Датчик расхода – «Как работает датчик массового расхода воздуха на тойоте селика жт фор?» – Яндекс.Знатоки

Содержание

Расходомер — Википедия

Электромагнитный расходомер.Перейти к разделу «#Электромагнитные расходомеры» Монтаж на наклонном участке уменьшает ошибку измерения вследствие изменения эффективного сечения трубы твердым осадком или завоздушиванием.

Расходоме́р — прибор, измеряющий объёмный расход или массовый расход вещества, то есть количество вещества (объём, масса), проходящее через данное сечение потока, например, сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство (счётчик) и служит для одновременного измерения и количества вещества, то его называют счётчиком-расходомером.

Перейти к разделу «#Электромагнитные расходомеры» Бытовые объёмные счётчики газа Скоростной счётчик — турбинка

Скоростные счётчики[править | править код]

Скоростные счётчики устроены таким образом, что жидкость, протекающая через камеру прибора, приводит во вращение вертушку или крыльчатку, угловая скорость которых пропорциональна скорости потока, а следовательно, и расходу.

Объёмные счётчики[править | править код]

Поступающая в прибор жидкость или газ измеряется отдельными, равными по объёму дозами, которые затем суммируются. Счётчики газа на этом принципе часто встречаются в быту.

Классификация объёмных счетчиков[править | править код]
  • В зависимости от конструктивных особенностей рабочего органа: поршневые, шестеренные.
  • В зависимости от вида движения рабочего органа: поступательного движения, вращательно-ротационного движения, прецессионного, планетарного движения.

В зависимости и от конструкции и от вида движения рабочего органа классифицируются на:

  • поршневые (кольцевые) с планетарным движением кольцевого поршня;
  • шестеренные (круглые) с ротационным вращением круглых шестерен;
  • шестеренные (овальные) с ротационным вращением овальных шестерен;
  • лопастные (камерные) с ротационным вращением лопастей, выполненных в виде камер;
  • лопастные (пластинчатые) с ротационным вращением пластинчатых лопастей.[1]

Ёмкость и секундомер[править | править код]

Возможно, самый простой способ измерить расход — это использовать некоторую ёмкость и секундомер. Поток жидкости направляется в некоторую ёмкость, и по секундомеру засекается время заполнения этой ёмкости. Зная объём ёмкости и поделив его на время заполнения, можно узнать расход жидкости. Этот способ подразумевает прерывание нормального течения потока, однако может давать непревзойдённую точность измерения. Широко используется в тестовых и поверочных лабораториях.

Ролико-лопастные расходомеры[править | править код]

Область применения ролико-лопастных расходомеров очень широка: измерение расходов на испытательных стендах, в гидроприводах станков и технологического оборудования, на стационарных и передвижных бензо- и маслозаправочных станциях, в топливных системах карбюраторных и дизельных двигателей автомобилей, тракторов, строительно-дорожных, сельскохозяйственных, лесозаготовительных машин, тепловозов и судов, как дозаторы при заливке танкеров, ж/д цистерн, резервуаров.

Расходомер оснащен встроенным электронным датчиком и программируемым микропроцессорным прибором с жидкокристаллическим дисплеем. Электроника расходомера имеет автономное питание на 3 — 5 лет и герметизированный выход на вторичный электронный прибор или компьютер, управляющий механизмами дозирования. Для метрологического применения или при необходимости проведения высокоточных измерений в технологических процессах, расходомер оснащен датчиком с высокой разрешающей способностью (до долей см3).

Шестерёнчатые расходомеры[править | править код]

Перейти к разделу «#Электромагнитные расходомеры» Шестерёнчатый расходомер

Впервые расходомер с овальными шестернями был изобретен компанией Bopp & Reuther (Германия) в 1932 году.

Измеряющий элемент состоит из двух шестерёнок овальной формы. Протекающая жидкость вращает данные шестерёнки. При каждом обороте пары овальных колес через прибор проходит строго определённое количество жидкости. Считывая количество оборотов, можно точно определить, какой объём жидкости протекает через прибор.

Данные расходомеры отличаются высокой точностью, надёжностью и простотой, что позволяет их использовать для жидкостей с высокой температурой и под большим давлением. Отличительной особенностью расходомеров с овальными шестернями является возможность использования для жидкостей с высокой вязкостью (мазут, битум).

Расходомеры на базе объёмных гидромашин[править | править код]

В системах объёмного гидропривода для измерения объёмного расхода рабочей жидкости применяют объёмные гидромашины (как правило — шестерённые или аксиально-плунжерные гидромашины).

Объёмная гидромашина в этом случае работает как гидродвигатель, но без нагрузки на валу. Тогда объёмный расход через гидромашину можно определить по формуле:

Q=q0⋅n,{\displaystyle Q=q_{0}\cdot n,}

где

  • Q{\displaystyle Q} — объёмный расход,
  • q0{\displaystyle q_{0}} — рабочий объём гидромашины (определяется по паспорту гидромашины),
  • n{\displaystyle n} — частота вращения выходного вала гидромашины, которую можно измерить тахометром.

