Что такое металличность – Нужна помощь! Пожалуйста объясните, что такое металлические и неметаллические свойства.

Металличность — Википедия

Материал из Википедии — свободной энциклопедии

Металли́чность (в астрофизике) — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звезды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов (в частности, перечисленные углерод, азот, кислород и неон) металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звезд[1].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды населения III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны (и, следовательно, их время жизни было мало). В течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено.

Второе поколение звёзд (население II) родилось из материала звёзд первого поколения и имело довольно малую металличность, хотя и более высокую, чем у звёзд первого поколения. Маломассивные звёзды этого поколения имеют большое время жизни (миллиарды лет) и продолжают присутствовать среди звёзд нашей и других галактик. Более массивные звёзды второго поколения успели проэволюционировать до финальных стадий и выбросили газ, обогащённый металлами в результате звёздного нуклеосинтеза, в межзвёздную среду, из которой образовались звёзды третьего поколения (населения I). Звёзды третьего поколения, в том числе Солнце, содержат самое высокое количество металлов.

Таким образом, каждое следующее поколение звёзд более богато металлами, чем предыдущее, в результате обогащения металлами межзвёздной среды, из которой эти звёзды образуются.

Наличие металлов в газе, из которого состоит звезда, приводит к уменьшению его прозрачности и коренным образом влияет на все стадии эволюции звезды, от коллапса газового облака в звезду до поздних стадий её горения.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину [Fe/H{\displaystyle {\ce {Fe/H}}}]:

[Fe/H]=log10⁡(NFeNH)star−log10⁡(NFeNH)Sun.{\displaystyle [{\text{Fe}}/{\text{H}}]=\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{star}}}-\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{Sun}}}.}

Здесь NFeNH{\displaystyle {\frac {N_{\text{Fe}}}{N_{\text{H}}}}} — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. Считается, что величина [Fe/H{\displaystyle {\ce {Fe/H}}}] характеризует относительное содержание всех тяжёлых элементов (включая C,O,N,Ne{\displaystyle {\ce {C, O, N, Ne}}}) на звезде и на Солнце. Для очень старых звёзд значение [Fe/H{\displaystyle {\ce {Fe/H}}}] заключено между −2 и −1 (то есть содержание тяжёлых элементов в них меньше солнечного в 10—100 раз). Металличность звёзд галактического диска в основном меняется от −0,3 до +0,2, выше в центре и снижается к краям.

Металличность также влияет на минимальную массу звезды/коричневого карлика, при достижении которой начинаются определённые термоядерные реакции. Коричневым карликом с чрезвычайно низкой металличностью является SDSS J0104+1535. Этот же объект является и самым массивными из известных коричневых карликов[2].

Зависимость металличности от наличия планет[править | править код]

Астрономами из США, Бразилии и Перу были получены экспериментальные свидетельства того, что наличие в системе газового гиганта может влиять на химический состав родительской звезды. В теории, для оценки роли газового гиганта необходима двойная звезда, так как двойные звёзды формируются из одного газового облака и как следствие должны иметь предельно схожий химический состав. Однако наличие планеты у одного из компаньонов могло бы объяснить различие в химическом составе, так как звёзды и планеты формируются практически одновременно, что обусловливает взаимосвязь их процессов формирования. На практике, в качестве объекта изучения, была выбрана система 16 Лебедя являющаяся двойной звездой, с газовым гигантом 16 Лебедя B b обращающимся вокруг компаньона B. Оба компаньона являются аналогами Солнца

[3]. Была рассчитана относительная распространённость 25 разных химических элементов в фотосфере звёзд. В результате оказалось, что 16 Лебедя A превосходит 16 Лебедя B (см.
Список звёзд созвездия Лебедя
) по содержанию металлов, а в качестве объяснения наличие у компаньона B газового гиганта[4].

Металличность — это… Что такое Металличность?

Металли́чность (в астрофизике) — относительная концентрация элементов тяжелее гелия (их в астрономии принято называть металлами) в звёздах и галактиках. Является показателем возраста звёздной системы[источник не указан 447 дней].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды популяции III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны, и в течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых, и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено. Второе поколение звёзд (популяция II) родилось из материала звёзд первого поколения и имело довольно малую металличность. Каждое следующее поколение звёзд более богато металлами, чем предыдущее. Самые молодые звёзды, типа Солнца, которое является звездой третьего поколения (популяции I), содержат самое высокое количество металлов.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину :

которую, строго говоря, и называют металличностью[источник не указан 447 дней].

