Скоростная характеристика двигателя – Испытание двигателей. Скоростная характеристика бензинового двигателя. Нагрузочная характеристика дизеля, анализ

Содержание

Виды характеристик

Режим работы ДВС характеризуется частотой вращения коленчатого вала и развиваемой мощностью. Частота вращения пможет изменяться отnminдо nmax. Минимальная частота вращенияnminопределяется условием устойчивой работы двигателя под нагрузкой. Максимально допустимая частотаnmaxограничивается условием качественного протекания рабочего цикла, механическими нагрузками на элементы кривошипно-шатунного механизма двигателя от воздействия сил инерции и т. п. При любой частоте вращения эффективная мощность двигателя и соответствующий данному режиму крутящий момент могут изменяться от нулевого значения (режим холостого хода) до максимального.

Оценка работы двигателя на переменных режимах осуществляется с помощью характеристик, которые обычно графически выражают зависимость основных показателей двигателя от параметра, характеризующего режим работы двигателя (нагрузка, частота вращения коленчатого вала), или от какого-либо регулировочного параметра (угол опережения зажигания, коэффициент избытка воздуха и т. п.).

Характеристики двигателя позволяют судить о возможности его использования для работы с данным потребителем. Специфические условия работы двигателя с различными потребителями определяют различные типы характеристик. Для анализа работы автотракторных двигателей внутреннего сгорания используются следующие характеристики: скоростная, нагрузочная, регуляторная и регулировочная.

Помимо этих основных характеристик для двигателей другого назначения могут использоваться специальные характеристики: тепловозная, винтовая и др.

Режимы работы автомобильного двигателя определяются условиями движения автотранспортного средства и характеризуются широким диапазоном изменения нагрузки и частоты вращения. Изменение скоростного режима работы двигателя обеспечивает необходимое изменение скорости движения автомобиля на данной передаче. На каждой скорости движения, при любой частоте вращения коленчатого вала двигателя, его нагрузка может изменяться от нуля до максимального значения.

На рис.14.1 представлены характерные скоростные характеристики для эффективной мощности карбюраторного (а) и дизельного (б) двигателей.

а) б)

Рис.14.1

Возможные режимы работы двигателя, работающего в транспортных условиях, характеризуются точками, расположенными внутри контура, ограниченного кривой изменения мощности в зависимости от частоты вращения и линиями граничных частот вращения.

При проектировании двигателей некоторые характеристики могут быть получены в результате расчета (скоростные и нагрузочные), хотя и в этом случае многие параметры определяются по эмпирическим зависимостям, полученным на основании обработки большого числа опытных данных.

Скоростные характеристики

Скоростная характеристика — зависимость мощности N, крутящего момента Mкр, расхода топлива Gти удельного расхода топлива geот частоты вращения коленчатого вала двигателя. Различают внешнюю и частичные скоростные характеристики.

Скоростную внешнюю характеристику получают при полном открытии дроссельной заслонки карбюратора или при положении рейки топливного насоса дизеля, соответствующем номинальной мощности (линии aна рис.14.1). Любая характеристика, полученная при неполном открытии регулирующего органа двигателя, называется частичной скоростной характеристикой (линииbна рис.14.1).

Внешняя скоростная характеристика позволяет определить максимальные мощностные показатели двигателя и оценить его экономичность при полных нагрузках. Характеристику получают в диапазоне от минимальной устойчивой частоты вращения до ~1.2n

ном, где nном— частота вращения, указанная заводом-изготовителем для номинальной мощности.

Для оценки устойчивости режима двигателя при работе по внешней характеристике используют коэффициент приспособляемости К, который равен отношению максимального крутящего момента (или среднего эффективного давления) при работе двигателя по внешней характеристике к крутящему моменту (или среднему эффективному давлению), соответствующему номинальной частоте вращения вала двигателя.

Для транспортных карбюраторных двигателей коэффициент приспособляемости равен 1.25 – 1.35, для транспортных дизелей 1.05-1.15, причем меньшие значения коэффициента приспособляемости имеют двигатели с наддувом.

Скоростной диапазон устойчивой работы двигателя оценивается скоростным коэффициентом K

c, равным отношению частоты вращения, соответствующей максимальному крутящему моменту при работе двигателя по внешней характеристике, к частоте вращения на номинальном режиме. Скоростной коэффициент у карбюраторных двигателей составляет 0.45 – 0.55, а у дизелей 0,55 – 0,70 (при наддуве до 0.8).

С достаточной степенью точности внешние скоростные характеристики можно построить по результатам теплового расчета для режима максимальной мощности двигателя. Диапазон возможных изменений скорости вращения лежит в интервале от 600 об/мин до 1.2nномдля карбюраторных двигателей и от ~350 об/мин до nном для дизелей.