Заметим, что объёмная гидромашина пропускает через себя весь расход жидкости, что для объёмного гидропривода не представляет сложности ввиду малых расходов.

Расходомеры переменного перепада давления[править | править код]

Расходомеры переменного перепада давления основаны на зависимости разницы давлений, создаваемых конструкцией расходомера, от расхода.

Расходомеры с сужающими устройствами[править | править код]

Они основаны на зависимости перепада давления на сужающем устройстве от скорости потока, в результате которого происходит преобразование части кинетической энергии потока в потенциальную.

Принцип действия расходометров этого типа основан на эффекте Вентури. Вентури-расходомер сужает поток жидкости в некотором устройстве, например, диафрагмой и датчиками давления или дифманометром измеряет разницу давлений перед указанным устройством и непосредственно в месте сужения. Этот метод измерения расхода широко используется при транспортировке газов по трубопроводам и использовался ещё во времена Римской империи.

Диафрагма представляет собой диск со сквозным отверстием, вставленный в поток. Дисковая диафрагма сужает поток, и разница давлений, измеряемая перед и за диафрагмой, позволяет определить расход в потоке. Этот тип расходомера можно грубо считать одной из форм Вентури-метров, однако имеющую более высокие потери энергии. Существует три типа дисковых диафрагм: концентрические, эксцентриковые и сегментальные.[2][3]

Трубка Пито[править | править код]

Расходомеры на основе трубки Пито измеряют динамическое давление p∂≈ξρVo22{\displaystyle p_{\partial }\approx \xi {\frac {\rho V_{o}^{2}}{2}}} в застойной зоне потока (англ.).

Зная динамическое давление, с помощью уравнения Бернулли можно определить скорость потока, а значит, и объёмный расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).

Расходомеры с гидравлическим сопротивлением[править | править код]

Принцип действия гидродинамических расходомеров основан на измерении давления движущей среды, т.е. давления, которое действует на помещенное в поток тело. Достоинствами гидродинамических расходомеров являются: конструктивная простота, надежность и удобство обслуживания. Одним из распространенных вариантов применения является их использование в качестве индикаторов расхода загрязнения жидкостей и газов.

Центробежные расходомеры[править | править код]

Центробежные расходомеры представляют собой колено на трубопроводе, которые охватывают его по всей окружности трубопровода. Отборы давления находятся в верхней части на внешней и внутренней стенках.

Принцип действия центробежных расходомеров основан на том, что при движении среды по криволинейному участку трубопровода появляются центробежные силы, создающие перепад давлений между точками с разными радиусами кривизны. Согласно этому следует, что где больше кривизна, там и центробежная сила больше и больше давление на стенку.[1]

Расходомеры с напорным устройством[править | править код]

Расходомеры с напорным усилителем[править | править код]

Расходомеры ударно-струйные[править | править код]

Расходомеры постоянного перепада давления[править | править код]

p_{{\partial }}\approx \xi {\frac  {\rho V_{o}^{2}}{2}}

Ротаметры[править | править код]

Ротаметры предназначены для измерения расхода чистых жидкостей и газов. Они состоят из вертикальной конической трубы, выполненной из металла, стекла или пластика, в которой свободно перемещается вверх и вниз специальный поплавок. Поток движется по трубе в направлении снизу вверх, заставляя поплавок подниматься до уровня, на котором все действующие силы находятся в состоянии равновесия. На поплавок воздействуют три силы:

  • выталкивающая сила, которая зависит от плотности среды и объёма поплавка;
  • сила тяжести, которая зависит от массы поплавка;
  • сила потока, которая зависит от формы поплавка и скорости потока, проходящего через сечение ротаметра между поплавком и стенками трубы.

Каждая величина расхода соответствует определённому переменному сечению, зависящему от формы конуса измерительной трубы и конкретного положения поплавка. В случае стеклянных конусов, значение расхода может быть считано прямо со шкалы на уровне поплавка. В случае конусов, выполненных из металла, положение поплавка передаётся на дисплей при помощи системы магнитов — не требуется никакого дополнительного источника питания. Различные диапазоны измерения достигаются за счёт многообразия размеров и форм конуса, а также возможности выбора различных форм и материалов изготовления поплавка.

Оптические расходомеры используют свет для определения расхода.

Лазерные расходомеры[править | править код]

Маленькие частички, которые неизбежно содержатся в природных и промышленных газах, проходят через два лазерных луча, направленных на поток от источника. Свет лазера рассеивается, когда частичка проходит через первый лазерный луч. Рассеянный лазерный луч поступает на фотодетектор, который в результате генерирует электрический импульсный сигнал. Если та же самая частица пересекает второй лазерный луч, то рассеянный лазерный свет поступает на второй фотодетектор, который генерирует второй импульсный электрический сигнал. Измеряя интервал времени между двумя этими импульсами, можно вычислить скорость газа по формуле V = D / T, где D — расстояние между двумя лазерными лучами, Т — время между двумя импульсами. Зная скорость потока, можно определить расход (Q = S * V, где S — площадь поперечного сечения потока, V — средняя скорость потока).