Здесь  — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. В случае, если пропорции металлов и элементов С, О, N, Ne на Солнце и на звезде одинаковы, металличность характеризует отношение содержания всех тяжёлых элементов на звезде и на Солнце. Для очень старых звёзд значение заключено между −2 и −1 (то есть содержание металлов в них меньше солнечного в 10-100 раз). Металличность звёзд галактического диска в основном меняется от −0,3 до +0,2, выше в центре и снижается к краям.

Металличность также влияет на минимальную массу звезды/коричневого карлика, при которой начинаются термоядерные реакции.

Зависимость металличности от наличия планет

Астрономами из США, Бразилии и Перу были получены экспериментальные свидетельства того, что наличие в системе газового гиганта может влиять на химический состав родительской звезды. В теории, для оценки роли газового гиганта необходима двойная звезда, так как двойные звёзды формируются из одного газового облака и как следствие должны иметь предельно схожий химический состав. Однако наличие планеты у одного из компаньонов могло бы объяснить различие в химическом составе, так как звёзды и планеты формируются практически одновременно, что обусловливает взаимосвязь их процессов формирования. На практике, в качестве объекта изучения, была выбрана система 16 Лебедя являющаяся двойной звездой, с газовым гигантом 16 Лебедя B b обращающимся вокруг компаньона B. Оба компаньона являются аналогами Солнца.

[1] Была рассчитана относительная распространённость 25 разных химических элементов в фотосфере звёзд. В результате оказалось, что 16 Лебедя A превосходит 16 Лебедя B по содержанию металлов, а в качестве объяснения наличие у компаньона B газового гиганта.[2]

См. также

Примечания

Металличность элементов — Справочник химика 21

    Металличность элементов увеличивается справа налево и сверху вниз при движении по Периодической таблице. Проиллюстрируйте это положение на примерах периода от натрия до хлора и группы 1УБ. 
[c.547]

    Степень металличности элемента оценивается по легкости отщепления электрона его атомом. Сопоставим с этой точки зрения натрий, водород и хлор  [c.237]

    Почему в главных подгруппах металличность элементов увеличивается, а неметалличность уменьшается Как изменяется ЭО в главных подгруппах  [c.92]


    Металличность элементов уменьшается. [c.89]

    Металличность —это способность атомов элемента отдавать электроны. Количественной характеристикой металличности элемента является энергия ионизации (I). [c.87]

    В подгруппах металлов с полностью заселенными электронами d-орбиталями в соответствии с уменьшением металличности элементов сверху вниз уменьшается энергия Гиббса образования их фто- 

[c.355]

    Естественно, что такая сокращенная форма таблицы не имеет каких-либо преимуществ перед обычной развернутой таблицей, однако она четко-выявляет дифференциацию строения двух электронных оболочек, находящихся под самыми внешними электронами, а следовательно, и причину отличия свойств водорода, лития, натрия от свойств тяжелых щелочных металлов в первой группе. Она указывает также на особую роль гелия,, являющегося не только первым наиболее легким инертным газом, но и элементом, которым начинаются почти совершенно не похожие на него во всех отношениях, кроме строения внешней электронной оболочки, щелочноземельные металлы. В этой таблице очень ясно видна значительная разница между электронным строением бериллия и магния и заметное отличие магния от щелочноземельных металлов. Чем левее расположен элемент в I и II группах этой таблицы, тем слабее связь его внешних электронов с ядром, экранированным в той или иной степени внутренними оболочками. Мерой прочности этой связи и металличности элемента может служить потенциал ионизации, т. е. энергия, которую необходимо затратить на отрыв внешних электронов. Ионизационные потенциалы, соответствующие отделению последнего валентного электрона или всех внешних электронов (см. рис. 2), подтверждают правильность смещения элементов в I и II группах на основании анализа их внешних электронных конфигураций. Эти смещения отражают различное экранирование заряда ядра внутренними электронными оболочками и дают объяснение различий свойств элементов с одинаковым строением внешних оболочек. Наиболее разительной оказывается разница между водородом и литием с одним электроном на внешней s-оболочке и между гелием и бериллием с двумя электронами на внешней s-оболочке. У более тяжелых элементов эта разница не столь велика, но также может быть весьма существенной. 