Зависимость мощности двигателя от скорости его вращения можно выразить следующим обобщенным выражением

Для карбюраторных двигателей приведенное выражение упрощается и приобретает вид

Для дизелей с неразделенной камерой сгорания рекомендуется зависимость

для предкамерных дизелей

и вихрекамерных

Удельный эффективный расход топлива определяется по следующим уравнениям:

для карбюраторных двигателей

для дизелей с неразделенными камерами

На рис.14.2 в качестве примера представлены расчетные внешние скоростные характеристики одного из карбюраторных двигателей.

Двигатели внутреннего сгорания часто работают при переменной частоте вращения коленчатого вала, но при постоянном положении органа управления, соответствующем меньшей подаче топлива или смеси, чем при работе по внешней характеристике. Зависимость эффективной мощности двигателя от частоты вращения его вала при различных положениях органа управления подачей топлива или смеси называют частичными скоростными характеристиками.

При работе по частичной скоростной характеристике с цикловой подачей топлива, близкой к номинальной и соответствующей наиболее

экономичной работе дизеля, эффективный КПД может быть даже выше, чем при работе по внешней скоростной характеристике.

Рис.14.2

В карбюраторных двигателях с экономайзером в карбюраторе при работе по частичным характеристикам, соответствующим прикрытию дроссельной заслонки на 20-30%, эффективный КПД выше, чем при работе двигателя по внешней характеристике.

Расчеты частичных скоростных характеристик являются приближенными, поэтому определяют эти характеристики путем эксперимента.

Основные характеристики двс. Скоростные характеристики.

Скоростные характеристики могут быть двух типов:

  1. Внешняя скоростная характеристика – это зависимость эффективных показателей ДВС от частоты оборотов коленвала при полностью открытой дроссельной заслонке.

Регулирование n при получении характеристики производится изменением нагрузки на валу двигателя.

Типовые режимы работы ДВС.

–минимальная частота оборотов коленвала, при которой двигатель устойчиво работает с полной нагрузкой.

–частота оборотов коленвала, соответствующая максимальной мощности – номинальная частота.

–частота оборотов коленвала, соответствующая максимальному крутящему моменту.

–частота оборотов коленвала, соответствующая минимальному удельному расходу топлива.

–максимальная частота оборотов коленвала двигателя.

Внешняя скоростная характеристика используется для оценки предельных мощностных возможностей двигателя во всем эксплуатационном диапазоне частот.

  1. Частичная скоростная характеристика – это зависимость эффективных показателей ДВС от частоты оборотов коленвала при различных постоянных положениях дроссельной заслонке.

Нагрузочная характеристика.

Нагрузочная характеристика – это зависимость эффективных показателей двигателя от нагрузки при постоянных оборотах коленвала двигателя.

При получении характеристики, нагрузку меняют тормозным устройством.

Нагрузочные характеристики могут быть построены по скоростным характеристикам. Для этого используют параметры, полученные при одном числе оборотов и расположенные на одной вертикали графико-скоростной характеристики.

Нагрузочную характеристику используют для определения наивыгоднейших режимов работы ДВС при заданной частоте оборотов.

Дроссельная характеристика (винтовая).

Дроссельная характеристика (винтовая) – это зависимость изменения эффективных показателей двигателя от частоты оборотов коленвала при постоянной нагрузке ДВС (например: винт).

Частота регулируется изменением положения дроссельной заслонки.

Винтовая характеристика представляет собой геометрическое место точек пересечения скоростных характеристик с кривой мощности винта.

–мощность винта.

Винтовая характеристика используется для выбора винта (или другого устройства, создающего постоянную нагрузку) для выхода на режим максимальной мощности.

Высотная характеристика.

Высотная характеристика – это зависимость эффективных показателей ДВС от высоты полета при постоянной частоте оборотов коленвала двигателя, и при полном открытии дроссельной заслонки.

–высота над уровнем моря.

Высотная характеристика используется для оценки возможностей использования двигателя на летательном аппарате (транспортном средстве) с заданными техническими требованиями.

Для обеспечения высотности двигателя, необходимо применение наддува.

Регулировочные характеристики. Характеристика по составу смеси.

Характеристика по составу смеси – это зависимость показателей двигателя от коэффициента избытка воздуха при постоянной частоте оборотов коленвала двигателя, и при полном открытии дроссельной заслонки (характеристику получают экспериментально).

Состав смеси меняется расходом топлива. Постоянство частоты оборотов коленвала обеспечивается изменением нагрузки на валу двигателя.

; ;

;

Характеристика по составу смеси используется для настройки (регулировки) топливной системы двигателя по режимам работы.

2. Двигатель и его характеристики

Двигатель является основным источником энергии, необходи­мой для движения автомобиля. Характеристики двигателя служат для определения его мощностных и экономических показателей. Наиболее важные характеристики — скоростные, нагрузочные и регулировочные — позволяют оценивать работу двигателей, эф­фективность их использования, техническое состояние и каче­ство ремонта, сравнивать различные их типы и модели, а также судить о совершенстве конструкций новых двигателей.

2.1. Скоростные характеристики двигателей

Скоростной характеристикой называются зависимости эффек­тивной мощности Ne и эффективного крутящего момента Ме дви­гателя от угловой скорости коленчатого вала е.