Основанные на лазерах расходомеры измеряют скорость частиц — параметр, который не зависит от теплопроводности, вида газа или его состава. Лазерная технология позволяет получать очень точные данные, причём даже в тех случаях, когда другие методы применять не удаётся или они дают большу́ю погрешность: при высоких температурах, малых расходах, высоких давлениях, высокой влажности, вибрациях трубопроводов и акустическом шуме.

Оптические расходометры способны измерять скорости потока от значений 0,1 м/с до более чем 100 м/с.

Принцип ультразвукового измерения расхода

Ультразвуковые время-импульсные[править | править код]

Время-импульсные расходомеры измеряют разницу во времени прохождения ультразвуковой волны по направлению и против направления потока жидкости. Такой принцип измерений обеспечивает высокую точность (± 1 %). При этом он хорошо работает для чистого потока или потока с незначительным содержанием взвешенных частиц. Время-импульсные расходомеры применяются для измерения расхода очищенной, морской, сточной воды, нефти, в том числе сырой, технологических жидкостей, масел, химических веществ и любой однородной жидкости.

Принцип действия ультразвуковых расходомеров основан на измерении разницы во времени прохождения сигнала. При этом два ультразвуковых сенсора, расположенные по диагонали напротив друг друга, функционируют попеременно как излучатель и приёмник. Таким образом, акустический сигнал, поочерёдно генерируемый обоими сенсорами, ускоряется, когда направлен по потоку, и замедляется, когда направлен против потока. Разница во времени, возникающая вследствие прохождения сигнала по измерительному каналу в обоих направлениях, прямо пропорциональна средней скорости потока, на основании которой можно затем рассчитать объёмный расход. А использование нескольких акустических каналов позволяет компенсировать искажения профиля потока.

Ультразвуковые расходомеры на установке висбрекинга

Ультразвуковые фазового сдвига[править | править код]

Ультразвуковые доплеровские[править | править код]

Доплеровский расходомер основан на эффекте Доплера. Он хорошо работает с суспензиями, где концентрация частиц выше 100 ppm и размер частиц больше 100 мкм, но концентрация составляет менее 10 %. Такие расходомеры жидкости легче и менее точные (± 5 %), а также дешевле, чем время-импульсные расходомеры.

Ультразвуковые корреляционные[править | править код]

Другим не столь популярным расходомером является ультразвуковой расходомер с последующей корреляцией (кросс-корреляция). Он позволяет устранить недостатки, свойственные доплеровским расходомерам. Они лучше работают для потока жидкости с твёрдыми частицами или турбулентного потока газа.

Электромагнитный расходомер Принцип электромагнитного измерения расхода

Ещё в 1832 году Майкл Фарадей пробовал определить скорость течения реки Темзы, измеряя напряжение, индуцируемое в потоке воды магнитным полем Земли. Принцип электромагнитного измерения расхода основан на законе индукции Фарадея. В соответствии с данным законом, напряжение создаётся, когда проводящая жидкость проходит через магнитное поле электромагнитного расходомера. Это напряжение пропорционально скорости потока среды.

Индуцированное напряжение измеряется либо двумя электродами, находящимися в контакте со средой, либо ёмкостными электродами, не контактирующими со средой, и передаётся в преобразователь сигналов. Преобразователь сигналов усиливает сигнал и преобразует его в стандартный токовый сигнал (4—20 мА), а также в частотно-импульсный сигнал (например, один импульс на каждый кубический метр измеряемой среды, прошедшей через измерительную трубу). Принцип действия электромагнитных расходомеров основан на взаимодействии движущейся электропроводной жидкости с магнитным полем. При движении жидкости в магнитном поле возникает ЭДС, как в проводнике, движущемся в магнитном поле. Эта ЭДС пропорциональна скорости потока, и по скорости потока можно определить расход.

Кориолисов расходомер

Принцип действия массовых расходомеров основан на эффекте Кориолиса. Массовый расход жидкостей и газов можно рассчитать по деформации измерительной трубы под действием потока. Плотность среды также можно рассчитать по резонансной частоте колебаний вибрирующей трубы. Вычисление силы Кориолиса осуществляется с помощью двух сенсорных катушек. При отсутствии потока оба сенсора регистрируют одинаковый синусоидальный сигнал. При появлении потока сила Кориолиса воздействует на поток частиц среды и деформирует измерительную трубу, что приводит к сдвигу фаз между сигналами сенсоров. Сенсоры измеряют сдвиг фаз синусоидальных колебаний. Этот сдвиг фаз прямо пропорционален массовому расходу.

Вихревой расходомер

Принцип измерения базируется на эффекте вихревой дорожки Кармана. Позади тела обтекания образуются вихри обратного направления вращения. В измерительной трубе находится завихритель, позади которого происходит вихреобразование. Частота вихреобразования пропорциональна расходу. Образующиеся вихри улавливаются и подсчитываются пьезоэлементом в первичном преобразователе в качестве ударных волн. Вихревые расходомеры подходят для измерения самых различных сред.