[c.30]


    Следовательно, способность атомов отдавать электроны и металличность элементов в периодах будет уменьшаться, а в подгруппах —увеличиваться с ростом порядкового номера элемента. [c.190]

    Сродство к электрону уменьшается. Электроотрицательность уменьшается. Металличность элементов увеличивается. Неметалличность элементов уменьшается. [c.113]

    Величина потенциала ионизации может служить мерой большей или меньшей металличности элемента чем меньше потенциал ионизации, чем легче оторвать электрон от атома, тем сильнее должны быть выражены металлические свойства элемента. [c.101]

    От хрома к вольфраму растут заряды ядер (порядковые номера), атомные массы и плотность, твердость, тугоплавкость и металличность элементов. Атомные радиусы молибдена (1,39 А) и вольфрама (1,41 А) практически одинаковы. Атомный радиус хрома (1,25 А) заметно отличается от первых двух. Ионные радиусы Мо + и 0,70 А и 0,66 А соответственно, а у МоОа — и ШО -равны. Это обусловливает близость ряда свойств вольфрама и молибдена и отличает их от хрома. Расположение валентных электронов на разных энергетических уровнях объясняет поливалентность этих элементов. Как для молибдена, так и для вольфрама наиболее устойчивы соединения шестивалентных элементов. 

[c.271]

    Энергия ионизации обусловливает химические свойства элементов. Ее величина характеризует прочность связи электрона с ядром и служит мерой металличности элемента. Так, щелочные металлы, имеющие небольшие энергии ионизации, обладают ярко выраженными металлическими свойствами. Химическая инертность благородных газов связана с их высокими значениями энергии ионизации. [c.35]

    Чем обусловлена восстановительная активность (металличность) элементов окислительная активность (неметалличность) элементов  [c.66]

    Что такое металличность элементов Что является количественной характеристикой металличности .  [c.114]

    Металличность элементов увеличивается. [c.113]

    Карбиды —это соединения между углеродом н более электроположительными (более металличными) элементами. Существуют карбиды, которые при гидролизе чистой или подкисленной водой образуют углеводороды. Так, кар[c.318]

    Металличность элементов. А еталлические и неметаллические (металлоидные) свойства элементов п образуем ) ими простых веществ в основном зависят от числа электронов на внешних энергетических уровнях в оболочке атолюв, т. е. от степени застроенности их и от энергии связи электронов с атомным ядром. [c.59]

    Структура внешнего электронного слоя—содержание в нем значительного количества электронов—характеризует элементы подгруппы углерода как металлоиды. Однако металлоидный характер ясно выражен лишь у первых двух членов группы—у углерода и кремния. По мере возрастания массы и радиуса атома, с увеличением количества промежуточных электронных слоев в атоме, металличность элемента закономерно возрастает, а металлоидность надает. Эта закономерность, отмеченная у ранее изученных групп, имеет место и у элементов подгруппы углерода. Элемент германий амфотерен, а у олова и свинца металлические свойства преобладают над металлоидными (металлические элементы подгруппы углерода рассматриваются в дальнейшем, в соответствующих главах о металлах). [c.298]

    Теория молекулярных орбиталей рассматривает электроотрицательности отдельных атомных орбиталей, образующих общую молекулярную. Из 5- и р-состояний одного и того же слоя более электроотрицатель

Металличность Википедия

Металли́чность (в астрофизике) — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звезды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов (в частности, перечисленные углерод, азот, кислород и неон) металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звезд[1].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды населения III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны (и, следовательно, их время жизни было мало). В течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено.

Второе поколение звёзд (население II) родилось из материала звёзд первого поколения и имело довольно малую металличность, хотя и более высокую, чем у звёзд первого поколения. Маломассивные звёзды этого поколения имеют большое время жизни (миллиарды лет) и продолжают присутствовать среди звёзд нашей и других галактик. Более массивные звёзды второго поколения успели проэволюционировать до финальных стадий и выбросили газ, обогащённый металлами в результате звёздного нуклеосинтеза, в межзвёздную среду, из которой образовались звёзды третьего поколения (населения I). Звёзды третьего поколения, в том числе Солнце, содержат самое высокое количество металлов.

Таким образом, каждое следующее поколение звёзд более богато металлами, чем предыдущее, в результате обогащения металлами межзвёздной среды, из которой эти звёзды образуются.

