Описание системы пуска двигателя: устройство и принцип работы, схема, а также сила тока при старте и особенности пуска в зимних условиях – Система пуска двигателя | Автомобильный справочник

62 — электростартерный пуск

3.1. Назначение и требования к системам пуска двигателя

Для запуска ДВС необходимо сообщить коленчатому валу вращение с определенной (пусковой) частотой, при которой обеспечивается нормальное протекание процессов смесеобразования, воспламенения и горения топлива. Пусковая частота вращения карбюраторных двигателей составляет 40…50 мин-1. У дизелей частота вращения коленчатого вала должна быть не менее 100… 150 мин-1, так как при более медленном вращении сжимаемый воздух не нагревается до необходимой температуры.

При пуске необходимо преодолеть момент сопротивления на трение, момент, создаваемый при сжатии рабочей смеси в цилиндрах, и момент инерции вращающихся частей двигателя.

Развиваемый стартером крутящий момент зависит от мощности и конструкции двигателя, числа цилиндров, степени сжатия, вязкости масла и частоты вращения двигателя стартера. Момент сопротивления зависит от окружающей температуры. Изменение температуры влияет на физико-механические свойства материалов (топлива, масла, охлаждающей жидкости). Наибольшие трудности вызывает пуск двигателя при низких температурах вследствие повышения вязкости масла и топлива, снижения его испаряемости. Ухудшение условий для воспламенения и сгорания топливно-воздушной смеси, а также характеристик системы зажигания обусловлено падением напряжения на зажимах аккумуляторной батареи при работе ее в стартерном режиме.

Электрический стартер — машина кратковременного действия. Продолжительность пуска карбюраторного двигателя составляет 10 с, дизеля- 15. В связи с этим тепловые и электромагнитные нагрузки, допускаемые для стартера, значительно выше (в 2 раза), чем для машин, работающих в длительном режиме. Стартер должен обладать большим крутящим моментом для преодоления момента сопротивления двигателя поэтому применяется электродвигатель с последовательным возбуждением. При запуске он развивает больший крутящий момент на валу якоря, чем двигатель с параллельным возбуждением. Вместе с тем, электродвигатель с последовательным возбуждением при холостом ходе увеличивает частоту вращения ротора теоретически до бесконечности. Практически возрастание частоты вращения ротора в этом случае ограничивается наличием механических потерь на трение в подшипниках, щеток на коллекторе и т.п.

В стартерах большой мощности КПД выше, потери на трение относительно меньше, поэтому частота вращения ротора значительно возрастает. Так как диаметр якоря стартера большой мощности также большой, то создается опасность «разноса» якоря при холостом ходе, т.е. вырывания его обмотки из пазов центробежной силой. Поэтому в мощных стартерах для ограничения числа оборотов холостого хода применяют добавочную параллельную обмотку, т.е. смешанное возбуждение. Магнитный поток параллельной обмотки составляет только 4…5% общего магнитного потока, поэтому она мало влияет на характеристики двигателя.

В зависимости от конструкции и принципа действия различают стартеры с инерционным и с принудительным электромеханическим перемещением шестерни привода, с принудительным вводом шестерни в зацепление и с самовыключением ее после пуска двигателя.

Наибольшее распространение получили в настоящее время стартеры с принудительным вводом шестерни и самовыключением ее посла пуска двигателя.

3.2. Устройство стартера

На рис. 3.1 показан разрез автомобильного стартера с электро- магнитным реле и дистанционным управлением.

На одном из концов вала имеется муфта свободного хода 9 с ведущей шестерней 8. Тяговое электромагнитное реле 3 с помощью рычага перемещает шестерню и вводит ее в зацепление с зубчатым венцом маховика двигателя. Одновременно с перемещением шестерни контактным диском 2 замыкается электрическая цепь стартера. Обмотка электромагнитного реле состоит из двух обмоток — втягивающей и удерживающей. Кроме тягового реле стартер имеет реле включения, обмотка которого включена на разность напряжения между батареей и генератором. После пуска, когда генератор начнет работать и разность напряжений между аккумулятором и генератором начнет уменьшаться, реле включения отключает удерживающую обмотку и электромагнит. Тяговое реле стартера 4 выключается, а возвратная пружина 6 выводит шестерню из зацепления с зубчатым венцом маховика двигателя. Одновременно происходит электрическое отключение стартера от батареи.