Расходомеры теплового пограничного слоя[править | править код]

Применяются для измерения расхода в трубах небольшого диаметра от 0,5—2,0 до 100 мм. Для измерения расхода в трубах большого диаметра находят применение особые разновидности термоконвективных расходомеров:

  • парциальные с нагревателем на обводной трубе;
  • с тепловым зондом;
  • с наружным нагревом ограниченного участка трубы.

Достоинством термоконвективных расходомеров является неизменность теплоёмкости измеряемого вещества при измерении массового расхода. Также достоинством является то, что термоконвективных расходомерах отсутствует контакт с измеряемым веществом.  Недостаток и тех и других расходомеров — их большая инерционность.[4]

Калориметрические расходомеры[править | править код]

В калориметрических расходомерах происходит нагревание или охлаждение потока внешним источником тепла, создающим в потоке разницу температур, по которой и определяют расход. Если пренебречь потерями тепла из потока через стенки трубопровода в окружающую среду, то уравнение теплового баланса между теплом, генерируемым нагревателем, и теплом, переданным потоку, приобретает вид:

qt=k0QMcpΔT{\displaystyle q_{t}=k_{0}Q_{M}c_{p}\Delta T},

где

Тепло к потоку в калориметрических расходомерах подводят обычно электро-нагревателями, для которых:

qt=0,24I2R{\displaystyle q_{t}=0,24I^{2}R},

где

  • I{\displaystyle I} — сила тока через нагревательный элемент;
  • R{\displaystyle R} — электрическое сопротивление нагревателя.

На основе этих уравнений статическая характеристика преобразования, которая связывает перепад температур на сенсорах с массовым расходом, приобретёт вид:

QM=0,24I2Rk0cpΔT{\displaystyle Q_{M}={\frac {0,24I^{2}R}{k_{0}c_{p}\Delta T}}}.

Расход определяется путём определения скорости потока через сечение канала, причём скорость определяется по времени переноса на известное расстояние каких-либо меток, искусственно вводимых в поток или изначально присутствующих в потоке.

  1. 1 2 Хансуваров К.И., Цейтлин В.Г. Техника измерения давления, расхода, количества и уровня жидкости, газа и пара: Учебное пособие для техникумов. — М.: Издательство стандартов, -1990.- с. 170-173 287 с, ил.
  2. ↑ Lipták, Flow Measurement, p. 85
  3. ↑ American Gas Association Report Number 3
  4. ↑ Кремлевский П. П. Расходомеры и счетчики количества веществ: Справочник: Кн. 2 / Под общ. ред. Е. А. Шорникова. — 5-е изд., перераб. и доп. — СПб.: Политехника, 2004. — 412 с

Типы датчиков расхода жидкостей

Датчик расхода жидкостей  — это прибор, который одновременно измеряет расход и количество вещества, проходящего через данное сечение трубопровода в единицу времени. Если прибор имеет интегрирующее устройство со счетчиком и служит для одновременного измерения и количества вещества, то его называют расходомером со счетчиком.

Расходомеры разделены, как правило, на четыре типа по принципу действия: электромагнитные, ультразвуковые, вихревые и механические, кориолисовые, тепловые.

МЕХАНИЧЕСКИЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Принцип действия механических расходомеров (крыльчатых, турбинных, винтовых) основан на преобразовании поступательного движения потока жидкости во вращательное движение измерительной части. Механические расходомеры чувствительны к наличию крупных механических примесей в воде. Этот дефект легко убирается установкой перед счетчиком магнитомеханического фильтра.

МЕХАНИЧЕСКИЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

  1.  муфта;
  2. инжектор;
  3. турбина;
  4. фильтр.

ЭЛЕКТРОМАГНИТНЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

В настоящее время твердую позицию среди устройств измерения расхода жидких веществ (в частности, воды) занимают электромагнитные расходомеры с поперечным полем. Он обладает высокой точностью измерения, имеет широкий линейный динамический диапазон и не имеет механических частей, соприкасающихся с жидкостью.

Работа электромагнитных измерителей расхода жидкости основана на законе Фарадея. В проводнике, пересекающем силовые линии поля, индуцируется ЭДС, пропорциональная скорости движения проводника. При этом направление тока, возникающего в проводнике, перпендикулярно к направлению движения проводника и направлению магнитного поля. Если заменить проводник потоком проводящей жидкости, текущей между полюсами магнита, и измерять ЭДС, наведённую в жидкости по закону Фарадея, можно получить принципиальную схему электромагнитного расходомера, предложенную ещё самим Фарадеем

Схема и принцип действия электромагнитного расходомера с поперечным магнитным полем:

ЭЛЕКТРОМАГНИТНЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

  1. трубопровод;
  2. полюса магнита;
  3. электроды для съема ЭДС;
  4. электронный усилитель;
  5. отсчетная система;
  6. источник питания магнита.

