты или впускная система забита, то цилиндр наполняется лишь частично и динамическое давление сжатия низкое. Когда система впуска работает с высокой объемной эффективностью (значение более 100% достигается на многих гоночных двигателях), динамическая степень сжатия может создавать давления, которые превышают давления, ожидаемые от механической (рассчитанной) степени сжатия. В таких случаях увеличение механической степени сжатия может ввести двигатель в режим детонации и уменьшить мощность и надежность двигателя.

    Увеличение степени сжатия не всегда приводят к увеличению мощности. Если статическая (подсчитанная) степень сжатия уже находится около предела детонации для используемого топлива, то дальнейшее увеличение статической степени сжатия может ухудшить мощность и/или надежность двигателя. Как ранее упоминалось, это особенно справедливо, когда специальный распределительный вал и системы впуска и выпуска добиваются объемной эффективности (VE) величиной более 100%. Когда (VE) увеличивается, то динамическая степень сжатия также увеличивается, так как цилиндр «упаковывается« смесью так, как если бы работал невидимый нагнетатель.

    Другой эффект от увеличения степени сжатия довольно незначителен и неизвестен некоторым создателям двигателей. Когда VE превышает 100%, поступившая смесь находится под небольшим положительным давлением, однако, она может заполнить только пространство в цилиндре плюс пространство в камере сгорания. К примеру, если объем цилиндра и камеры составляет вместе 416,2 см3, то это фиксированное пространство будет в основном определять, сколько топливовоздушной смеси может попасть в цилиндр. Если мы решаем увеличить степень сжатия путем уменьшения объема камеры сгорания или путем увеличения размера выпуклости поршня (это наиболее распространенные методы), то это пространство будет не более названной величины. Да, цилиндр сохраняет постоянный рабочий объем — рабочий объем двигателя не изменялся. Но изменили общий объем цилиндра и камеры сгорания. Это означает, что пространство для поступающей рабочей смеси уменьшается. Таким образом, при увеличении степени сжатия мы почти незаметно уменьшили объемную эффективность двигателя.

    Воспользуемся воображаемым примером для уяснения деталей. Представим себе двигатель со степенью сжатия 2,0:1 и, просто ради аргумента скажем, что общий объем (нерабочий объем) одного цилиндра, когда поршень находится в НМТ (нижней мертвой точке), составляет 3.278 см3. Это объем, создаваемый поршнем при одном такте плюс объем камеры сгорания над поршнем, находящимся в положении ВМП (верхней мертвой точке). Так как степень сжатия составляет 2,0:1, то объем над поршнем, находящимся в ВМТ должен составлять половину от общего объема цилиндра или 1.639 см3, (т. е. 1.639 см3 «выбранного« объема плюс 1.639 см3 камеры сгорания равны 3.278 см3 общего объема цилиндра). Даже при 3.278 см3 во всем цилиндре двигатель может втянуть только 1.639 см3 свежей рабочей смеси, т. к. имеется давление в коллекторе у впускного канала (в случае с VE, равной 100%) и только вытесненный объем поршня может работать для втягивания воздуха и топлива. Остальные 1.639 см3 будут заполнены выхлопными газами от последнего цикла сгорания.

    Добавим теперь к воображаемому двигателю нагнетатель (компрессор) и отрегулируем давление так, что он будет подавать 3.278 см3 топливовоздушной смесив цилиндр вместо исходных 1.639 см3, которые двигатель мог «вдохнуть« в прежнем состоянии. С нашим нагнетателем в цилиндре будет находиться 3.278 , см3 свежей смеси в конце такта впуска и не будет остаточных выхлопных газов. Это существенно улучшит мощность. Но что произойдет, если в безрассудных поисках дополнительной мощности увеличить степень сжатия до 3,0:1, уменьшив объем камеры сгорания над поршнем в ВМТ со1.639 см3 до 1.092 см3? Когда поршень находится в конце такта впуска, общий объем цилиндра будет теперь только 2.731 см3. Если не изменять давление наддува, то оно может «вдавить« только 2.731 см3 топливовоздушной смеси в цилиндр. Это уменьшит объем смеси на 547 см3 или примерно на 17%. Двигатель втягивает менее воспламененную смесь, объемная эффективность уменьшается (на 17%) и мощность снижается. Справедливо то, что 2.731 см3 подаваемой смеси сгорает с более высокой эффективностью благодаря увеличению степени сжатия, но улучшение степени сжатия покрывает только 5% из. 17% потерь мощности.

    Многие из вас могут теперь реализовать важные преимущества, получая максимально возможную VE (объемную эффективность). Чем выше VE, которую вы сможете получить, тем ниже будет требуемая степень сжатия; а чем ниже степень сжатия, тем меньше выступ поршня, тем легче фронту пламени распространяться в объеме камеры сгорания. Эти соотношения являются некоторыми из тех методов, которые используют профессионалы для увеличения мощности двигателей.

    Верхние пределы степени сжатия и фазы газораспределения распределительного вала достаточно хорошо определены для гоночных двигателей, «обычные« форсированные двигатели для повседневного использования как правило работают при более низких уровнях мощности и в основном при частично открытой дроссельной заслонке. Увеличение степени сжатия может иногда обеспечить заметный прирост мощности, но это же самое увеличение степени сжатия может дать даже большее улучшение топливной экономичности. При увеличении степени сжатия от 8,0:1 до 10,0:1 мощность при полностью открытой дроссельной заслонке может увеличиться на 3 или 4%. Но экономия топлива при частично закрытой дроссельной заслонке может увеличиться более чем на 15%. В этом нет ничего удивительного, если вы помните, что динамическая степень сжатия при частично открытой дроссельной заслонке заметно ниже, чем статическая степень сжатия. Увеличение статической степени сжатия добавляет эффективности в нужном месте: при частично открытой дроссельной заслонке.

    Более высокая степень сжатия, конечно, требует использования высокооктанового топлива и часто имеющееся топливо имеет гораздо меньшее октановое число, чем хотелось бы многим. Имеются несколько путей обойти данную проблему. Если вы изготавливаете двигатель с «нуля« и желаете сберечь время, обратившись к инженеру с опытом изготовления форсированных двигателей, вы можете получить рекомендации по увеличению степени сжатия, приводящему к заметному росту мощности двигателя. В некоторых случаях двигатели со степенью сжатия порядка 11:1 успешно использовали бензин с октановым числом 87, но это требует подбора всех деталей двигателя, особенно конструкции распределительного вала и головки блока цилиндров плюс использование системы впрыска воды.