Корпус стартера и полюсные наконечники изготавливаются из листовой электротехнической стали. Обмотки якоря статора и полюсов из голой медной прямоугольной шины с небольшим количеством витков, изолированных друг от друга бумагой и покрытых лаком.

Рис.3.1. Схема стартера с электромагнитным тяговым реле и дистанционным управлением: 1-контакт зажима; 5-якорь реле; 10-корпус стартера; 11-якорь; 12-обмотка возбуждения; 13-щетка; 14-коллектор; (остальные позиции указаны в тексте)

3.3. Устройство и работа приводных механизмов

Приводной механизм — устройство, обеспечивающее ввод и удержание шестерни стартера в зацеплении с венцом маховика во время пуска ДВС, передачу необходимого вращающего момента коленчатому валу и предохранение якоря электродвигателя от разноса вращающимся маховиком после пуска двигателя.

Приводные механизмы электростартера с принудительным механическим или электромеханическим перемещением шестерни имеют роликовые фрикционные или храповые муфты свободного хода, которые передают вращающий момент от вала стартера к коленчатому валу двигателя во время пуска и, работая в режиме обгона, автоматически разъединяют стартер и ДВС после пуска.

Наибольшее распространение получили приводные механизмы с роликовыми муфтами свободного хода, в которых ролики заклиниваются в связи с возникновением сил трения в сопряженных деталях.

Муфта свободного хода (рис. 3.2) обеспечивает передачу вращающего момента только с вала якоря на венец маховика и предотвращает вращение якоря от маховика после пуска двигателя.

На шлице во и втулке жестко укреплена ведущая обойма 4. В ней имеются четыре клинообразных паза, в которых установлены ролики 3, отжимаемые в сторону узкой части паза усилием пружины 10 плунжеров 9. Пружина надета на упоры II плунжеров. Шестерня 7 выполнена вместе с ведомой обоймой. Упорные шайбы 5 и 6 ограничивают осевое перемещение роликов 3.

Рис. 3.2. Муфта свободного хода: 1 — кожух, 2- уплотнитель; 8 — пружины (остальные позиции указаны в тексте)

3.4. Принцип работы системы пуска двигателя

Система пуска (рис. 3.3) содержит стартер 1, аккумуляторную батарею 2 и выключатель стартера 3. Стартер состоит из электродвигателя постоянного тока 4, тягового реле 5 и механизма привода 10. Тяговое реле обеспечивает ввод шестерни 12 привода 8 зацепления с венцом маховика 13, а также подключение электрической цепи электродвигателя стартера к аккумуляторной батарее. Механизм привода 10 передает вращение от вала якоря на венец маховика 13 двигателя и предотвращает передачу вращения от маховика на вал якоря после начала работы двигателя.

Шестерня стартера должна находиться в зацеплении с зубчатым венцом только во время пуска двигателя. После пуска частота вращения коленчатого вала достигает порядка 1000 мин-1. Если при этом вращение будет передаваться на якорь стартера, его частота вращения повысится до 10000… 15000 мин-1. Даже при кратковременном увеличении частоты вращения до такого значения возможен разнос якоря. Для предотвращения этого, усилие от вала якоря к шестерне привода у большинства стартеров передается через муфту свободного хода, которая обеспечивает передачу крутящего момента только в одном направлении от вала якоря к маховику. Шестерня в современных стартерах перемещается электромагнитным включением и дистанционным управлением. Для увеличения крутящего момента на коленчатом валу используется пониженная передача с передаточным числом 10…15.

При замыкании контактов выключателя по обмотке электромагнита протекает ток, и якорь электромагнита 8 втягивается, а соединенный с ним рычаг II перемещает шестерню 12. Одновременно якорь давит на пластину 6, которая в момент ввода шестерни в зацепление с венцом маховика замыкает контакты.