Наличие металлов в газе, из которого состоит звезда, приводит к уменьшению его прозрачности и коренным образом влияет на все стадии эволюции звезды, от коллапса газового облака в звезду до поздних стадий её горения.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину [Fe/H{\displaystyle {\ce {Fe/H}}}]:

[Fe/H]=log10⁡(NFeNH)star−log10⁡(NFeNH)Sun.{\displaystyle [{\text{Fe}}/{\text{H}}]=\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{star}}}-\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{Sun}}}.}

Здесь NFeNH{\displaystyle {\frac {N_{\text{Fe}}}{N_{\text{H}}}}} — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. Считается, что величина [Fe/H{\displaystyle {\ce {Fe/H}}}] характеризует относительное содержание всех тяжёлых элементов (включая C,O,N,Ne{\displaystyle {\ce {C, O, N, Ne}}}) на звезде и на Солнце. Для очень старых звёзд значение [Fe/H

Металличность — Википедия. Что такое Металличность

Металли́чность (в астрофизике) — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звезды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов (в частности, перечисленные углерод, азот, кислород и неон) металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звезд[1].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды населения III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны (и, следовательно, их время жизни было мало). В течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено.

Второе поколение звёзд (население II) родилось из материала звёзд первого поколения и имело довольно малую металличность, хотя и более высокую, чем у звёзд первого поколения. Маломассивные звёзды этого поколения имеют большое время жизни (миллиарды лет) и продолжают присутствовать среди звёзд нашей и других галактик. Более массивные звёзды второго поколения успели проэволюционировать до финальных стадий и выбросили газ, обогащённый металлами в результате звёздного нуклеосинтеза, в межзвёздную среду, из которой образовались звёзды третьего поколения (населения I). Звёзды третьего поколения, в том числе Солнце, содержат самое высокое количество металлов.

Таким образом, каждое следующее поколение звёзд более богато металлами, чем предыдущее, в результате обогащения металлами межзвёздной среды, из которой эти звёзды образуются.

Наличие металлов в газе, из которого состоит звезда, приводит к уменьшению его прозрачности и коренным образом влияет на все стадии эволюции звезды, от коллапса газового облака в звезду до поздних стадий её горения.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину [Fe/H{\displaystyle {{\ce {Fe/H}}}}]:

[Fe/H]=log10⁡(NFeNH)star−log10⁡(NFeNH)Sun.{\displaystyle [{\text{Fe}}/{\text{H}}]=\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{star}}}-\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{Sun}}}.}

Здесь NFeNH{\displaystyle {\frac {N_{\text{Fe}}}{N_{\text{H}}}}} — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. Считается, что величина [Fe/H{\displaystyle {{\ce {Fe/H}}}}] характеризует относительное содержание всех тяжёлых элементов (включая C,O,N,Ne{\displaystyle {\ce {C, O, N, Ne}}}) на звезде и на Солнце. Для очень старых звёзд значение [Fe/H{\displaystyle {{\ce {Fe/H}}}}] заключено между −2 и −1 (то есть содержание тяжёлых элементов в них меньше солнечного в 10—100 раз). Металличность звёзд галактического диска в основном меняется от −0,3 до +0,2, выше в центре и снижается к краям.

Металличность также влияет на минимальную массу звезды/коричневого карлика, при достижении которой начинаются определённые термоядерные реакции. Коричневым карликом с чрезвычайно низкой металличностью является SDSS J0104+1535. Этот же объект является и самым массивными из известных коричневых карликов[2].

Зависимость металличности от наличия планет

Астрономами из США, Бразилии и Перу были получены экспериментальные свидетельства того, что наличие в системе газового гиганта может влиять на химический состав родительской звезды. В теории, для оценки роли газового гиганта необходима двойная звезда, так как двойные звёзды формируются из одного газового облака и как следствие должны иметь предельно схожий химический состав. Однако наличие планеты у одного из компаньонов могло бы объяснить различие в химическом составе, так как звёзды и планеты формируются практически одновременно, что обусловливает взаимосвязь их процессов формирования. На практике, в качестве объекта изучения, была выбрана система 16 Лебедя являющаяся двойной звездой, с газовым гигантом 16 Лебедя B b обращающимся вокруг компаньона B. Оба компаньона являются аналогами Солнца[3]. Была рассчитана относительная распространённость 25 разных химических элементов в фотосфере звёзд. В результате оказалось, что 16 Лебедя A превосходит 16 Лебедя B (см. Список звёзд созвездия Лебедя) по содержанию металлов, а в качестве объяснения наличие у компаньона B газового гиганта[4].