У двигателя различают два типа скоростных характеристик: внешнюю (предельную) и частичные.

Внешнюю скоростную характеристику получают при полной нагрузке двигателя, т.е. при полной подаче топлива. Частичные — при неполных нагрузках двигателя, или при неполной подаче топ­лива.

Двигатель имеет только одну внешнюю скоростную характери­стику и большое число частичных, среди которых и характерис­тика холостого хода.

На частичных скоростных характеристиках значения эффектив­ной мощности и крутящего момента двигателя меньше, чем на внешней скоростной характеристике, но характер их изменения

Тягово-скоростные свойства автомобиля определяют при ра­боте двигателя только на внешней скоростной характеристике. аналогичен.

Рис. 2.1. Внешняя скоростная характеристика бензинового двигателя без ограничителя угловой скорости коленчатого вала

Рассмотрим внешние скоростные характеристики бензиновых двигателей и дизелей, которые имеют некоторые отличительные особенности

Внешняя скоростная характеристика бензинового двигателя без ограничителя угловой скорости коленчатого вала представлена на рис. 2.1. Такие двигатели применяют главным образом на легковых автомобилях и иногда на автобусах.

Приведенные зависимости имеют следующие характерные точки:

• Nmax —- максимальная (номиналь­ная) эффективная мощность;

N— угловая скорость коленча­того вала при максимальной мощно­сти;

• Мmах — максимальный крутящий момент;

м — угловая скорость коленча­того вала при максимальном крутя­щем моменте;

• Nм — мощность при максималь­ном крутящем моменте;

•МN — крутящий момент при мак­симальной мощности;

min— минимальная устойчивая угловая скорость коленчато­го вала при полной подаче топлива; для бензиновых двигателей min = 80…100 рад/с;

mах — максимальная угловая скорость коленчатого вала при полной подаче топлива, соответствующая максимальной скорос­ти автомобиля при движении на высшей передаче; для бензино­вых двигателей без ограничителей угловой скорости коленчатого вала mах = (1,05… 1,1) n.

Из рис. 2.1 видно, что эффективная мощность и эффективный крутящий момент двигателя возрастают с увеличением угловой скорости коленчатого вала, достигают максимальных значений при соответствующих угловых скоростях N и м затем уменьшают­ся с ростом е вследствие ухудшения наполнения цилиндров го­рючей смесью и увеличения трения. При этом возрастают дина­мические нагрузки, что приводит к ускоренному изнашиванию деталей двигателя. В условиях работает главным образом в интервале угловых скоростей от Mдо N.

Внешняя скоростная характерис­тика бензинового двигателя с огра­ничителем угловой скорости колен­чатого вала показана на рис. 2.2. Та­кие двигатели применяют на грузо­вых автомобилях и автобусах.

Ограничитель угловой скорости автоматически уменьшает подачу горючей смеси в цилиндры двигате­ля и снижает угловую скорость

коленчатого вала с целью повышения долговечности двигателя. Ог­раничитель вступает в действие на той части внешней скоростной характеристики, на которой мощность двигателя почти не возра­стает с увеличением угловой скорости коленчатого вала. Включе­ние ограничителя соответствует максимальной угловой скорости max= (0,8… 0,9) N. Максимальной эффективной мощностью в этом случае является наибольшая мощность, которую может развить двигатель при

Рис. 2.2. Внешняя скоростная характеристика бензинового двига-теля с ограничителем уг­ловой скорости коленчатого вала

отсутствии ограничителя, т.е. Nmax, соответствую­щая угловой скорости коленчатого вала N.

Внешняя скоростная характеристика дизеля представлена на рис. 2.3. Такие двигатели применяют на грузовых автомобилях, автобусах и легковых автомобилях.

У дизелей мощность не достигает максимального значения из-за неполного сгорания горючей (рабочей) смеси. Максимальной в этом случае считается мощность, которая соответствует моменту включения регулятора угловой скорости коленчатого вала, т. е. Nmax при угловой скорости N. Для дизелей максимальная угловая ско­рость коленчатого вала практически совпадает с угловой скоростью при максимальной мощности (max=N).

Из рассмотренных внешних скоростных характеристик бензи­новых двигателей и дизеля следует, что максимальные значения эффективного крутящего момента Мmах и эффективной мощности Nmах получают при различных угловых скоростях коленчатого вала. При этом значения Mmах смещены влево относительно значений Nmах, что необходимо для устойчивой работы двигателя, или, иначе говоря, для его способности автоматически приспосабливаться к изменению нагрузки на колеса автомобиля.