    Если вы выберете метод изготовления с «нуля«, одним из самых легких путей увеличения степени сжатия является использование традиционных поршней для высокой степени сжатия, имеющих минимальную высоту куполообразной части, так что нет сильных помех распространению пламени. Если желаемая степень сжатия не может быть достигнута путем плавного увеличения куполообразной части и уменьшением объема камеры сгорания с помощью обработки головки блока (лучше угловая обработка), то лучшим путем для увеличения степени сжатия будет увеличение диаметра отверстия цилиндра, часто с помощью расточки блока. Выдерживая практические пределы для толщины стенок цилиндров (обычно допускается увеличение диаметра отверстия цилиндра не более чем на 0,75 — 1,0 мм), эта модификация может увеличить степень сжатия путем добавления рабочего объема, что уменьшает необходимость больших «куполов« у поршней или камер сгорания меньшего объема.

    Если проект вашего двигателя более «умеренный«, то, возможно, будет достаточно обработки головки блока, а стоимость обработки головки составляет одну из самых дешевых операций по увеличению мощности и экономичности двигателя.

    Объем камеры сгорания влияет на конечную степень сжатия двигателя.

    Камера сгорания, это объем образуемый головкой блока и поршнем в момент нахождения поршня в верхней мертвой точке. Степень сжатия, это отношение объемов цилиндров от максимального до минимального. Максимальный объем камеры сгорания получается, когда поршень находится в нижней мертвой точке. Минимальный при нахождении поршня в верхней мертвой точке цилиндра.

    Объем цилиндра без учета камеры сгорания можно узнать, поделив паспортный рабочий объем двигателя на количество цилиндров.

    Объем камеры сгорания состоит из суммы 3 объемов:

    1 Объем камеры сгорания на головке блока
    2 Объем, образуемый толщиной прокладки головки блока
    3 Объем вогнутого пространства в днище поршня.
    Справедливости ради стоит сказать, что существует масса вариантов когда поршни выпуклые и при вычислениях они не добавляют, а наоборот уменьшают пространство камеры сгорания. И это нужно учитывать при расчетах.

    Степень сжатия и компрессия, это не одно и тоже и различается тем, что степень сжатия это геометрическая величина, а компрессия динамическая. Так как двигатель при вращении обладает некоторыми насосными свойствами, плюс воздух при сжатии нагревается, то величина компрессии будет отличаться от степени сжатия в большую сторону. Компрессия обычно больше в 1.4 раза чем степень сжатия.

    Увеличение степени сжатия является одной из основных методик поднятия мощности двигателя, так как чем больше сжать топливовоздушную смесь, тем больше она сможет расшириться относительно сжатого объема при сгорании. Тем самым можно получить больше мощности с того же объема сгоревшего топлива. Одним словом мощность повысится, а расход останется на прежнем уровне. Возникает вопрос, а почему с завода не поднимают степень сжатия до максимально возможного уровня? Дело все в характеристиках бензина не позволяющим поднимать степень сжатия больше определенного уровня, без образования аномальных, нежелательных процессов горения (детонация и др). Октановое число как раз и является основным показателем величины детонационной стойкости топлива и чем это число выше, тем большую степень сжатия можно использовать в двигателе, без образования детонации.

    То есть проще говоря, если мы значительно повысим степень сжатия то мощность у нас повысится, но придется заправляться более высокооктановым топливом, а оно стоит дороже. Но с другой стороны, двигатель теперь работает более эффективно и на той мощности на которой вы ездили раньше, он будет потреблять меньше топлива и разность в цене как бы нивелируется! Но правда все же такова, что вы не будете ездить на малой мощности. Иначе зачем нужно было все это затевать?

    Степень сжатия можно повысить двумя самыми эффективными способами:

    1 установка более тонкой прокладки головки блока, либо спиливание нижней части головки блока. При таком варианте, клапана приближаются к поршню и необходимо делать или увеличивать выборки под них. Изменяются фазы работы ГРМ так как высота цепи или ремня, ответственная за синхронизацию распредвала изменяется на величину, уменьшения высоты позиционирования головки блока. При верхневальном двигателе (распределительный вал находится в головке блока). Настроить работу распределительного вала можно с помощью резрезной шестерни, либо шестерни с несколькими позициями под шпонку. При нижневальном, когда распредвал стоит внизу (в блоке цилиндров) и связь с клапанами происходит посредством толкателей также изменяется кинематика клапанного механизма без гидроусилителей, а с гидроусилителями может не хватить их хода и придется ставить меньшие по длине толкатели. При использовании метода на V образном двигателе при спиливании головок изменится расстояние между посадочными отверстиями впускного коллектора, что потребует его подгонки.

    2 Растачивание цилиндров под больший по диаметру поршень. Такая процедура требует замены поршней, но этот метод увеличивает рабочий объем двигателя и одновременно повышает степень сжатия, так как камера сгорания остается прежней но объем цилиндра увеличивается. Отношение возросшего цилиндра к прежней камере сгорания покажет большую величину степени сжатия. Метод кроме замены поршней и расточки цилиндра не требует больше каких либо переделок и более предпочтителен для увеличения степени сжатия.

    Прибавка мощности за счет степени сжатия тем выше, чем под более низкую степень сжатия изначально настроен двигатель. Простыми словами, повышение мощности более эффективно при поднятии степени сжатия с 8 до 9 чем с 13 до 14.

    Примеры прибавок в процентах:

    с 8 до 9 = 2.0 % прибавка мощности
    с 9 до 10 = 1.7 % прибавка мощности
    с 10 до 11 = 1.5 % прибавка мощности
    с 11 до 12 = 1.3 % прибавка мощности
    с 12 до 13 = 1.2 % прибавка мощности
    с 13 до 14 = 1.1 % прибавка мощности
    с 14 до 15 = 1.0 % прибавка мощности
    с 15 до 16 = 0.9 % прибавка мощности
    с 16 до 17 = 0.8 % прибавка мощности
    Промежуточные результаты суммируются, например поднятие степени сжатия с 8 до 14 даст прибавку 8.7 %

    Примеры перехода на более высокооктановое топливо при повышении (СС)

    менее 8 — 76 бензин
    от 8 до 9 — 80 бензин
    от 9 до 10.5 — 92 бензин
    от 10 до 12.5 — 95 бензин
    от 12 до 14.5 — 98 бензин
    от 13.5 до 16 — 102 бензин
    от 15.5 до 18 — 109 бензин
    Минимальное октановое число топлива применяемое в каждом конкретном двигателе зависит не только от степени сжатия но и в некоторой степени от конструкции формы камеры сгорания, алгоритма работы клапанного механизма, системы зажигания итд. Поэтому более совершенные двигатели могут работать с большими величинами степени сжатия без повышения качества топлива.

    СТЕПЕНЬ СЖАТИЯ

    На что влияет компрессия — Энциклопедия журнала «За рулем»

    Залегшие кольца или трещина в клапане – значительно более частые причины снижения компрессии, чем износ двигателя.