Рис. 3.3. Принципиальная схема системы пуска

Ток через замкнутые контакты поступает в обмотку электродвигателя, и якорь начинает вращаться. После пуска двигателя водитель выключает цепь обмотки электромагнита, и шестерня возвращается в исходное положение.

Для обеспечения длительной работоспособности привода и стартера в целом важное значение имеет своевременное отключение стартера. При задержке отключения увеличивается продолжительность работы муфты свободного хода привода, она нагревается, смазка разжижается и вытекает, что приводит к быстрому износу муфты.

Система пуска двигателя

 

 

 

Содержание

Введение…………………………………………………….. стр.………

  1. Технологическая часть…………………………………….. стр.……….
  2. 1.1 Назначение, устройство и принцип работы стартера………..стр.………..

    1.2 Неисправности, ремонт и Т.О. стартера…………………….. стр.……….

    1.3 Технологическая карта по ремонту стартера…………………стр……… . 1.4 Новинки…………………………………………………………стр………

  3. Охрана труда при ремонте и Т.О. автомобиля…………… стр.……….

Заключение………………………………………………………… стр.………

Литература…………………………………………………………. стр.………

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Автомобиль самое распространенное в современном мире механическое транспортное средство.

На заре автомобилизации непременным атрибутом автомобилиста был «кривой стартер» — изогнутая пусковая рукоятка. Довольно быстро на помощь водителю пришло электричество раскручивать ДВС стал небольшой, но сильный электромотор, который с тех пор стал основным пожирателем амперов из аккумуляторной батареи. Но главное осталось неизменным: чтобы пустить мотор, его нужно предварительно раскрутить. В настоящее время происходит интенсивное совершенствование конструкций транспортных средств, повышение их надежности и производительности, снижение эксплуатационных затрат, повышение всех видов безопасности. Осуществляется более частое обновление выпускаемых моделей, придание им более высоких потребительских качеств, отвечающих современным требованиям.

Широкое применение находят электрические системы пуска и воздушный, или цилиндровый пуск. Менее распространены пусковые устройства с вспомогательным двигателем внутреннего сгорания. Ручной пуск, пуск пневмостартером и инерционным стартером встречаются сравнительно редко.

Электрические системы пуска с питанием от аккумуляторной батареи удобны в эксплуатации и требуют минимальных затрат на обслуживание; в этом их главные преимущества.

Своевременно проведенный Т.О. и ремонт продлевает срок службы агрегата и автомобиля в целом.

 

 

 

 

 

1.Технологическая часть

1.1.Назначение, устройство и принцип работы стартера

На автомобильных, тракторных и транспортных двигателях используются предназначенные только для пуска электрические двигатели постоянного тока с последовательным возбуждением электростартеры. Крутящий момент с вала электростартера предается на коленчатый вал двигателя посредством шестерни, которая во время пуска вводится в зацепление с зубчатым венцом на маховике двигателя.

Стартеры бывают с дистанционным приводом и с не дистанционным.

Устройство

Основными частями стартера (рис.1) являются: корпус, якорь с обмотками и коллектором, две крышки, щетки и щеткодержатели.

В связи с потреблением стартером значительной силы тока (до 900 А) обмотки возбуждения и якоря выполнены из толстого провода. Четыре секции обмотки возбуждения включены последовательно обмоткам якоря двумя параллельными ветвями по две обмотки возбуждения в каждой. Щетки для лучшей проводимости сделаны меднографитными. Две щетки соединены с массой, а две с обмотками возбуждения. Закрепленные в щеткодержателе щетки прижимаются к коллектору пружинами. Для приведения во вращение коленчатого вала двигателя стартер оборудован приводом, соединяющим вал стартера с зубчатым венцом маховика. Стартер включают при помощи выключателя зажигания. Работа стартера основана на взаимодействии магнитных полей обмоток возбуждения и якоря при прохождении по ним электрического тока.

Привод стартера должен обеспечивать соединение шестерни стартера с венцом маховика только на время пуска двигателя. После пуска вал стартера должен немедленно отключаться, в противном случае венец маховика будет вращать якорь стартера с очень большой частотой и витки обмотки якоря могут под действием центробежной силы выйти из пазов.