Например, автомобиль двигался по горизонтальной дороге при максимальной мощности двигателя и начал преодолевать подъем. В этом случае сопротивление дороги возрастает, скорость автомо­биля и угловая скорость коленчатого вала уменьшаются, а крутящий момент двигателя увеличива­ется, обеспечивая возрастание тяго­вой силы на ведущих колесах авто­мобиля. Чем больше увеличение кру­тящего момента при уменьшении угловой скорости коленчатого вала, тем выше приспособляемость дви­гателя и меньше вероятность его остановки. У бензиновых двигателей увеличение (запас )

крутящего момента достигает 30 %, а у дизелей — 15%

Скоростные характеристики двигателей определяют экспериментальнов процессе их испытании на специальных стендах.

Рис. 2.3. Внешняя скоростная характеристика дизеля с ре­гулятором угловой скорости коленчатого вала

При проведении испытаний с двигателя сни­мают часть элементов систем охлаждения, питания (вентилятор, радиатор, глушитель, компрессор, насос гидроусилителя и др.), без которых он может работать на стендах.

Мощность и крутящий момент, измеренные при испытаниях и приведенные к условиям, соответствующим давлению окружаю­щего воздуха 1 атм. и температуре 15 °С, называют стендовыми. Их указывают в технических характеристиках, инструкциях, катало­гах, проспектах и т. п.

В действительности мощность и момент двигателя, установлен­ного на автомобиле, на 10… 20 % меньше, чем стендовые. Это свя­зано с размещением на двигателе элементов различных систем, которые демонтируют при испытаниях. Кроме того, давление и температура наружного воздуха при работе двигателя на автомо­биле отличаются от таковых при измерениях.

Реальную внешнюю скоростную характеристику двигателя мож­но получить только на основании экспериментальных данных после его создания. Если же такие данные отсутствуют, например при проектировании нового двигателя, то внешнюю скоростную ха­рактеристику можно рассчитать, используя известные соотноше­ния.

Для бензиновых двигателей

Для четырёхтактных дизелей

Эффективный крутящий момент для бензиновых двигателей и дизелей определяется по формуле

В указанных формулах мощность выражается в кВт, крутящий момент — в Н-м, угловая скорость — в рад/с.

Испытание двигателей. Скоростная характеристика бензинового двигателя. Нагрузочная характеристика дизеля, анализ

Основными показателями работы двигателя являются мощность, вращаюший момент, частота вращения, удельный расход топлива, экологические показатели. Указанные показатели определяются при испытании двигателя на стенде. Результаты испытаний представляются в виде характеристик. Различают следующие характеристики: скоростные, нагрузочные, регулировочные, регуляторные, специальные. Наибольшее применение имеют скоростные и нагрузочные характеристики.

Скоростную характеристику(рис. 5.4) снимают при постоянном положении органа управления подачей топлива в зависимости от частоты вращения коленчатого вала. По скоростной характеристике оценивают динамические качества двигателя, его технико-экономические показатели.

Рис. 5.4. Скоростная характеристика бензинового двигателя

Нагрузочную характеристику(рис. 5.5) снимают при постоянной частоте вращения в зависимости от нагрузки двигателя. По нагрузочной характеристике оценивают топливную экономичность двигателя.

Рис. 5.5. Нагрузочная характеристика двигателя

Испытательный стенд должен иметь оборудование для измерения следующих показателей: вращающего момента, частоты вращения коленчатого вала, расхода топлива. Для измерения вращающего момента двигателя применяют механические, гидравлические и электрические тормоза постоянного и переменного тока. Электрические тормоза используют не только для торможения, но и для пуска двигателя. Они нашли наибольшее применение для учебных и производственных целей.

    1. Экологическая характеристика бензинового двигателя

Экологическая характеристика бензинового двигателя, как правило, снимается в зависимости от состава смеси.

Состав смесиоказывает большое влияние на токсичностьОГ. Как следует из рис. 5.6 при < 1,0, затем при > 1,05 … 1,10 в результате падения температуры сгорания образованиеNOxуменьшается, существенно возрастает концентрацияСОиСН.ю, При этом, даже когда для двигателя в целом = 1,0, вОГсодержится некоторое количество этих токсичных компонентов, что объясняется неравномерностью состава смеси по цилиндрам, наличием зон сгорания с обогащенной смесью. При обеднении смеси выходNOxсначала растет, что связано с увеличением концентрации в продуктах сгорания атомарного кислорода, при > 1,05… 1,1в результате падения температуры сгорания образованиеNOxуменьшается.

Рис. 5.6. Экологическая характеристика бензинового двигателя

    1. Экологическая характеристика дизеля

В дизелях с камерой сгорания в поршне дымность ОГна низких скоростных режимах возрастает в 1,5 … 2 раза по сравнению с номинальным режимом. Это объясняется тем, что при уменьшении частоты вращения ухудшается распыливание и смешение топлива с воздухом, и сажа, образующаяся в зонах камеры с переобогащенной смесью, оказывается в зонах с избытком кислорода слишком поздно, не успевая там окисляться. Поэтому подачу в диапазоне низких частот вращения необходимо ограничивать, т. е. обеспечивать соответствующее корректирование скоростных характеристик топливоподачи.