    Компрессия – это вульгаризм. Правильно – давление конца такта сжатия. Это давление, которое создается в цилиндре при выключенном зажигании (или без подачи топлива – для дизеля) при положении поршня в верхней мертвой точке. Так вот, многие диагносты по величине замеренной компрессии (прости, наука, за жаргон!) дают заключение: «жив пациент» или «в морг», то есть на капитальный ремонт.

    Заблуждение первое «Компрессия и степень сжатия – одно и то же»
    Нет, не так! Компрессия – это давление в цилиндре, степень сжатия – безразмерный параметр, описывающий геометрические параметры цилиндра: это отношение полного объема цилиндра к объему камеры сжатия (камера сжатия – это объем пространства над поршнем при его положении в ВМТ (еще он называется объемом конца сжатия – это то же самое). Называть ее камерой сгорания некорректно, поскольку сгорание топлива происходит во всем объеме цилиндра.) Компрессия от степени сжатия зависит, а степень сжатия от компрессии – нет! Компрессия зависит еще от кучи параметров: давления начала сжатия, регулировки фаз газораспределения, температуры, при которой проводится замер, протечек из камеры сгорания. А протечки определяются изношенностью колец и цилиндров.

    «Компрессия» – то максимальное давление, которое мы измеряем в цилиндре при выключенном зажигании.

    Заблуждение второе: «Поднял компрессию – увеличил мощность»

    Не совсем так. Компрессию можно поднять двумя способами – увеличить степень сжатия или уменьшить протечки из камеры сгорания. Посмотрим, что будет в каждом случае: в нашем распоряжении стенд.
    Для начала уменьшим объем камеры сжатия. Проще всего для этого прошлифовать нижнюю плоскость головки цилиндров. У базового мотора «одиннадцатого» ВАЗа рабочий объем цилиндра чуть больше 370 кубиков. При штатной степени сжатия 9,8 объем камеры сжатия составит 42,6 см³. Можно посчитать, что, сняв 2 мм с посадочной поверхности головки блока цилиндров, мы уменьшаем объем камеры сжатия на 5,1 см³. Новая степень сжатия составит 11 единиц, то есть на 1,2 выше, чем у базового мотора. А теперь, просто из интереса, уберем еще 2 мм. Степень сжатия возрастает уже до 12,6. В учебнике находим нужную формулу и получаем: термический КПД цикла поршневого двигателя теоретически должен вырасти в первом случае минимум на 4%, во втором – на 9%.
    А теперь ставим эти головки на стендовый мотор и снимаем моментные характеристики. Снижение расхода топлива существенно меньше, чем обещала теория, – на 2,5% в первом случае и на 4,5% во втором. Причем эффект более выражен в зоне малых нагрузок. Прибавка мощности еще меньше: от силы 2-3%, причем в зоне малых и средних оборотов. А на высоких – никакого эффекта…
    Все ясно: с увеличением степени сжатия резко растет давление в цилиндре, этот рост провоцирует детонацию, ее ловит соответствующий датчик – и сдвигает угол опережения зажигания назад. Следовательно, мощность падает. А потому и теоретический эффект существенно уменьшается. Зато растут температуры на выпуске, – стало быть, риск пожечь клапаны и поршни с таким мотором значительно выше.
    Способ второй – уменьшаем протечки. Пойдем от обратного: сравним, что станет с моментной характеристикой, если заменить кольца такими, чтобы зазоры в них стали больше, скажем, раза в два.
    Сделали. Для нового мотора – всё нормально, для всех цилиндров компрессия 13,2…13,4 бар. Для испорченного кольцами с большими зазорами – 10,8…11,1. А что показали замеры мощности? В зоне малых оборотов мощность испорченного мотора чуть-чуть упала, но когда перешли 2500 об/мин, кривые момента практически слились. Всё потому, что протечки из камеры сгорания в картер, которые должны бы снизить мощность, заметны только на малых оборотах, а на высоких их масса за один цикл резко падает, ведь с уменьшением времени цикла при увеличении частоты вращения коленчатого вала уменьшается и время на протечку.

    Компрессия резко выросла, а мощность – нет. Вместе с компрессией проснулась детонация, и угол опережения зажигания пришлось сдвигать назад. А он влияет на мощность сильнее

    Заблуждение третье: «Нет компрессии – сразу на капиталку»
    Обычно механик, обнаруживший низкую компрессию, тут же заявляет: «Двигатель изношен, требуется капиталка». Так ли все однозначно?
    Нет, конечно! На спор можем назвать двадцать возможных причин снижения компрессии. Тут и проблемы с механизмом газораспределения, и механические или термические повреждения деталей двигателя, и закоксованность поршневых колец. И только одна из них будет связана с катастрофическим износом мотора. Важно уметь различать эти причины, понимать степень их опасности и знать методы борьбы с ними.

    Заблуждение четвертое: «Чем выше компрессия, тем лучше»
    Частенько от апологетов разных присадок приходится слышать, как подпрыгнула компрессия после очередной обработки мотора. Рост до 15 бар, до 17 бар! Но надо иметь в виду, что в нормальном состоянии, даже восстановив зазоры до состояния нового двигателя, компрессию выше штатной не получить.
    Откуда же цифры? Обычно на разобранном двигателе видно, что камера сгорания после обработки заросла непонятно чем и, как следствие, уменьшился объем камеры сжатия. Но эти отложения нарушают теплоотвод от камеры сгорания. Отсюда детонация, калильное зажигание и прочее. Так что небывалому росту компрессии не радоваться надо, а наоборот.

    Изменение удельного расхода топлива при фиксированных оборотах (2500 об/мин) в двух вариантах двигателя – базовом и с кольцами, в которых увеличены зазоры. Компрессия упала, но по расходу это заметно только при малых нагрузках.

    Так на что влияет компрессия?
    На многое! Главное – на пусковые свойства мотора, особенно при низких температурах.
    В первую очередь это касается дизельных двигателей, где от давления и температуры конца сжатия зависит, воспламенится топливо в цилиндре или нет. Но и бензиновые двигатели в холодном состоянии тоже чувствительны к изменению компрессии: она влияет на испаряемость топлива, которое при холодом пуске только теоретически должно испаряться по пути в цилиндр. А реально – попадает туда в виде негорючих жидких капель.
    Сниженная компрессия повышает давление картерных газов. В этом случае через систему вентиляции на впуск двигателя летит больший объем паров масла. Плохо это: и токсичность растет, и темп загрязнения камеры сгорания резко увеличивается.
    Неравномерная по цилиндрам компрессия вызывает вибрации двигателя, особенно ощутимые на холостом ходу и при малых оборотах. А это, в свою очередь, вредит и трансмиссии, и подвеске мотора. Да и самому водителю. Словом, роль компрессии как диагностического признака, во многом характеризующего состояние двигателя, очень велика. И наши «сказки» никоим образом не призывают махнуть на нее рукой – наоборот! Но стремление к безудержному ее повышению в поисках дополнительных «лошадок» – дело в целом бесперспективное.