См. также

Примечания

Металличность — Википедия

Материал из Википедии — свободной энциклопедии

Металли́чность (в астрофизике) — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звезды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов (в частности, перечисленные углерод, азот, кислород и неон) металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звезд[1].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды населения III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны (и, следовательно, их время жизни было мало). В течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено.

Второе поколение звёзд (население II) родилось из материала звёзд первого поколения и имело довольно малую металличность, хотя и более высокую, чем у звёзд первого поколения. Маломассивные звёзды этого поколения имеют большое время жизни (миллиарды лет) и продолжают присутствовать среди звёзд нашей и других галактик. Более массивные звёзды второго поколения успели проэволюционировать до финальных стадий и выбросили газ, обогащённый металлами в результате звёздного нуклеосинтеза, в межзвёздную среду, из которой образовались звёзды третьего поколения (населения I). Звёзды третьего поколения, в том числе Солнце, содержат самое высокое количество металлов.

Таким образом, каждое следующее поколение звёзд более богато металлами, чем предыдущее, в результате обогащения металлами межзвёздной среды, из которой эти звёзды образуются.

Наличие металлов в газе, из которого состоит звезда, приводит к уменьшению его прозрачности и коренным образом влияет на все стадии эволюции звезды, от коллапса газового облака в звезду до поздних стадий её горения.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину [Fe/H{\displaystyle {{\ce {Fe/H}}}}]:

[Fe/H]=log10⁡(NFeNH)star−log10⁡(NFeNH)Sun.{\displaystyle [{\text{Fe}}/{\text{H}}]=\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{star}}}-\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{Sun}}}.}

Здесь NFeNH{\displaystyle {\frac {N_{\text{Fe}}}{N_{\text{H}}}}} — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. Считается, что величина [Fe/H{\displaystyle {{\ce {Fe/H}}}}] характеризует относительное содержание всех тяжёлых элементов (включая C,O,N,Ne{\displaystyle {\ce {C, O, N, Ne}}}) на звезде и на Солнце. Для очень старых звёзд значение [Fe/H{\displaystyle {{\ce {Fe/H}}}}] заключено между −2 и −1 (то есть содержание тяжёлых элементов в них меньше солнечного в 10—100 раз). Металличность звёзд галактического диска в основном меняется от −0,3 до +0,2, выше в центре и снижается к краям.

Металличность также влияет на минимальную массу звезды/коричневого карлика, при достижении которой начинаются определённые термоядерные реакции. Коричневым карликом с чрезвычайно низкой металличностью является SDSS J0104+1535. Этот же объект является и самым массивными из известных коричневых карликов[2].

Зависимость металличности от наличия планет

Астрономами из США, Бразилии и Перу были получены экспериментальные свидетельства того, что наличие в системе газового гиганта может влиять на химический состав родительской звезды. В теории, для оценки роли газового гиганта необходима двойная звезда, так как двойные звёзды формируются из одного газового облака и как следствие должны иметь предельно схожий химический состав. Однако наличие планеты у одного из компаньонов могло бы объяснить различие в химическом составе, так как звёзды и планеты формируются практически одновременно, что обусловливает взаимосвязь их процессов формирования. На практике, в качестве объекта изучения, была выбрана система 16 Лебедя являющаяся двойной звездой, с газовым гигантом 16 Лебедя B b обращающимся вокруг компаньона B. Оба компаньона являются аналогами Солнца[3]. Была рассчитана относительная распространённость 25 разных химических элементов в фотосфере звёзд. В результате оказалось, что 16 Лебедя A превосходит 16 Лебедя B (см. Список звёзд созвездия Лебедя) по содержанию металлов, а в качестве объяснения наличие у компаньона B газового гиганта[4].

См. также

Примечания

Металличность — WiKi

Запрос «Популяция II» перенаправляется сюда. На эту тему нужно создать отдельную статью.

Металли́чность (в астрофизике) — относительная концентрация элементов тяжелее водорода и гелия в звёздах или иных астрономических объектах. Бо́льшая часть барионной материи во Вселенной находится в форме водорода и гелия, поэтому астрономы используют слово «металлы» как удобный термин для обозначения всех более тяжёлых элементов. Например, звезды и туманности с относительно высоким содержанием углерода, азота, кислорода и неона в астрофизических терминах называются «богатыми металлами». При этом с точки зрения химии многие из этих элементов (в частности, перечисленные углерод, азот, кислород и неон) металлами не являются. Металличность используется, к примеру, для определения поколения и возраста звезд[1].