 

 

 

 

Рис. 1 Детали стартера

 

 

 

 

 

 

 

 

 

 

 

На изучаемых автомобилях применяют стартер с дистанционным управлением и электромагнитным включением ( рис.2). Привод состоит из реле включения, тягового реле с двумя обмотками втягивающей и удерживающей, рычага с вилкой, кольца, пружины, шлицованной втулки и муфты. Втягивающая обмотка включена последовательно обмотке якоря, а удерживающая параллельно.

Муфта свободного хода состоит (рис.3) из ведущей обоймы, перемещающейся на шлицах вала, и ведомой обоймы с шестерней и четырьмя клинообразными выемками. В клинообразных выемках помещены ролики с пружинами. Вращение ведущей обоймы вызывает перемещение роликов в узкую часть выемки и заклинивание ведомой обоймы на ведущей. Если вращать по ходу ведомую обойму относительно ведущей, то ролики перемещаются в более широкую часть выемок и ведомая обойма будет свободно вращаться на ведущей.

Работа

Для включения стартера необходимо повернуть ключ зажигания вправо до отказа, при этом замыкается цепь обмотки реле включения. Созданное обмоткой реле магнитное поле проводит к замыканию контактов реле, в результате втягивающая и удерживающая обмотки тягового реле включаются в электрическую цепь. Под действием магнитного поля обмоток втягивается сердечник тягового реле и рычагом, связанным с ним, вводит в зацепление шестерню привода с венцом маховика. Одновременно медный контактный диск на другом конце стержня после включения шестерни замкнет силовую электрическую цепь стартера.

При повороте ключа зажигания в исходное положение цепь удерживающей обмотки размыкается, и сердечник тягового реле, а с ним рычаг и медный диск включения вернутся в исходное положение, стартер выключится.

 

 

 

 

 

 

 

 

 

Рис.2 Схема включения стартера.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.3 б — Муфта свободного хода; в — ролики и толкатели; г работа муфты свободного хода.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.2. Неисправности стартера

К основным неисправностям стартера относятся ослабление крепления подводящих проводов, изнашивание или загрязнение щеток и коллектора, окисление контактов выключателя, обрыв или замыкание в обмотках, изнашивание деталей муфты свободного хода и зубьев шестерни. Эти неисправности приводят к тому, что стартер не работает совсем, не развивает нужные частоту вращения и мощность, при выключении якорь стартера вращается, а коленчатый вал неподвижен, создается сильный шум при включении и работе стартера.

При включении стартер не работает совсем, характерных щелчков тягового реле не прослушивается. Для выявления причин нужно выключить фары и стартер. Если при выключении стартера накал ламп не будет изменяться, это указывает на плохой контакт или обрыв в цепях вспомогательного реле либо в цепи основного рабочего тока стартера.

Если накал ламп сильно уменьшается, то вероятной причиной может быть плохое состояние аккумуляторной батареи или нарушение контакта в ее клеммных соединениях, а также неисправность электродвигателя стартера. Места плохого контакта в электрических цепях и обрыва определяются последовательным подключением контрольной лампы в указанных электрических цепях. При необходимости надо проверить степень заряженности аккумуляторной батареи. Если при включении стартера прослушиваются характерные щелчки, это означает, что тяговое реле неисправно.

При включении стартера коленчатый вал проворачивается очень медленно. Наиболее частыми причинами этого являются недостаточная заряженность аккумуляторной батареи, окисление и (или) ослабление крепления контактов рабочей электрической цепи стартера или пробуксовка роликовой муфты свободного хода. При исправной аккумуляторной батарее стартер необходимо снять для проверки и устранения неисправностей.

При включении стартера якорь вращается, а маховик неподвижен. Причинами этой неисправности могут быть пробуксовка муфты свободного хода, выпадение ости или поломка рычага муфты, поломка поводкового кольца муфты или буферной пружины.