    Вот что на самом деле означает ‘степень сжатия’, и почему это имеет значение

    Почему для двигателей так важна степень сжатия, и на что она влияет.

    Вот что на самом деле означает  

    Вы наверняка слышали термин «степень сжатия» в двигателях внутреннего сгорания. Но вы когда-нибудь задумывались, что он означает? Итак, пришло время точно объяснить, что же такое коэффициент сжатия (степень) в двигателях автомобиля и почему сегодня все автопроизводители одержимы этим показателем, как будто этот параметр представляет собой Святой Грааль для будущих продаж автоновинок. 

     

    Сразу хотим отметить, что разобраться в том, что такое степень сжатия двигателя, не так просто, как кажется на первый взгляд. Вы наверняка заметили в различных рекламных проспектах и каталогах, а также в описании на сайтах автопроизводителей, что автобренды пытаются привлечь наше внимание такой характеристикой, как степень сжатия двигателей. Особенно стараются нам рассказать о степени сжатия менеджеры автосалонов. Мы обычно делаем вид, что понимаем, о чем идет речь, пропуская мимо ушей эту информацию. И причина такого поведения в том, что многие автолюбители просто не представляют, что такое степень сжатия двигателей, равно как и на что она влияет. Но тем не менее мы считаем, что все автолюбители должны знать, что же это за показатель двигателей внутреннего сгорания, о котором недавно вспомнили многие автопроизводители. 

     

    Мы знаем, что высокое сжатие двигателя – это хорошо, а низкое – плохо. Мы также знаем, что новый мотор Mazda Skyactiv-X имеет высокую степень сжатия. Не отстает от Mazda и Toyota со своими моторами «Dynamic Force», которые имеют высокую степень сжатия. Эти компании рекламируют новые двигатели с большим коэффициентом сжатия, заявляя, что они не только стали мощнее, но и получили большую экономичность. Но при чем здесь высокая степень сжатия и увеличение мощности с уменьшением расхода топлива? Сейчас объясним.

     Вот что на самом деле означает

    Двигатель Toyota «Dynamic Force»

     

    Мы живем в эпоху, когда инженеры не могут просто дать двигателю больше энергии за счет укрупнения, как, например, это было раньше, когда автопроизводители на многие свои автоновинки устанавливали моторы с увеличенным объемом. К тому же это приводило к неминуемому увеличению расхода топлива и росту уровня вредных выбросов в выхлопе автомобиля. Сегодня в связи с дороговизной топлива по всему миру и сложной экологической обстановкой подобный способ увеличения мощности мотора не подходит. Особенно если учитывать жесткие экологические нормы, предъявляемые автопроизводителям рядом развитых западных стран. 

    В итоге автопроизводители стали улучшать эффективность нынешних моторов за счет применения турбин и увеличения степени сжатия современных двигателей. 

     

    Как определяется степень сжатия, и что это такое?

    Степень сжатия – это показатель, при котором устанавливается, какой максимальный объем цилиндра двигателя может быть сжат в минимальный объем цилиндра. Этот показатель степени сжатия определяется как соотношение. 

    Например, обычно степень сжатия записывают вот таким образом: 9:1 (коэффициент сжатия двигателя «девять к одному»).  

    Вот что на самом деле означает  

    Теперь представьте цилиндр двигателя. Внутри цилиндра двигателя, как вы знаете, перемещается поршень: вверх и вниз. Когда поршень находится в самой нижней точке цилиндра двигателя, это называется «нижней мертвой точкой». Именно в этом положении поршня сверху него находится наибольший объем цилиндра. Когда поршень находится в самой высокой точке внутри цилиндра двигателя, это положение поршня называется «верхней мертвой точкой». В этом положении объем цилиндра находится в наименьшем значении. Вот сравнение этих двух объемов цилиндров над поршнями двигателя и образует соотношение степени сжатия. Обратите внимание, что когда поршень находится в верхней мертвой точке, все-таки над ним есть объемное пространство, где и происходит сжатие топливно-воздушной смеси.

     

    Для тех, кто любит больше смотреть, чем читать, внизу мы публикуем GIF-картинку, на которой демонстрируется, как работает четырехтактный двигатель. Обратите внимание, как поршень движется вверх во время такта сжатия топливной смести (топливо + кислород), которая подается клапанами головки блока двигателя. Напомним, что воздух и топливо, поступаемые в цилиндр двигателя, сжимаются поршнем, чтобы затем воспламенить эту смесь с помощью свечи зажигания (в бензиновых моторах) или за счет сильного сжатия (в дизельных моторах). 

    Если двигатель имеет высокую степень сжатия, это означает, что заданный объем воздуха и топлива в цилиндре сжимается в гораздо меньшем пространстве, чем в двигателях с небольшой степенью сжатия. 

     

    Вот что на самом деле означает

     

    А теперь математический пример соотношения степени сжатия в ДВС. 

    Предположим, что у нас есть двигатель, объем цилиндра и камер сгорания которого в момент нахождения поршня в нижней мертвой точке составляет 10 куб. см. После того как впускной клапан головки блока двигателя закрывается и поршень поднимается вверх, начав такт сжатия, он сжимает воздух и топливную смесь в пространство 1 куб. см. Этот двигатель имеет коэффициент сжатия (степень) 10:1. 

     

    Также часто производители любят вычислять итоговую степень сжатия, деля большее значение объема цилиндра над поршнем на меньший объем цилиндра. В итоге во многих технических характеристиках автомобилей вместо соотношения производители указывают результат деления этих значений. 

    Таким образом вычисляется, во сколько раз сжимается топливно-воздушная смесь при движении из нижней мертвой точки поршня в верхнюю мертвую точку. Разделив большее значение на меньшее, мы и получим итоговое значение степени сжатия без соотношения большего объема к меньшему.

     

    Почему производители стараются увеличить степень сжатия?

    Но не все так просто со степенью сжатия. Одно дело – понимать, что такое степень сжатия. И это не менее важно по сравнению с пониманием, почему так важна высокая степень сжатия для современных двигателей. К сожалению, объяснить простыми словами, почему высокая степень сжатия в двигателях современных автомобилей – это отличное решение на ближайшие годы, не получится. Тем не менее мы попытаемся.

     

    Вы знаете, что мощность двигателя появляется в тот момент, когда сгорание топливной смеси оказывает силу на поршень внутри цилиндра двигателя. Эта сила толкает поршень вниз по цилиндру. И чем выше поршень находится в цилиндре в момент сжигания топливно-воздушной смеси, тем больше сил будет приложено на поршень. 