ВИХРЕВЫЕ  ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Принцип действия вихревого расходомера основан на определение частоты вихрей, образующихся в потоке измеряемой среды при обтекании тела специальной формы, установленным в проточной части преобразователя расхода. Частота вихрей пропорциональна объемному расходу определяется при помощи двух пьезо датчиков, которые фиксируют пульсации давления в зоне вихреобразования.

ВИХРЕВЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Прибор состоит из корпуса проточной части и электронного блока. В корпусе проточной части датчика размещены первичные преобразователи объемного расхода, избыточного давления и температуры. На входе в проточную часть датчика установлено тело обтекания 1. За телом обтекания, по направлению потока газа, симметрично расположены два пьезоэлектрических преобразователя пульсаций давления 2. Преобразователь избыточного давления 3 тензорезисторного принципа действия размещен перед телом обтекания вблизи его крепления. Термопреобразователь сопротивления платиновый 4 размещен внутри тела обтекания. Для обеспечения непосредственного контакта измеряемой среды и ТСП в теле обтекания выполнены отверстия 5. Плата цифровой обработки 6 производит обработку сигналов и передает на вычислитель 7.

Приборы этого типа также чувствительны к резким изменениям в потоке жидкости, к наличию крупных примесей, но безразличен к отложениям в трубах и магнитным примесям (железо в воде).

КОРИОЛИСОВЫ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Кориолисовый расходомер состоит из датчика расхода (сенсора) и преобразователя. Сенсор напрямую измеряет расход, плотность среды и температуру сенсорных трубок. Преобразователь конвертирует полученную с сенсора информацию в стандартный выходной сигнал.

Измеряемая среда, поступающая в сенсор, разделяется на равные половины и протекает через каждую из сенсорных трубок. Движение задающей катушки приводит к тому, что трубки колеблются вверх-вниз в противоположном направлении друг к другу.

Сборки магнитов и катушек-соленоидов, называемые детекторами, установлены на сенсорных трубках (рис.191). Катушки смонтированы на одной трубке, магниты на другой. Каждая катушка движется сквозь однороное магнитное поле постоянного магнита. Сгенерированное напряжение от каждой катушки детектора имеет форму синусоиальной волны. Эти сигналы представляют собой движение одной трубки относительно другой.

КОРИОЛИСОВЫ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

При движении измеряемой среды через сенсор проявляется физическое явление, известное как эффект Кориолиса. Поступательное движение среды во вращательном движении сенсорной трубки приводит к возникновению кориолисового ускорения, которое, в свою очередь, приводит к появлению кориоливовой силы. Эта сила направлена против движения трубки, приданного ей задающей катушкой, т.е. когда трубка движется вверх во время половины ее собственного цикла, то для жидкости, поступающей внутрь, сила Кориолиса направлена вниз. Как только жидкость проходит изгиб трубки, направление силы меняется на противоположное. Сила Кориолиса и, следовательно, величина изгиба сенсорной трубки прямо пропорциональны массовому расходу жидкости.

УЛЬТРАЗВУКОВЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Неоспоримые достоинства ультразвуковых расходомеров: малое или полное отсутствие гидравлического сопротивления, надежность (так как нет подвижных механических элементов), высокая точность, быстродействие, помехозащищенность – определили их широкое распространение.

Существуют три основные методики определения расхода жидкости при помощи ультразвука:

  • время-импульсный метод (фазового сдвига),
  • доплеровские расходомеры,
  • метод сноса ультразвукового сигнала (корреляционный).

Ультразвуковые счетчики работают на принципе изменения времени прохождения ультразвукового сигнала от источника до приемника сигналов, которое зависит от скорости потока жидкости.

УЛЬТРАЗВУКОВЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Звуковая волна, распространяющаяся в направлении потока, движется с большей скоростью, чем движущаяся против потока — разность времени (прямо пропорциональна средней скорости продукта) непрерывно измеряется. Объемный расход равен средней скорости продукта (vm), умноженной на площадь трубы.

Эти приборы хорошо работают при измерении расхода чистой, однородной жидкости по чистым трубам. Однако, при протекании жидкостей, имеющих посторонние включения — окалина, частицы накипи, песок, воздушные пузыри и при неустойчивом расходе, они дают существенные неточности показаний. Отложение накипи и других механических примесей на стенках измерительной части расходомера сделают искажения постоянными, вплоть до отказа работы прибора.

ТЕПЛОВЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Принцип действия теплового расходомера основан на измерении эффекта теплового воздействия на поток, зависящее от расхода.Тепловой расходомер состоит из нагревателя 1 и двух датчиков температуры 2 и 3, которые устанавливаются снаружи трубки 4 с измеряемым потоком.

ТЕПЛОВЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

При постоянной мощности нагревателя количество тепла, забираемое от него потоком, будет также постоянным. Поэтому с увеличением расхода Q нагрев потока будет уменьшаться, что определяется по разности температур, измеряемой термодатчиками 3 и 2. Для измерения больших расходов измеряют не весь поток Q, а лишь его часть Q1, которую пропускают по трубке 4. Эта трубка шунтирует участок трубопровода 5, снабженный дросселем 6. Проходное сечение дросселя определяет верхнюю границу диапазона измеряемых расходов: чем больше это сечение, тем большие расходы можно измерять (при той же мощности нагревателя).

Тепловые расходомеры рассчитаны на применение в составе теплосчетчиков для водяных и паровых систем теплоснабжения и иных измерительных систем, где в качестве теплоносителя используются вода, конденсат, перегретый пар либо сухой или влажный насыщенный пар.

Интегрированные функциональные возможности тепло вычислителя обеспечивают комплексное решение широкого круга задач:

  • коммерческий учет потребления тепловой энергии и массы воды, перегретого и насыщенного пара;
  • контроль режимов теплопотребления;
  • организация систем диспетчеризации и контроля потребления тепловой энергии и теплоносителя.

Один из возможных вариантов теплосчетчика: 

ТЕПЛОВЫЕ ДАТЧИКИ РАСХОДА ЖИДКОСТИ

Измерение электрических сигналов, соответствующих параметрам теплоносителя, с последующим расчетом тепловой энергии и количества теплоносителя. Современные теплосчетчики имеют коммуникационный порт, предназначенный для расширения функциональных возможностей в части увеличения числа обслуживаемых тепловых нагрузок.


Вам понравится

[/su_posts]

Какие существуют расходомеры и в чем разница

Расходомеры – это приборы, измеряющие объем или массу вещества: жидкости, газа или пара, которые проходят через сечение трубопровода в единицу времени. В быту расходомеры называют «счетчиками», но это неверно, потому что счетчик – только одна из составляющих конструкции расходомера. Особенности конструкции зависят от типа прибора. Сейчас используют 6 типов расходомеров, у каждого из которых – свои сильные и слабые стороны.

Электромагнитные расходомеры

В основе устройства электромагнитных расходомеров – закон электромагнитной индукции, известный как закон Фарадея. Когда проводящая жидкость, например вода, проходит через силовые линии магнитного поля, индуцируется электродвижущая сила. Она пропорциональна скорости движения проводника, а направление тока – перпендикулярно направлению движения проводника.

В электромагнитных расходомерах жидкость течет между полюсами магнита, создавая электродвижущую силу. Прибор измеряет напряжение между двумя электродами, рассчитывая тем самым объем проходящей через трубопровод жидкости. Это надежный и точный метод, потому что сам прибор не влияет на скорость течения жидкости, а за счет отсутствия движущихся частей оборудование долговечное.

Преимущества электромагнитных расходомеров:

  • Умеренная стоимость.
  • Нет движущихся и неподвижных частей в поперечном сечении.
  • Большой динамический диапазон измерений.

Недостатки:

  • На работу прибора влияют магнитные и проводящие осадки.
Электромагнитный расходомер

Принцип работы электромагнитного расходомера

Ультразвуковые расходомеры

В конструкции расходомеров есть передатчик ультразвуковых сигналов (УЗС). Когда жидкость движется по трубопроводу, происходит снос ультразвуковой волны. Из-за этого меняется время, за которое сигнал от передатчика достигает приемника. Время прохождения увеличивается против потока жидкости и уменьшается, если ультразвуковой сигнал идет по направлению потока. Ультразвуковые расходомеры рассчитывают объемный расход жидкости на основе разности времени прохождения УЗС по течению потока и против него – эта разность пропорциональна скорости движения и объему воды.

Достоинства ультразвуковых расходомеров:

  • Невысокая стоимость.
  • Нет движущихся и неподвижных частей в поперечном сечении.
  • Средний динамический диапазон измерений.
  • Возможность монтажа на трубопроводы большого диаметра.

Недостатки:

  • Чувствительность измерений к отражающим и поглощающим ультразвук осадкам.
  • Чувствительность к вибрациям.
  • Чувствительность к перекосам потока для однолучевых расходомеров.

Расходомеры перепада давления

Принцип действия этого типа расходомеров основан на измерении перепадов давления, которые возникают, когда поток жидкости, газа или пара проходит через шайбу, сопло или другое сужающее устройство. Скорость потока в этом месте меняется, давление возрастает: чем выше скорость потока, тем больший расход.

Преимущества:

  • Отсутствие движущихся частей.

Недостатки:

  • Механические препятствия в сечении: шайба или сопло.
  • Малый динамический диапазон измерений.
  • Чувствительность к любым осадкам на сужающем устройстве.

Вихревые расходомеры

Вихревые расходомеры измеряют частоту колебаний, которые возникают в потоке жидкости или газа, когда они обтекают препятствия. При обтекании препятствий образуется вихрь, от которого приборы и получили свое название.

Преимущества:

  • Отсутствие движущихся частей.