Сильный шум при включении и работе стартера возможен при ослаблении его крепления, обрыве удерживающей обмотки втягивающего реле, поломке зубцов шестерен привода и венца маховика.

Сильный шум после пуска двигателя означает, что стартер не выключается. Необходимо быстро заглушить двигатель, отключить аккумуляторную батарею, проверить состояние зубцов шестерни привода и обмоток втягивающего реле

 

Ремонт стартера

Включает в себя проверку работоспособности на стенде, разборку, проверку деталей и сборку.

Проверка стартер производится на специальном стенде в режиме холостого хода и под нагрузкой. Электрическая схема включения стартера при проверке приведена на (рис.4). Соединительные провода к батарее и амперметру должны иметь сечения не менее 16 мм. При подводимом напряжении 12 В стартер должен на холостом ходу потреблять ток в пределах 70…85 А, а частота вращения якоря дол

Общие сведения о системах пуска для тракторных двигателей

Для пуска двигателя внутреннего сгорания необходимо создать условия, при которых в его цилиндрах может происходить сгорание топлива, а давление полученных газов будет достаточным для преодоления сил трения и привода вспомогательных механизмов. Такие условия создаются при вращении коленчатого вала от постороннего источника энергии.

Число оборотов коленчатого вала в минуту, при котором происходит пуск двигателя, называют пусковым.

Пусковые обороты дизеля сравнительно высоки (200—250 об/мин), так как температура воздуха, нужная для самовоспламенения топлива в цилиндрах, может быть достигнута только при быстром нарастании давления в камерах сжатия, а для этого необходима большая скорость движения поршней.

Для пуска карбюраторного двигателя трактора достаточно иметь горючую смесь, способную воспламеняться и создавать хорошее искрообразование, что достигается при 30—60 об/мин коленчатого вала.

К системе пуска трактора относятся устройства для вращения коленчатого вала и для облегчения и ускорения пуска (декомпрессионный механизм, подогреватели и т.д.).

Существуют следующие способы пуска двигателей: ручной, электрический и вспомогательным бензиновым двигателем.

При ручном пуске коленчатый вал карбюраторного двигателя вращают рукояткой, пусковым шнуром и т. п. Этот способ не пригоден для пуска дизеля, так как вследствие большой степени сжатия велико его сопротивление прокручиванию. Ручной способ пуска современного карбюраторного двигателя предусмотрен лишь как резервный, на случай повреждения системы электрического пуска.

схема системы электрического пуска для тракторов

Схема системы электрического пуска:

1 — зубчатый венец маховика; 2 — шестерня стартера; 3 — рычаг включения стартера; 4 — стартер; 5 — коленчатый вал двигателя

Электрический пуск применяют как на карбюраторных, так и на дизельных двигателях. Для этого служит электрический двигатель-стартер 4 (рис. выше), шестерню 2 которого, установленную на шлицах, вводят в зацепление с зубчатым венцом 1 маховика. Одновременно с этим стартер включается в цепь аккумуляторной батареи, в результате чего его вал вместе с шестерней 2 начинает вращаться и приводит во вращение коленчатый вал двигателя. После пуска стартер выключается, а шестерня 2 возвращается в исходное положение.

Электрический пуск при хорошем уходе за аккумуляторной батареей и стартером достаточно надежен и значительно облегчает работу тракториста. Этот способ применяют и на пусковых двигателях современных тракторов.

Устройство и техническое обслуживание приборов электрического пуска изучаются в специальном курсе и здесь не описываются.

Пуск дизельного двигателя вспомогательным (пусковым) бензиновым двигателем надежнее других способов, так как позволяет длительное время прокручивать коленчатый вал. Тепло, отводимое от пускового двигателя охлаждающей водой и отработавшими газами, используется для подогрева дизеля, что повышает надежность пуска.