    Как мы уже сказали, чем больше степень сжатия, тем выше находится поршень в верхней мертвой точке. В итоге это позволяет вырабатывать больше мощности в момент сгорания топлива. Также помимо увеличения мощности для вырабатывания силы, толкающей поршень вниз по цилиндру двигателя, необходимо меньше топлива, что в конечном итоге влияет на топливную эффективность мотора. Это простое объяснение. Но оно неполное, поскольку при увеличении степени сжатия двигателей возникает ряд проблем, для решения которых необходимо в идеале знать термодинамику.

     

    Итак, мы знаем, что высокая степень сжатия означает, что двигатель получает больше силы и мощности из того же количества топлива по сравнению с мотором с меньшим коэффициентом сжатия. Как мы выяснили, это хорошо для динамики автомобиля, а также для достижения хороших показателей его экономичности.

     

    Вот что на самом деле означает  

    Чтобы объяснить вам точнее, почему более высокая степень сжатия дает больше экономии топлива, мы не будем погружаться слишком глубоко в науку о термодинамике. Тем не менее без нее нам также не объяснить вам в деталях, почему моторы с большой степенью сжатия более экономичные. Да, это нелегко понять. Но все же этот раздел термодинамики очень и очень интересен.

     

    Более высокое сжатие в двигателе означает больше мощности, но больше давления

     

    На приведенном выше рисунке показана диаграмма PV давления – объема для идеального типичного бензинового двигателя. Этот график наглядно демонстрирует, что происходит в двигателе, когда он сжигает воздушно-топливную смесь (в нашем примере бензин + кислород). 

    На приведенном выше графике кривая 1-2 показывает ход сжатия. 

    Линия 2-3 показывает сгорание топлива. 

    Верхняя кривая 3-4 показывает ход расширения.

    И линия 4-1 показывает отвод тепла, когда открывается выпускной клапан в головке блока цилиндров двигателя. 

     

    Если описать все более техническим языком, то эту диаграмму следует понимать так:

     

    На диаграмме кривая 1-2 показывает ход сжатия, при котором давление (ось Y) возрастает, а объем (ось Х) падает, когда поршень сжимает воздушно-топливную смесь внутри цилиндра, приближаясь к верхней мертвой точке. 

    Линия 2-3 показывает тепло, выделяемое во время горения топливной смеси. Эта линия показывает, как быстро увеличивается давление и температура сгораемого топлива. 

    Кривая 3-4 показывает увеличение объема цилиндра двигателя и падение давления, когда газ, полученный в процессе сгорания топливной смеси, оказывает силу на поршень, который начинает свое движение вниз по цилиндру двигателя (такт расширения). 

     

    Линия 4-1 показывает отвод тепла от газов, образованных в процессе сгорания топлива. Когда давление внутри цилиндра возвращается к давлению окружающей среды, открывается выпускной клапан. 

    Наконец, линия 1-5 демонстрирует нам ход выхлопа (выхлопной цикл мотора), в процессе которого поршень снова движется внутри цилиндра вверх (к верхней мертвой точке), чтобы снова сжать топливно-воздушную смесь для повторения цикла. 

     

    Область в пределах линий 1-2-3-4 показывает нам, сколько работы было проделано двигателем в рамках одного лишь только цикла. Более высокая степень сжатия двигателя означает, что две вертикальные линии на графике выше будут двигаться влево и вверх, оставляя больший диапазон хода поршня, что влияет на получение большей мощности по сравнению с двигателем, имеющим низкий коэффициент сжатия. То есть двигатель с высокой степенью сжатия сделает больше работы за один цикл, чем мотор с небольшой степенью сжатия. 

    И все дело в том, что в двигателях с высокой степенью сжатия в процессе сгорания топлива образуется больше давления, которое с большей силой двигает поршень вниз по цилиндру. Правда, в этом случае внутри двигателя выделяется больше тепла. 

     

    Более высокое сжатие в двигателе также означает более высокую тепловую эффективность

    Вот что на самом деле означает  

    Важно отметить, что образование тепла и потеря тепла в течение цикла работы двигателя напрямую связаны с его эффективностью (речь идет о коэффициенте полезного действия – КПД). Причем на КПД главное влияние оказывает степень сжатия двигателя. Все дело в двух идеях. Во-первых, любая тепловая энергия, поступающая в систему, должна быть преобразована в механическую или отработанную. Во-вторых, тепловая эффективность – это просто результат работы двигателя (мощность и сила), разделенный на теплопередачу.

    Таким образом, с помощью уравнения можно вычислять взаимосвязь между тепловым КПД и степенью сжатия. 

    Вот как выглядит уравнение этой взаимосвязи (nтепловой КПД, rстепень сжатия, а γ (гамма)свойство жидкости):

     

    Вот что на самом деле означает

     

    Теперь вернемся к нашей диаграмме выше. Когда вы обеспечиваете больший ход поршня между верхней и нижней мертвой точкой, вы увеличиваете степень сжатия. За счет этого вы смещаете на диаграмме PV вверх и влево и увеличиваете температуру (Qh на графике выше). Причем увеличение температуры будет больше, чем потери тепла (Ql). 

    Иными словами, вы добываете в процессе сгорания топливной смеси больше энергии за один цикл работы двигателя. Кстати, вот один интересный ролик видеоблогера Джейсона Фенске, который рассказывает более простыми словами о взаимосвязи между степенью сжатия, теплопередачей и эффективностью (экономичностью двигателя):

     

     Для тех, кто не знает английский, включите субтитры и их машинный перевод на русский язык.

     

    Так что, как вы, наверное, уже поняли, тепловая эффективность двигателя возрастает по мере увеличения степени сжатия двигателя. Таковы законы физики, а именно законы термодинамики. Особенно это становится ясно из уравнения, приведенного выше. 

    Соответственно, чем выше степень сжатия мотора, тем больше он выдает лошадиных сил и меньше потребляет топлива. Для нас это означает более тяжелый кошелек за счет сэкономленных денег на заправке и больше адреналина при разгоне.

     

    Чтобы это понять, вам нужно взять на прокат какой-нибудь старый американский неэффективный автомобиль с бензиновым V8 атмосферным двигателем, который имеет низкую степень сжатия. Поездив на таком автомобиле несколько дней, вы поймете, что автомобиль «жрет», как слон, но взамен не выдает хорошую мощность, которую сегодня показывают современные четырехцилиндровые и даже трехцилиндровые моторы. 

     

    Вот что на самом деле означает Например, знаменитый двигатель Skyactiv-G от Mazda является очень эффективным в плане не только мощности, но и хорошей экономичности. Во многом это благодаря большой степени сжатия. Также ряд и других производителей стали выпускать современные моторы с высоким коэффициентом сжатия. Так, сегодня компании Mazda, Nissan / Infiniti и Toyota и другие начали выпускать двигатели с очень высокой степенью сжатия – 14:1. 