В период разгона автомобиля с дизелем, особенно если последний имеет турбонаддув, в результате кратковременного обогащения смеси значительно возрастает дымность ОГ, в то же время имеет место лишь относительно небольшое увеличение концентрацииСО,СНиNOx.

Конструкция камеры сгорания влияет на образование СН: чем меньше отношение поверхности к объему камеры и объем камеры над вытеснителем, тем меньше образуетсяСН. На концентрациюСОиNOxэти факторы заметного влияния не оказывают.

Рис. 5.7. Влияние нагрузки и частоты вращения на экологические показатели дизеля (верхние и нижние границы определяются способом смесеобразования и наличия наддува).

Увеличение степени сжатия вызывает рост максимальной температуры цикла и приводит к увеличению отношения поверхности камеры сгорания к ее объему. Первый фактор определяет повышение концентрации NOxпри > 1,0, а второй – увеличение выходаСН.

В двигателях с вихревым движением заряда, создаваемым в процессе впуска, при сильном увеличении интенсивности вихря (особенно в сочетании с обеднением до смеси = 1,4 … 1,5) могут возрастать выбросыСН.

Улучшение смесеобразования уменьшает выброс СОв области богатых смесей, но может несколько увеличить концентрациюNOxна бедных смесях.

2. Построение скоростной характеристики двигателя автомобиля

Скоростная характеристика двигателя с некоторым приближением может быть построена по эмпирическим формулам

Определение зависимости мощности двигателя от числа оборотов двигателя

,

где — максимальная мощность двигателя, кВт.

n — частота вращения коленчатого вала, мин-1. Берется из

характеристики двигателя автомобиля прототипа;

— частота вращения коленчатого вала двигателя,

соответствующая максимальной мощности, мин-1;

А ; В; С — постоянные коэффициенты. Принимаются из таблицы 7.2.

Определение зависимости величины крутящего момента от числа оборотов двигателя М = f(n)

М =

Определение зависимости удельного расхода топлива от числа оборотов двигателя qе = f (n)

,

где А0, В0, С0 – постоянные коэффициенты. Смотри таблицу 7.2.

Таблица 7.2 — Значения постоянных коэффициентов формул характеристик

двигателей

Тип двигателя

А

В

А0

В0

С0

Карбюраторный

Дизель:

— с непосредственным впрыском

— с вихревой камерой

1,0

0,87

0,7

1,0

1,13

1,3

1,2

1,55

1,35

1,0

1,55

1,35

0,8

1,0

1,0

Определение зависимости часового расхода топлива от числа оборотов двигателя GТ = f(n)

GТ =

Значения параметров скоростной характеристики вычисляются не менее чем в 6 точках с равным интервалом частот и заносятся в таблицу 7.3.

Таблица 7.3 – Значения параметров скоростной характеристики

Параметр

Частота вращения двигателя, мин-1

800

1200

1600

2000

2400

2800

Nе, кВт

M, Н∙м

qе, Г/кВт∙час

GТ, кГ/час

По результатам расчета строится скоростная характеристика двигателя.

Пример построения скоростной характеристики показан на рисунке 7.1.

Рисунок 7.1 -Скоростная характеристика двигателя

3. Определение передаточных чисел трансмиссии автомобиля

Общее передаточное число трансмиссии автомобиля определяется по формуле

,

где U0 – передаточное число главной передачи;

UК1 – передаточное число коробки передач на первой передаче;

UР – передаточное число раздаточной коробки.

Распределение общего передаточного числа трансмиссии между отдельными элементами зависит от схемы трансмиссии.

Передаточное число главной передачи определяется исходя из обеспечения максимальной скорости движения автомобиля

,

где — обобщенный радиус качения колеса, м;

nmax – максимальная частота вращения коленчатого вала двигателя,

с-1;

U КZ — передаточное число коробки передач на высшей передаче.

У автомобилей с карбюраторным двигателем UКZ= 1,0.

У автомобилей с дизельным двигателем UКZ = 0,664…0,613;

U Р – передаточное число раздаточной коробки на высшей передаче.

U Р = 1,0…1,3;

Vmax – максимальная скорость движения автомобиля на высшей

передаче м · с-1.

Передаточное число коробки передач на первой передаче определяется исходя из условия преодоления автомобилем максимального дорожного сопротивления при использовании максимального динамического фактора по сцеплению выражаемого равенством

,

где — коэффициент сцепления движителя с дорогой;

k — коэффициент загрузки ведущих колес. Для автомобилей со

всеми ведущими колесами при блокированном приводе k = 1.

Исходя из условия получения максимальной величины динамического фактора автомобиля, определяется передаточное число первой передачи

,

где Меmax – максимальный крутящий момент двигателя, определяемый

по скоростной характеристике;

— КПД трансмиссии автомобиля, = 0,85…0,95.

Минимальное число ступеней Ζ в коробке передач определяется из зависимости

,

где nН и n0 – номинальная частота вращения коленчатого вала

двигателя и частота вращения коленчатого вала,

соответствующая максимальному моменту. Берется из

скоростной характеристики.