схема системы пуска трактора с вспомогательным (пусковым) бензиновым двигателем

Схема системы пуска с вспомогательным (пусковым) бензиновым двигателем:

1 — коленчатый вал пускового двигателя; 2, 3, 9 и 11 — шестерни; 4 — рычаг муфты сцепления; 5 — вал механизма передачи; 6 — коленчатый вал дизельного двигателя; 7 и 8 — ведомый и ведущий диски муфты сцепления; 10 — зубчатый венец маховика дизельного двигателя; 12 — рычаг включения механизма передачи

Такая система состоит из пускового двигателя и механизма передачи. Этот двигатель трактора пускают вручную или электростартером. Вращение от его коленчатого вала 1 (рис. выше) передается на коленчатый вал 6 дизельного двигателя через шестерни 2, 3 и 9, вал 5 и шестерню 11, которую перемещают по шлицам вала и вводят в зацепление с зубчатым венцом 10 маховика.

Так как перед пуском венец маховика неподвижен, зацепить с ним шестерню 11 можно только при неподвижном вале 5. Поэтому в механизме передачи есть муфта сцеплений, которая позволяет плавно соединять и разъединять с валом 5 свободно вращающуюся на нем шестерню 9. Достигается это путем прижатия и разведения дисков 7 и 8.

Передача от пускового двигателя к дизельному понижающая. Это значит, что число зубьев ведущих шестерен 2 и 11 меньше, чем ведомой шестерни 9 и зубчатого венца 10 маховика. Поэтому число оборотов коленчатого вала дизельного двигателя во много раз уменьшается по сравнению с числом оборотов пускового двигателя, но зато соответственно увеличивается подводимый крутящий момент, что необходимо для преодоления больших сопротивлений при пуске.

После пуска дизельного двигателя трактора вследствие резкого увеличения числа оборотов зубчатый венец 10 маховика и шестерня 9 из ведомых становятся ведущими, в результате чего число оборотов пускового двигателя может стать аварийно большим.

Чтобы предотвратить это, шестерня 11 выводится из зацепления с венцом маховика сразу же после пуска специальным автоматом выключения (на рис. он не показан).

Механизмы передач ряда дизельных двигателей имеют более сложную схему. Например, у двигателей с большим литражом (АМ-01, Д-108) есть редуктор, позволяющий увеличивать крутящий момент, передаваемый на коленчатый вал, в начале пуска холодного двигателя.

В системе пуска большинства современных дизельных двигателей для лучшего предохранения пускового двигателя есть еще муфта свободного хода. Это дает возможность применять автомат выключения, срабатывающий при повышенных оборотах, т. е. не во время первых вспышек, а при достаточно устойчивой работе дизельного двигателя, что значительно улучшает надежность пуска.

4 типа пуска электродвигателя

Эксплуатация асинхронных электрических двигателей тесно связана с необходимостью ограничения пусковых токов для сохранности моторов. Ограничение величины пусковых токов осуществляется в ходе выбора той или иной схемы запуска электродвигателя. На практике широко используются следующие типы запуска двигателя:

  • прямой пуск;
  • плавный пуск;
  • звезда-треугольник;
  • частотное регулирование.

Рассмотрим каждый из представленных выше способов пуска асинхронного электродвигателя более подробно.

Прямой пуск

Это наиболее популярный способ включения асинхронного электрического двигателя. Требуется всего одно действие – включение мотора в электросеть на зафиксированной частоте и номинальном напряжении тока. После прямого запуска электромотор начинает набирать обороты с высокой скоростью. Главное достоинство этой схемы – выгода с экономической точки зрения. Прямой пуск можно выполнять без использования иных устройств, на установку которых нужны дополнительные средства. Есть у этого типа запуска и недостатки.

Прямой пуск подходит исключительно для маломощных моторов, т. к. их пусковые токи не настолько большие, как у более мощных собратьев (моторов, приводов и т.д.). Тем не менее, даже эти токи оказывают большую нагрузку на электрическую сеть, ведь они могут в 10 и более раз превышать номинальные, что негативно сказывается на кабелях, питающих мотор, и на электросети в целом. Высокие токи плохо влияют и на обмотку самого мотора

Плавный пуск

Плавное включение электрического мотора возможно при наличии устройства плавного пуска (софтстартера). Его задачей является удержание параметров двигателя в безопасных рамках на протяжении всего времени запуска. Такое устройство исключает перегрев мотора, разрушение обмоток и негативное воздействие на питающую сеть.