    Вы не поверите, но двигатели с такой степенью сжатия еще недавно казались фантастикой. Кстати, благодаря такой степени сжатия автопроизводителям нет необходимости оснащать двигатели турбинами, для того чтобы добиться соответствия современным стандартам экономичности, экологическим нормам, а также требованиям к мощности. 

     

    Почему более высокая степень сжатия означает, что автомобиль должен заправляться топливом с высоким октановым числом

     

    Но почему большинство автопроизводителей сегодня не перешли на выпуск двигателей с высокой степенью сжатия, если такие силовые агрегаты позволяют без турбокомпрессоров добиваться таких выдающихся результатов эффективности силовых агрегатов? Все дело в законах физики.

    Многие двигатели с высоким коэффициентом сжатия нуждаются в премиальном топливе или в высокооктановом бензине. 

    Тем, кто не знает или не помнит, что такое октан бензина и как он помогает избежать детонации в двигателе, советуем почитать наши следующие материалы:

     

    Какой бензин лучше?

     

    Почему премиум бензин является пустой тратой денег для большинства автомобилей

     

    Сколько энергии в различных видах топлива

     

    Топливо с низким октановым числом по сравнению с топливом с высоким октаном, скорее всего, будет самопроизвольно воспламеняться из-за более высоких температур и давления воздуха в двигателях с высокой степенью сжатия. Мы знаем, что воспламенение топливно-воздушной смеси должно происходить, когда это действительно нужно, а не наоборот. Такое неконтролируемое воспламенение топлива называется детонацией. Это очень вредно для любых двигателей внутреннего сгорания. Дело в том, что излишняя детонация уменьшает крутящий момент и может нанести непоправимый урон двигателю автомобиля. 

     

    Высокая степень сжатия увеличивает риск сильной детонации двигателя. Вот почему моторы с большим коэффициентом сжатия, как правило, работают на высококачественном или высокооктановом бензине. 

    Главная причина риска самовоспламенения топливно-воздушной смеси в двигателях с высокой степенью сжатия – это превышение допустимого давления, которое приводит к резкому нагреву топливной смеси. В итоге это вызывает преждевременное сжигание топлива еще до того, как свеча зажигания с помощью искры зажжет его. Повторяем, преждевременное воспламенение топлива – это очень плохо для любого двигателя. 

     

    Вот что на самом деле означает Для того чтобы снизить риск преждевременного воспламенения топлива, компания Mazda много работала над поршневыми и выпускными конструкциями бензиновых двигателей с высокой степенью сжатия (соотношение степени сжатия в цилиндрах двигателя 14:1). Например, мотор Skyactiv-X оснастили специальными поршнями, имеющими полость посередине, которая позволила предотвращать всплеск богатого кислородом топлива вокруг области воспламенения топливной смеси от свечи зажигания.

    Вот что на самом деле означает

     

    Вот что на самом деле означает

     

    Именно проблема самовоспламенения топлива в двигателях с высокой степенью сжатия и препятствует сегодня массовому распространению данного типа моторов во всей автопромышленности. Подробнее об двигателе Mazda можно почитать здесь

     

    Существуют ли ограничения по увеличению степени сжатия в двигателях

    Вот что на самом деле означает  

    Интересно, почему автопроизводители не стараются сделать степень сжатия своих двигателей еще больше? Почему сегодня коэффициент сжатия 14:1 уже считается много? Неужели нельзя сделать двигатель с еще большим коэффициентом сжатия? Ведь в таком случае автомобили получили бы еще больше мощности и одновременно стали бы еще экономичней.

     

    Например, почему бы не сделать двигатель со степенью сжатия 60:1? Но на самом деле это невозможно в сегодняшнем мире. 

    Такую степень сжатия не выдержит ни один металл внутри двигателя. Да дело даже не в металле. Даже если бы у нас был такой крепкий дешевый металл, способный выдержать степень сжатия 60:1, все равно бы мы не смогли построить подобный рабочий мотор. Просто такая степень сжатия привела бы к чрезмерно высокой температуре внутри двигателя. В итоге мотор стал бы настолько горячим, что это вызвало бы его самоуничтожение (двигатель взорвался бы от высоких температур). 

     

    Также, в принципе, нас не должна так сильно заботить высокая степень сжатия в современных автомобилях, если речь идет, конечно, не о спортивных мощных автомобилях, где каждая лишняя лошадиная сила на вес золота. Сегодня в рамках массового рынка нас больше волнует не мощность, а экономичность обычных повседневных автомобилей. Особенно во времена немалой стоимости топлива, где вопрос экономии топлива напрямую влияет на наши кошельки. Также сегодня более остро стоит вопрос экологии. А мы знаем, что чем менее экономичен автомобиль, тем меньше он загрязняет окружающую среду выхлопными газами. Так что, в принципе, увеличение степени сжатия в современных двигателях необходимо в первую очередь для улучшения экологической обстановки на всей планете. Но для того чтобы этого добиться, нет смысла существенно увеличивать в современных моторах степень сжатия. 

     

    Вот мы и подошли к концу темы о степени сжатия двигателей внутреннего сгорания. Надеемся, что теперь вы не просто знаете, что такое степень сжатия силовых агрегатов, но и понимаете, какую важную роль она играет в современных двигателях. 

    Степень — сжатие — двигатель

    Степень — сжатие — двигатель

    Cтраница 1

    Степень сжатия двигателя может быть несколько повышена, что объясняется небольшим понижением температуры в процессах впуска и сжатия, так как уменьшается подогрев впускного трубопровода и большая часть топлива испаряется внутри цилиндра. Возможное повышение степени сжатия для четырехтактных двигателей обычно не превышает единицы.  [1]

    Степень сжатия двигателя — очень важная характеристика, которая влияет на экономичность и мощность двигателя. С увеличением е экономичность и мощность двигателя повышаются.  [3]

    Степень сжатия двигателя снижается до 8 0 — 10 0, для чего меняют головки цилиндра, а иногда и поршни.  [4]

    Степень сжатия двигателя ИТ9 — 3 переменная — от 7 до 23; ее можно изменять во время работы двигателя путем вдвигания в камеру сгорания специального цилиндрического вкладыша-поршня. Величина перемещения этого вкладыша 8 замеряется микрометром.  [5]

    Степень сжатия двигателя — очень важная характеристика, которая влияет на экономичность и мощность двигателя. С увеличением е экономичность и мощность двигателя повышаются.  [7]

    Степень сжатия двигателя показывает, во сколько раз уменьшается объем поступившего в цилиндр воздуха или горючей смеси при перемещении поршня изн.м.т. в в.  [8]