Для обеспечения наибольшей интенсивности разгона структура передач строится по геометрической прогрессии.

Знаменатель прогрессии для автомобиля с карбюраторным двигателем определяется по формуле

,

Знаменатель прогрессии для автомобиля с дизельным двигателем

,

где UКZ-1 — передаточное число коробки передач, предшествующее

высшей.

Для автомобиля с карбюраторным двигателем UК = 1, для автомобиля с

дизельным двигателем UКZ-1 = 1.

Передаточные числа промежуточных передач

, ,,и т.д.

Передаточное число коробки передач для заднего хода

UКЗХ = (1,2…1,3) ∙ UК1

1.1. Скоростная характеристика дизеля с регуляторной ветвью

Скоростная характеристика дизеля может сниматься как без регулятора, так и с регулятором. Характеристика дизеля с топливным насосом, оснащенным всережимным регулятором, имеет два участка:

-участок от минимальной частоты вращения nmin при наибольшей внешней нагрузке до номинального режима nH является частью скоростной характеристики дизеля, регулятор при этом не работает;

-участок от режима номинальной мощности nH до режима холостого хода nХХ=1,1 nH называется регуляторной ветвью. На этом участке регулятор уменьшает цикловую подачу топлива от полной (на номинальном режиме) до величины, необходимой лишь для преодоления внутренних потерь в дизеле.

Анализ характеристики

На рис.2.1. представлена скоростная характеристика дизеля с регуляторной ветвью. При низкой частоте вращения коленчатого вала дизеля вследствие недостаточно качественного процесса смесеобразования (малые скорости воздуха, входящего в цилиндры, небольшая интенсивность вихрей в потоке, несоответствие скоростного режима установленным фазам распределения и угла опережения впрыска) и значительной продолжительности соприкосновения горячих газов с более холодными стенкам камеры сгорания крутящий момент и среднее эффективное давление понижены, удельный эффективный расход топлива ge сравнительно велик. Кривые МК и ре обычно имеют более или менее выраженный максимум. Скоростной режим, соответствующий Мк max, называется режимом максимального крутящего момента и обозначается nм. При увеличении частоты вращения от минимальной до nм вследствие уменьшения относительной теплоотдачи в стенки цилиндра, повышения скорости сгорания и увеличения наполнения цилиндра свежим зарядом крутящий момент возрастает.

Рис.2.1. Скоростная характеристика дизеля

с регуляторной ветвью

При частотах вращения, больших nм, крутящий момент уменьшается. Минимальное значение удельного эффективного расхода топлива gemin достигается при скоростном режиме наибольшей экономичности nэк.

При увеличении частоты вращения благодаря большому количеству рабочих циклов, совершаемых в единицу времени, часовой расход топлива GT, часовой расход воздуха GB и эффективная мощность растут. При этом увеличение скоростного режима сопровождается ростом механических потерь, что приводит к уменьшению эффективного крутящего момента и замедлению роста эффективной мощности. Наибольшая мощность соответствует номинальному режиму nн.

Снижение GT, MK, Ne при увеличении частоты вращения от nн до nхх связано с вступлением в работу регулятора топливного насоса.

Коэффициент избытка воздуха α на участке скоростной характеристики изменяется незначительно, а на регуляторной ветви так же, как и ge, резко возрастает.

1.2. Скоростная характеристика двигателя с искровым зажиганием

Испытания обычно (но не обязательно) ведут при заводской регулировке системы топливоподачи и заводской установке зажигания. В том случае, когда двигатель оснащен ограничителем частоты вращения коленчатого вала, характеристики могут сниматься как с ограничителем, так и без него. Снятие серии скоростных характеристик при различных положениях дроссельной заслонки позволяет определить, как изменяются показатели двигателя в различных условиях эксплуатации автомобиля. С прикрытием дроссельной заслонки максимум мощности на каждом из скоростных режимов смещается в сторону меньших частот вращения коленчатого вала.

Анализ характеристики

Характер изменения мощностных показателей работы двигателя по скоростной характеристике рассмотрим на примере внешней характеристики.

Для четырехтактного двигателя эффективный крутящий момент определяется по формуле:

, Н м (2.1)

а эффективная мощность

, кВт (2.2)

где ре — среднее эффективное давление,МПа;

i — количество цилиндров;

Vh — рабочий объем одного цилиндра, дм3.;

n – частота вращения коленчатого вала, мин-1.

Таким образом, при прочих равных условиях, крутящий момент пропорционален величине среднего давления ре, а эффективная мощность прямо пропорциональна произведению ре·n. В свою очередь величина ре зависит от среднего индикаторного давления рi и среднего давления механических потерь pм.

(2.3)

Рассмотрим отдельно факторы, определяющие изменение величин рi и pм в зависимости от скоростного режима работы двигателя

(2.4)

где A — постоянный для данного двигателя коэффициент, учитывающий тактность и рабочий объем двигателя;

QH — низшая теплота сгорания топлива;

L0 — количество молей воздуха, необходимое для сгорания 1 кг топлива;

ηм — индикаторный КПД двигателя;

ηv — коэффициент наполнения;

ρv— плотность воздуха, кг/м3.