Недостатки:

  • Механические препятствия в сечении расходомера.
  • Малый динамический диапазон.
  • Температурная чувствительность.
  • Неустойчивость характеристик при осадках на теле обтекания.
  • Влияние вибраций на результаты измерений.
Вихревой расходомер

Принцип работы вихревого расходомера

Тахометрические расходомеры

Тахометрические расходомеры измеряют скорость вращения, количество оборотов крыльчатки или турбины в потоке воды, газа или пара. Принцип действия не меняется в зависимости от того, установлена ли в приборе крыльчатка или турбина; разница только в том, что ось вращения крыльчатки находится перпендикулярно движению потока, а турбины – параллельно потоку жидкости или газа.

Преимущества:

  • Невысокая стоимость.
  • Работают без источника питания.

Недостатки:

  • Механические препятствия в сечении расходомера.
  • Малый динамический диапазон.
  • Неустойчивость измерений.
  • Невысокая надежность.
  • Примеси и посторонние предметы в воде влияют на результаты измерений.
  • Небольшой срок эксплуатации.
Тахометрический расходомер

Принцип работы тахометрического расходомера

Кориолисовы расходомеры

Принцип действия этих расходомеров опирается на эффект Кориолиса: изменение фаз механических колебаний U-образных трубок, по которым движется жидкость, газ или пар. Сдвиг фаз зависит от массового расхода. Сила Кориолиса, которая воздействует на стенки колеблющейся трубки, меняется под напором воды или пара.

Преимущества:

  • Прямое измерение массового расхода.
  • Осадки не влияют на измерения.
  • Нет препятствий во внутреннем сечении.
  • Измерение расхода жидкостей не зависит от их электрической проводимости.

Недостатки:

  • Высокая стоимость.
  • Строгие требования к технологии изготовления.
  • Влияние вибраций на метрологические характеристики.

Сравнив достоинства и недостатки разных видов оборудования, несложно понять, почему самыми востребованными остаются электромагнитные расходомеры: они недорогие, точные и практичные. Через каталог компании «Интелприбор» вы можете заказать измерительные модули высокого качества. Мы не только поможем выбрать оборудование, но также установим его и обеспечим техобслуживание.

Типы средств измерения расхода жидкости


Методы и средства измерений расхода жидкости


Расходомеры переменного перепада давления

В расходомерах такого типа используют зависимость перепада давления от расхода вещества. Расходомеры переменного давления делятся на:

  • центробежные;
  • ударно-струйные;
  • расходомеры с сужающим устройством;
  • расходомеры с гидравлическим сопротивлением;
  • расходомеры с напорным устройством.

Типы средств измерения расхода жидкости

Самым простым и популярным прибором для измерения расхода такого типа является расходомер с диафрагмой, т.е. сужающим устройством потока жидкости.

В трубе ставят сужающее устройство и измеряется разность давления перед диафрагмой и в её отверстии. По разнице давлений рассчитывается расход вещества. Такой тип датчиков прост в изготовлении и может применяться почти для любых видов жидкостей. Но данный метод измерения расхода с трудом применим в системах с малым расходом, в пульсирующих потоках, а также в веществах, меняющих свое состояние.

Типы средств измерения расхода жидкости


Расходомеры постоянного перепада давления

Расходомеры постоянного перепада давления также известны как расходомеры обтекания. Принцип действия таких расходомеров основан на реакции чувствительного элемента на напор. Ярким примером является ротаметр. Ротаметр имеет форму вертикальной конической трубы, в которой находится поплавок специальной формы. Вещество движется вверх по трубе и поднимает поплавок, пока силы, поднимающие поплавок, и сила гравитации не равновесятся.


Оптические расходомеры

Типы средств измерения расхода жидкости

Оптические расходомеры измеряют расход вещества, используя зависимость оптических эффектов от скорости движения вещества.

Такие расходомеры используют эффект Физо-Френеля. С помощью этого эффекта определяют зависимость скорости света в движущейся среде и скорость движения среды. Оптические расходомеры применяют в агрессивных средах и в условиях высоких и низких температур. 


Акустические расходомеры

Принцип действия акустических расходомеров основан на измерении эффекта, возникающего при прохождении акустических колебаний через вещество. Акустические расходомеры называют ультрозвуковыми, потому что большинство из них работает в ультразвуковом диапазоне.

Выбор средств измерения расхода и количества жидкостей и газа

К ультразвуковым расходомерам относятся:

  • ультразвуковые время-импульсные;
  • ультразвуковые фазового сдвига;
  • ультразвуковые доплеровские;
  • ультразвуковые корреляционные.

Наибольшее применение получили ультразвуковые расходомеры, которые измеряют разность времени прохождения колебаний по потоку и против него. На таком принципе основан датчик Dynasonics TFXL.