    Повышение степени сжатия двигателя до некоторого предела, определяемого маркой бензина, целесообразно и желательно. Однако при превышении допустимой для данного бензина степени сжатия характер процесса сгорания изменяется, приобретая взрывной характер. Несмотря на это, в бензиновых двигателях любой процесс сгорания начинается после появления искры на электродах свечи и пламя распространяется по камере сгорания с. По мере распространения пламени температура и давление уже сгоревшей смеси повышаются, а объем ее стремится к увеличению. Последнее возможно только за счет уменьшения объема еще не сгоревшей части смеси, обычно распотожен-ной в части камеры сгорания, наиболее удаленной от источника воспламенения. Поэтому по мере продвижения по камере сгорания фронта пламени окислению подвергаются части смеси, сильнее нагретые и с большей концентрацией активных частиц, определяющих дальнейшее развитие цепных реакций.  [9]

    Повышение степени сжатия двигателей автомобилей позволяет улучшать их технико-экономические и эксплуатационные показатели.  [10]

    Чем выше степень сжатия двигателя, тем больше давление и температура горючей смеси в конце сжатия; сгорание ее происходит с большой скоростью, мощность и экономичность двигателя при этом повышаются.  [11]

    Нужно уменьшить степень сжатия двигателя, для чего необходимо увеличить объем камеры сгорания, поставив дополнительную прокладку под головку блока цилиндров.  [12]

    Чем больше степень сжатия двигателя, тем сильнее расширяются газы в процессе расширения. Это способствует более экономичной работе двигателя.  [13]

    Чем выше степень сжатия двигателя, тем под большим давлением сжимается свежий заряд и тем выше его температура в конце сжатия. В двигателях с воспламенением от постороннего источника необходимо сжимать горючую смесь так, чтобы ее температура была на несколько градусов ниже температуры самовоспламенения. Практически степень сжатия выбирают в зависимости от вида топлива, на котором должен работать двигатель, так как различное топливо имеет различную температуру воспламенения. Меньшие значения степени сжатия приводят к снижению КПД действительного цикла, а большие — к преждевременной вспышке смеси или детонации ( взрывному горению), что, помимо снижения КПД цикла, приводит к ускоренному изнашиванию и сокращению срока службы двигателя.  [14]

    Допустимое повышение степени сжатия двигателя, помимо располагаемых антидетонационных качеств топлива, определяется формой камеры сгорания, расположением клапанов, возможностью устранения горячих точек в камере сгорания, применением легких сплавов в качестве материала для головок цилиндра, а также месторасположением свечи зажигания.  [15]

    Страницы:      1    2    3    4    5

    Влияние степени сжатия на индикаторный КПД двигателя

    Автор: Юлиюс Мацкерле (Julius Mackerle)
    Источник: «Современный экономичный автомобиль» [1]
    22811 0
    Рис. 1
    Зависимость КПД η теоретического цикла от степени сжатия

    Г.Р. Рикардо рассчитал и проверил на экспериментальном двигателе зависимость индикаторного КПД от степени сжатия для чистого воздуха [2]. Результаты его опытов изображены на рис. 1. При этом делается допущение, что рабочее тело – чистый воздух и что при сгорании углеводородного топлива в среде чистого воздуха образуются только CO2 и H2O. Другое допущение предполагает, что в течение всего цикла отсутствует теплообмен со стенками цилиндра. При этих допущениях КПД такого теоретического цикла:

    η = 1 — (1/ε)k-1

    где ε – степень сжатия; k – показатель адиабаты (отношение теплоемкости при постоянном давлении к теплоемкости при постоянном объеме), равный 1,4 для воздуха.

    Этот КПД можно использовать для сравнения, но он значительно отличается от реально достижимых, поскольку:

    • рабочее тело представляет собой смесь азота и продуктов сгорания, а не чистый воздух;
    • средняя теплоёмкость продуктов сгорания увеличивается с ростом температуры таким образом, что теплота, подведенная при более высокой температуре, не повышает давление в цилиндре в той степени, в какой оно повышалось бы при подводе того же количества теплоты, но при меньшей температуре;
    • при высокой температуре происходит диссоциация воды на водород и кислород, а углекислого газа – на окись углерода и кислород, на что затрачивается значительное количество теплоты, возвращаемой в цикл с потерями;
    • часть теплоты отводится через стенки цилиндра;
    • объём продуктов сгорания при постоянной температуре и давлении не равен объёму смеси топлива с воздухом.
    Рис. 2
    Зависимость КПД η теоретического и действительного циклов от степени сжатия

    В двигателе идеальные условия не могут быть выдержаны и поэтому его КПД значительно ниже. На рис. 2 кривой а обозначен КПД теоретического цикла с подводом теплоты при постоянном объёме согласно рис. 1. Кривая б показывает расчётный КПД этого же цикла для бензовоздушной смеси с 50 %-ным недостатком топлива, кривая в – с 20 %-ным недостатком топлива. Кривая г рассчитана для стехиометрической смеси бензин-воздух. Во всех расчётах циклы считались термодинамическими идеальными, т. е. принималось, что теплота подводится мгновенно в ВМТ, а теплообмен со стенками цилиндра отсутствует.

    Нижняя кривая д показывает результаты измерения индикаторного КПД на опытном двигателе при степени сжатия 4 – 7. Опыты проводились на смеси с недостатком 15 % топлива, поэтому их можно сравнить с расчетной кривой е при 20 %-ном недостатке топлива. Хорошо видна разница между кривыми в и д, характеризующая потери теплоты за счет излучения, теплопередачи через стенки цилиндра и неполноты процесса сгорания.

    Кривая д показывает зависимость индикаторного КПД от степени сжатия у реальных двигателей. Для всех кривых расчетом или измерением был определен показатель k.

    Средняя теплоемкость газов увеличивается с ростом их температуры. Объём цилиндра после полного сгорания топлива заполнен смесью азота, углекислого газа и водяных паров. У азота, составляющего основную часть этой смеси, средняя теплоемкость увеличивается медленней, чем у других газов (таблица ниже). Быстрее всего она растет у водяного пара. Топливо, содержащее большой процент углерода, который сгорит до СО2, выгоднее, чем топливо с большим процентом содержания водорода. Большее значение средней теплоёмкости газа, входящего в состав рабочего тела, способствует тому, что теплота, подводимая к нему, повысит его температуру в меньшей степени, поскольку значительная часть этой теплоты уйдет на нагрев газа. Меньшая же максимальная температура рабочего тела снижает его давление и индикаторный КПД.