Можно использовать софтстартеры механического и электрического, а также комбинированного типа. Первые имеют вид жидкостных муфт, тормозных колодок либо блокировок, использующих силу магнетизма. Они имеют простую конструкцию и отличаются высокой надежностью, однако имеют ограниченный функционал. Устройства электрического типа позволяют регулировать параметры мотора в ходе пуска более широко и постепенно.

Звезда-треугольник

Схема «звезда-треугольник» подразумевает двухэтапное безопасное подключение электрического двигателя:

  1. Сперва мотор запускается в рамках схемы «Звезда», которая подразумевает использование низких пусковых токов. Некоторое время двигатель питается по этой схеме и плавно набирает обороты.
  2. После набора определенного числа оборотов в минуту мотор переключается на схему «Треугольник», которая требует для работы высокие пусковые токи. Здесь двигатель выходит на проектную мощность.

Для реализации данной схемы пуска потребуется трехполюсный выключатель, три контактора, тепловое реле и реле времени. Преимущества этого типа запуска аналогичны преимуществам плавного пуска, описанного выше.

Частотное регулирование

Под частотным регулированием понимание использование частотно-управляемого привода. Данное устройство регулирует частоту вращения ротора электромотора. В конструкцию частотного преобразователя входит инвертор и выпрямитель. К преимуществам запуска двигателя через частотное регулирование относится большой выбор значений для регулировки количества оборотов, увеличение ресурса мотора, максимальный пусковой момент и экономия электрической энергии по сравнению с другими способами запуска мотора.

Недостатки у частотного регулирования также имеются. Это сравнительно высокая цена преобразователей для мощных моторов, а также высокий уровень помех, которые наблюдаются поблизости от этих устройств.

Система пуска

Большинство судовых двигателей запускаются сжатым возду­хом под давлением, равным 2—3 Мн/м2 (для тихоходных) и 6—7,5 Мн/м2 для быстроходных). Запуск двигателей малой мощ­ности осуществляется электро­стартером, а вспомогательные двигатели мощностью меньше 15 квт имеют ручной пуск. Сущ­ность воздушного пуска заклю­чается в том, что сжатый воздух поступает последовательно через пусковые клапаны во все цилинд­ры (в порядке их нормальной ра­боты), и коленчатый вал двига­теля быстро набирает частоту вращения. Пусковые клапаны, расположены в крышках рабочих цилиндров и управляются чаще всего пневматически.

В состав системы пускового воздуха входят: компрессоры для производства сжатого воздуха, баллоны для его хранения, влагомаслоотделители, воздухопрово­ды, главный пусковой клапан, распределитель пускового воздуха (с числом рабочих золотников по числу цилиндров двигателя) и пусковые клапаны.

На рис. 180 показаны принципиальная схема пуска двигателя сжатым возду­хом. Баллон 1 сжатого воздуха воздухопроводом соединен с пус­ковым клапаном 3 и воздухораспределителем 12 через главный пусковой клапан 11. Включение главного пускового клапана осу­ществляется дистанционно с поста управления. При включенном главном пусковом клапане сжатый воздух, преодолев натяжение пружины 8, опустит вниз золотник 7 воздухораспределителя. Воздух из воздухораспределителя поступит к поршню 5 пускового клапана 2 и откроет его. Пусковой воздух поступит в цилиндр дви­гателя и приведет его в действие. Когда кулачная шайба 9 через ролик 10 возвратит золотник 7 в крайнее верхнее положение, воз­дух из пространства над поршнем 5 через канал 6 воздухораспре­делителя будет выпущен в атмосферу. Пружина 4 закроет пуско­вой клапан.

В соответствии с Правилами Регистра для реверсивных главных двигателей запас воздуха в баллонах должен обеспечи­вать не менее двенадцати последовательных пусков и реверсов, начиная с холодного состояния двигателя, без пополнения балло­нов; для вспомогательных двигателей — шесть пусков.


Отправить ответ

avatar
  Подписаться  
Уведомление о