При первичном нуклеосинтезе, в первые минуты жизни Вселенной, в ней возникли водород (75 %), гелий (25 %), а также следы лития и бериллия. Образовавшиеся позднее первые звёзды, так называемые звёзды населения III, состояли только из этих элементов и практически не содержали металлов. Эти звёзды были чрезвычайно массивны (и, следовательно, их время жизни было мало). В течение их жизни в них синтезировались элементы вплоть до железа. Затем звёзды погибали в результате взрыва сверхновых и синтезированные элементы распределялись по Вселенной. Пока ещё ни одной звезды этого типа не было найдено.

Второе поколение звёзд (население II) родилось из материала звёзд первого поколения и имело довольно малую металличность, хотя и более высокую, чем у звёзд первого поколения. Маломассивные звёзды этого поколения имеют большое время жизни (миллиарды лет) и продолжают присутствовать среди звёзд нашей и других галактик. Более массивные звёзды второго поколения успели проэволюционировать до финальных стадий и выбросили газ, обогащённый металлами в результате звёздного нуклеосинтеза, в межзвёздную среду, из которой образовались звёзды третьего поколения (населения I). Звёзды третьего поколения, в том числе Солнце, содержат самое высокое количество металлов.

Таким образом, каждое следующее поколение звёзд более богато металлами, чем предыдущее, в результате обогащения металлами межзвёздной среды, из которой эти звёзды образуются.

Наличие металлов в газе, из которого состоит звезда, приводит к уменьшению его прозрачности и коренным образом влияет на все стадии эволюции звезды, от коллапса газового облака в звезду до поздних стадий её горения.

Из наблюдений (из анализа спектров звёзд) чаще всего можно получить только величину [Fe/H{\displaystyle {\ce {Fe/H}}}]:

[Fe/H]=log10⁡(NFeNH)star−log10⁡(NFeNH)Sun.{\displaystyle [{\text{Fe}}/{\text{H}}]=\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{star}}}-\log _{10}{\left({\frac {N_{\text{Fe}}}{N_{\text{H}}}}\right)_{\text{Sun}}}.}

Здесь NFeNH{\displaystyle {\frac {N_{\text{Fe}}}{N_{\text{H}}}}} — отношение концентрации атомов железа к атомам водорода на звезде и на Солнце соответственно. Считается, что величина [Fe/H{\displaystyle {\ce {Fe/H}}}] характеризует относительное содержание всех тяжёлых элементов (включая C,O,N,Ne{\displaystyle {\ce {C, O, N, Ne}}}) на звезде и на Солнце. Для очень старых звёзд значение [Fe/H{\displaystyle {\ce {Fe/H}}}] заключено между −2 и −1 (то есть содержание тяжёлых элементов в них меньше солнечного в 10—100 раз). Металличность звёзд галактического диска в основном меняется от −0,3 до +0,2, выше в центре и снижается к краям.

Металличность также влияет на минимальную массу звезды/коричневого карлика, при достижении которой начинаются определённые термоядерные реакции. Коричневым карликом с чрезвычайно низкой металличностью является SDSS J0104+1535. Этот же объект является и самым массивными из известных коричневых карликов[2].

Астрономами из США, Бразилии и Перу были получены экспериментальные свидетельства того, что наличие в системе газового гиганта может влиять на химический состав родительской звезды. В теории, для оценки роли газового гиганта необходима двойная звезда, так как двойные звёзды формируются из одного газового облака и как следствие должны иметь предельно схожий химический состав. Однако наличие планеты у одного из компаньонов могло бы объяснить различие в химическом составе, так как звёзды и планеты формируются практически одновременно, что обусловливает взаимосвязь их процессов формирования. На практике, в качестве объекта изучения, была выбрана система 16 Лебедя являющаяся двойной звездой, с газовым гигантом 16 Лебедя B b обращающимся вокруг компаньона B. Оба компаньона являются аналогами Солнца[3]. Была рассчитана относительная распространённость 25 разных химических элементов в фотосфере звёзд. В результате оказалось, что 16 Лебедя A превосходит 16 Лебедя B (см. Список звёзд созвездия Лебедя) по содержанию металлов, а в качестве объяснения наличие у компаньона B газового гиганта[4].

Отправить ответ

avatar
  Подписаться  
Уведомление о