    Влияние температуры на среднюю теплоёмкость сгорания углеводородного топлива
    Продукты сгорания 100 – 500 °C 1000 °C 1500 °C 2000 °C 2500 °C 3000 °C
    Азот 1,00 1,02 1,065 1,11 1,16 1,22
    Водяной пар 1,00 1,11 1,22 1,35 1,55 1,79
    Углекислый газ 1,00 1,115 1,22 1,27 1,32 1,33

    При температуре выше 2000 °C начинается диссоциация водяного пара на H2 и O2, а углекислого газа – на CO и O2. На этот процесс расходуется значительное количество теплоты, вследствие чего рост максимальной температуры рабочего тела тормозится. При охлаждении водород и кислород опять соединяются и образуют воду, а CO вновь превращается в CO2. Эти процессы протекают с выделением теплоты, однако полностью она не используется, так как возвращается в цикл в течение достаточно продолжительного процесса расширения.

    Рис. 3
    Зависимость КПД η теоретического цикла от количества теплоты, вводимой в него при постоянном объёме QV=const или при постоянном давлении Qp=const.

    Зависимость КПД η теоретического цикла от соотношения долей топлива, сгоревшего при постоянном объёме V и давлении p, показана на рис. 3. Если сгорает 100 % топлива при постоянном объёме, то достигается максимальное значение КПД. Если 100 % топлива сгорает при постоянном давлении, то этот КПД минимален, так как топливо, которое догорает в процессе продолжительного расширения, для совершения работы имеет в своем распоряжении только малую часть пути, проходимого поршнем. Падение КПД особенно заметно, если при постоянном объеме сгорает менее 60 % топлива.

    Влияние степени сжатия на КПД и мощность двигателя весьма значительно. Вплоть до степени сжатия ε = 10 КПД увеличивается особенно быстро. Расчетные значения КПД хотя и служат только для сравнения, но наглядно показывают замедление роста КПД при высоких степенях сжатия.

    Дросселирование воздуха во впускном трубопроводе бензинового двигателя при частичной нагрузке приводит к тому, что давление конца сжатия в цилиндре значительно снижается. Так называемую реальную степень сжатия можно определить по величине давления в конце сжатия [3]. На рис. 4, а показано поле реальных степеней сжатия, полученное путем измерения давлений конца сжатия в карбюраторном двигателе с геометрической степенью сжатия ε = 8,5. Верхняя граничная кривая показывает реальную степень сжатия при полностью открытой дроссельной заслонке в зависимости от частоты вращения двигателя n. Ниже этой кривой показано все поле реальных степеней сжатия при различных открытиях дроссельной заслонки. При большом дросселировании заряда во впускном трубопроводе значение реальной степени сжатия падает до ε = 3,5, вследствие чего значительно уменьшается КПД. Это оказывает большое влияние на средний расход топлива при частичных нагрузках бензинового двигателя.

    Рис. 4
    Реальные степени сжатия в бензиновом двигателе, вычисленные по действительным значениям давления конца сжатия: Aуд — удельная работа, совершаемая в цилиндре.

    Дросселирование заряда или воздуха, являющееся в бензиновом двигателе способом регулирования его нагрузки, необходимо для сохранения примерно постоянного состава топливовоздушной смеси, что обеспечивает ее надежное зажигание. С другой стороны, желательное повышение степени сжатия ограничено опасностью возникновения детонации, зависящей от давления и температуры смеси в конце хода сжатия. На рис. 5 показано изменение температур сжатой смеси в цилиндре в зависимости от частоты вращения n и степени открытия дроссельной заслонки двигателя со степенью сжатия ε = 8,5.

    Рис. 5
    Изменение температуры смеси в цилиндре в конце сжатия в зависимости от частоты вращения n и нагрузки бензинового двигателя.

    Автомобильный двигатель работает большую часть времени при частичной нагрузке и поэтому очень важно улучшить расход топлива именно в этих условиях. На рис. 4, б показано поле реальных степеней сжатия при увеличении геометрической степени сжатия до ε = 12,5. При малой нагрузке реальная степень сжатия повышается на 2,5 единицы, что соответствует улучшению КПД на 10 %.

    Поршневой двигатель с простым кривошипным механизмом имеет равные между собой геометрические степень сжатия и степень расширения. Однако это свойство невыгодно при использовании энергии давления газов, которая в момент открытия выпускного клапана еще довольно высока. Поэтому еще на начальном этапе развития двигателей внутреннего сгорания искались пути использования давления газов в конце рабочего хода увеличением степени расширения. Одно из таких решений было реализовано в виде специального кривошипного механизма с тремя шатунами и двумя коленчатыми валами. Однако такие сложные механизмы имеют низкий механический КПД из-за увеличения числа подшипников, вращающихся и колеблющихся масс. Кроме того, они неработоспособны при высоких частотах вращения, поэтому их использование не принесло ожидаемого улучшения КПД.

    По этой причине более выгодно использовать повторное расширение газа после его выхода из цилиндра. В настоящее время повторное расширение проводится главным образом в турбине, работающей на отработавших газах.

    Различных степеней сжатия и расширения можно частично добиться регулированием моментов открытия и закрытия клапанов. Процесс сжатия начинается только после закрытия впускного клапана, поэтому большое запаздывание закрытия впускного клапана после НМТ вызывает снижение фактической степени сжатия. В то же время открытие выпускного клапана непосредственно перёд НМТ повышает степень расширения. Однако его нужно открывать заранее с тем, чтобы давление газов в цилиндре успело снизиться и при последующем выталкивании газов поршнем при его ходе вверх от НМТ к ВМТ не оказывалось большого сопротивления движению поршня.

    Из этого примера видно, что таким способом нельзя достичь большой разности степеней сжатия и расширения. Если бы впускной клапан закрывался на половине хода поршня, то фактический рабочий объем двигателя (поступающее количество воздуха) снизился бы наполовину. Двигатель с объемом 2000 см3 имел бы мощность, равную двигателю с объемом 1000 см3, но его масса, размеры и стоимость остались бы неизменными. Уменьшилось бы только среднее потребление топлива автомобилем, на котором он установлен.

    Последнее обновление 02.03.2012
    Опубликовано 11.05.2011

    Читайте также

    Сноски

    1. ↺ Мацкерле Ю. Современный экономичный автомобиль/Пер. с чешск. В. Б. Иванова; Под ред. А. Р. Бенедиктова. — М.: Машиностроение, 1987. — 320 с.: ил.//Стр. 105 — 110 (книга есть в библиотеке сайта). – Прим. icarbio.ru
    2. ↺ Если Вы серьёзно интересуетесь двигателестроением, то рекомендуем прочесть книгу Рикардо Г.Р. «Быстроходные двигатели внутреннего сгорания».
    3. ↺ Понятие реальной степени сжатия двигателя внутреннего сгорания в отечественной литературе не применяется. В данном случае под этим термином, по-видимому, подразумевается условная геометрическая степень сжатия, вычисляемая по значениям наблюдаемого давления конца сжатия в цилиндре при дросселировании и давления конца впуска без дросселирования при рассматриваемой частоте вращения двигателя. – Прим. ред. А.Р. Бенедиктова

    Комментарии

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о