Поскольку при снятии скоростной характеристики величиныипрактически остаются постоянными, то изменение величины будет зависеть лишь от изменения величин и

На рис. 2.2 показано изменение величин , и по внешней скоростной характеристике карбюраторного двигателя.

В

Рис. 2.2. Внешняя характеристика карбюраторного двигателя

еличина , характеризующая эффектвность протекания рабочего процесса в цилиндре, увеличивается с ростом скоростного режима, причем с увеличением скорости вращения вала рост постепенно замедляется. Причинами повышения являются улучшение процесса смесеобразования и уменьшение относительных потерь тепла в стенки цилиндра за время рабочего хода.

Коэффициент наполнения изменяется с ростом числа оборотов более сложным образом. Наполнение цилиндров зависит в основном от гидравлического сопротивления системы газообмена, подогрева заряда при впуске, а также от колебательных процессов, происходящих в впускной и выпускной системах. Поэтому на величину в значительной мере влияет выбор фаз открытия и закрытия клапанов.

Фазы газораспределения выбираются в зависимости от типа и назначения двигателя, так, чтобы при определенном скоростном режиме (при nηvmax ) достигалось наилучшее наполнение цилиндров. Ниже этого числа оборотов, коэффициент наполнения цилиндров снижается, т.к. уменьшается дозарядка цилиндра и даже возможен обратный выброс заряда из цилиндра через клапан во впускной трубопровод. При повышении скоростного режима от nηvmax наполнение уменьшается из-за увеличения гидравлических потерь в системе впуска, которые возрастают пропорционально квадрату скорости движения смеси в трубопроводе.

В

Рис. 2.3. Мощностной

баланс двигателя

результате суммарного воздействия обеих факторов (и ) при увеличении скоростного режима среднее индикаторное давление pi сначала возрастает, достигая максимального значения при определенном числе оборотов nPimax, а затем уменьшается. Как правило, обороты, при которых достигается максимальное значение pi несколько выше оборотов, соответствующих максимуму коэффициента наполнения (рис.2.2).

Величина среднего значения механических потерь рм при увеличении числа оборотов двигателя возрастает по закону, близкому к линейному. При некотором числе оборотов кривые рм и рi, пересекаются и эффективная мощность будет равна нулю (рис. 2.3).

Это так называемое разносное число оборотов nразн, при котором двигатель будет работать на режиме холостого хода, т.к. вся индикаторная мощность затрачивается на преодоление механических потерь.

С увеличением числа оборотов от nmin величина pe, а, следовательно, и крутящий момент двигателя возрастают и достигают максимальных значений при определенном числе оборотов nMmax При дальнейшем увеличении числа оборотов величина ре и крутящий момент Me начинают уменьшаться, однако эффективная мощность, пропорциональная произведению Ре·n, продолжает возрастать и достигает своего максимального значения при более высоком числе оборотов nNemax. Для транспортных двигателей значение nNemax всего составляет 0,5-0,65 nMе max.

При увеличении скорости вращения вала выше nNemax эффективная мощность двигателя будет быстро падать из-за уменьшения коэффициента наполнения и увеличения механических потерь. При числе оборотов nразн эффективная мощность станет равна нулю. Практически двигатели при таких скоростных режимах не работают.

Рассмотрим характер изменения часового и удельного расходов топлива по внешней скоростной характеристики, для чего обратимся к выражению, связывающему часовой расход топлива с параметрами рабочего процесса двигателя

(2.5)

где C2 — коэффициент, учитывающий конструктивные особенности двигателя, физико-химические свойства и состав бензовоздушной смеси.

Как видно из формулы (2.5), при постоянном составе смеси величина часового расхода топлива в первую очередь определяется числом оборотов двигателя и коэффициентам наполнения.

При увеличении скоростного режима двигателя часовой расход топлива возрастает, однако, по мере уменьшения коэффициента наполнения, расход топлива увеличивается все в меньшей степени(рис. 2.4).

М

Рис. 2.4 График расхода топлива (удельного и часового)

инимальная величина удельного расхода топлива по внешней скоростной характеристике обычно наблюдается в зоне средних оборотов. Увеличение удельного эффективного расхода топлива с уменьшением числа оборотов объясняется возрастанием тепловых потерь, в первую очередь, обусловленных ухудшением процесса смесеобразования. С увеличением числа оборотов удельный расход топлива возрастает из-за увеличения механических потерь и соответствующего снижения ηМ. Поскольку эффективный удельный расход топлива определяется по формуле

(2.6)

то на скоростных режимах работы двигателя, при которых среднее эффективное давление, а следовательно, и эффективная мощность равны нулю (nразн), величина ge стремится к бесконечности.

Протекание рабочих циклов карбюраторных двигателей на прикрытых дроссельных заслонках связано с понижением всех давлений цикла, уменьшением количества тепла, выделяющегося при сгорании и более медленном его протекании. Одновременно с этим при меньших нагрузках возрастают относительные величины насосных, тепловых и механических потерь.

В соответствии с этим изменяется характер скоростных характеристик, на рис. 2.5 показаны внешняя скоростная характеристика (кривая 1), три

Рис. 2.5. Скоростные характеристики карбюраторного двигателя и соответствующие им кривые мощности (Ne) и расхода топлива (ge):

1 — дроссельная заслонка открыта на 100% (внешняя характеристика)

2 — дроссельная заслонка открыта на 60%

2 — дроссельная заслонка открыта на 40%

4 — дроссельная заслонка открыта на 20%

частичные скоростные характеристики (кривые 2, 3 и 4), т. е. мощности и соответствующие им удельные расходы топлива при открытии дроссельной заслонки на 100, 60,40 и 20%. Чем больше прикрыта дроссельная заслонка, тем ниже давления цикла и заметнее возрастает по относительной величине (т. е. в процентах) сумма ранее указанных потерь. Поэтому максимумы кривых эффективных мощностей по мере прикрытия дроссельной заслонки сдвигаются в сторону меньших чисел оборотов, а удельные расходы возрастают сильнее. Действительно, если при 100%-ном открытии дроссельной заслонки максимум кривой мощности имел место при 3000 мин-1, то при 60% эта точка сдвигается к 2500 мин-1, при 40% — к 1500 и 20% — к 1000 мин-1.

4.2.1. Внешняя скоростная характеристика

Характеристика, полученная при полностью открытом дросселе (карбюраторные и газовые двигатели) или при полной подаче топлива (дизельные двигатели) и соответствующая максимальной мощности двигателя на каждом скоростном режиме, называется внешней скоростной характеристикой. Любая точка на кривой внешней характеристики характеризует полную нагрузку двигателя (рис. 4.4).

Рис. 4.4. Внешняя скоростная характеристика

Внешняя скоростная характеристика карбюраторного двигателя снимается при полностью открытой дроссельной заслонке, установившемся тепловом режиме и оптимальном угле опережения зажигания для каждого скоростного режима.

4.2.2. Частичные скоростные характеристики

Характеристики, полученные при неполностью открытом дросселе или неполных подачах топлива, называются частичными скоростными характеристиками. Любая точка на кривых частичных характеристик характеризует неполные нагрузки.

Протекание рабочих циклов карбюраторных двигателей на прикрытых дроссельных заслонках связано с понижением всех давлений цикла, уменьшением количеств выделяющегося тепла при сгорании и более медленном его протекании. Одновременно с этим при меньших нагрузках возрастают относительные величины насосных тепловых и механических потерь.

В соответствии с этим изменяется характер скоростных характеристик, на рис. 4.5 показаны внешняя скоростная характеристика (сплошные кривые) и частичная скоростная характеристика (пунктирные кривые).

Максимумы кривых эффективных мощностей по мере прикрытия дросселя сдвигаются в сторону меньших чисел оборотов.

Рис. 4.5. Внешняя и частичная скоростные характеристики

Дизельный двигатель, имеющий всережимный регулятор, при уменьшении нагрузки работает на более бедной смеси, вследствие чего температуры газов в цилиндрах понижаются и тепловые потери в стенки сокращаются, а насосные потери при уменьшении нагрузок остаются почти без изменения. Однако большие, чем в карбюраторных двигателях, механические потери при уменьшении нагрузки быстрее возрастают по относительной величине, несколько ухудшая топливную экономичность дизеля при его малых нагрузках. Числа оборотов, соответствующие наибольшим эффективным мощностям дизелей при частичных нагрузках и наличии регулятора, сдвигаются в сторону меньших оборотов только при сильном их уменьшении.

4.2.3. Построение скоростных характеристик аналитическим методом

Скоростная характеристика проектируемого двигателя может быть построена аналитически по эмпирическим формулам С. Р. Лейдермана, если для ряда режимов по числу оборотов произведен тепловой расчет.

;

.

Крутящий момент и часовой расход топлива определяют по формулам (Нм и кг/ч соответственно):

;

.

где максимальная мощность двигателя, кВт;

– удельный расход топлива при максимальной мощности, кг/кВт· ч;

n– выбранная частота вращения коленчатого вала, с-1;

neчастота вращения, соответствующая максимальной мощности, с-1;

А, В, С, А1, В1, С1– постоянные коэффициенты, значения которых приведены в табл. 4.1.

Таблица 4.1

Постоянные коэффициенты формул Лейдермана

Двигатели

A

B

C

A1

B1

C1

Карбюраторные

1

1

1

1.2

1

0.8

Дизельные:

 

 

 

 

 

 

с непосредственным впрыском

0.87

1.4

1

1.55

1.55

1

предкамерные

0.6

1.4

1

1.2

1.2

1

форкамерные

0.7

1.3

1

1.35

1.35

1

Отправить ответ

avatar
  Подписаться  
Уведомление о