Типы средств измерения расхода жидкости

Ультразвуковые расходомеры могут применяться в агрессивных средах, в диэлектрических средах и в трубах почти любого диаметра. Точность измерения таких расходомеров высокая в широком диапазоне. Ультразвуковые расходомеры чаще применяют как прибор для измерения расхода и количества жидкости, так как газ имеет малое акустическое сопротивление и в нем труднее получить акустические колебания. Также ультразвуковые датчики сильно зависят от степени загрязненности вещества. Длина волны должна быть на порядок больше диаметра твердых частиц.


Электромагнитные расходомеры

Типы средств измерения расхода жидкости

Принцип действия электромагнитных расходомеров основан на законе Фарадея. Поток жидкости помещают между полюсами магнита и замеряют ЭДС. Применяют как постоянные магниты, так и электромагниты, питаемые переменным током. Труба в зоне установки расходомера должна быть выполнена из непроводящего немагнитного материала.

Электромагнитные расходомеры применяют в различных областях, в том числе в медицине, биохимической и пищевой промышленности, так как они малоинертны, устанавливаются снаружи трубопровода, позволяют измерять очень малые расходы. К недостаткам электромагнитных расходомеров можно отнести следующие: они не могут применяться для измерения расхода веществ с малой электропроводностью, расходомеры чувствительны к неоднородностям, турбулентностям, паразитным токам заземления.

Расходомеры могут забивать трубы металлическим мусором.

Типы средств измерения расхода жидкости


Кориолисовые или массовые расходомеры

Данный вид приборов использует эффект Кориолиса для измерения массового расхода. Принцип действия расходомера основан на измерении разницы фаз колебаний на входе и на выходе измерительных трубок. Рассмотрим как это работает на примере расходомера RCT 1000. Катушка возбуждения создает колебания в расходомерной трубе. Когда жидкости нет, колебания на измерительных катушках совпадают по фазе. Но при наличии потока начинает действовать сила Кориолиса, из-за которой колебания на входе и на выходе начинают отличаться. Зная разность фаз колебаний, расходомер определяет массовый расход. Плотность жидкости определяется по периоду колебаний.


Вихревые расходомеры

Типы средств измерения расхода жидкости

Вихревые расходомеры используют эффект вихревой дорожки Кармана для измерения расхода. За телом обтекания в потоке образуется система вихрей. Частота вихрей пропорциональна скорости потока. Пульсации давления, возникающие в потоке вихрей за телом обтекания, регистрируются датчиками. Такой тип расходомеров обеспечивает низкую относительную погрешность +(0,2-1,5)% в широком динамическом диапазоне.


Тепловые расходомеры

Тепловые расходомеры основаны на измерении скорости потока по эффекту теплового нагрева потока или тела в потоке. Тепловые расходомеры делятся на следующие виды: калориметрические, термоконвективные и термоанемоментрические.

Электромагнитный расходомер — Википедия

Электромагнитный расходомер

Для контроля расхода и учёта воды и теплоносителя с 40-х годов XX века в промышленности применяются электромагнитные расходомеры. Неоспоримые достоинства электромагнитных расходомеров — отсутствие гидродинамического сопротивления, отсутствие подвижных механических элементов, высокая точность, быстродействие — определили их широкое распространение.

Вид внутри канала. Видна изолирующая футеровка канала и электрод.

В проводнике, пересекающем силовые линии магнитного поля, индуцируется ЭДС, пропорциональная скорости движения проводника. При этом направление тока, возникающего в проводнике, перпендикулярно к направлению движения проводника и направлению магнитного поля. Это известный закон электромагнитной индукции — закон Фарадея.

Если заменить проводник потоком проводящей жидкости, текущей между полюсами магнита, и измерять ЭДС, наведённую в жидкости по закону Фарадея, можно получить принципиальную схему электромагнитного расходомера, предложенную ещё самим Фарадеем. Электромагнитные расходомеры могут быть выполнены как с постоянными магнитами, так и с электромагнитами, питаемыми переменным током. Электромагнитные расходомеры имеют свои достоинства и недостатки, определяющие области их применения.

Труба в зоне измерения расходомера (длина участка 2..5 диаметров трубы) выполняется из непроводящего немагнитного материала. Чаще всего делается футеровка (вставка) из инертных пластиков (типа фторопласта, полиэтилена) в трубу из нержавеющей стали. Для уменьшения турбулентности потока в зоне измерения рекомендуется монтировать расходомер в прямолинейные участки без изменения сечения на протяжении 5..10 диаметров трубы до и после расходомера.

Погрешность данных приборов определяется в основном погрешностями их градуировки и измерения разности потенциалов Е. Однако электрохимические процессы на электродах, различные помехи и наводки, неоднородность потока жидкости не позволяют пока получить той потенциально высокой точности измерений расхода, которая вытекает из принципа действия данного типа расходомеров. Так, изготовляемые в СССР электромагнитные расходомеры, несмотря на индивидуальную градуировку, (на высокоточных расходомерных стендах) и весьма совершенные средства измерения имеют класс точности 1,0— 2,5 %.[источник не указан 3050 дней]

Существенным и основным недостатком электромагнитных расходомеров с постоянным электромагнитом, ограничивающим их применение для измерения слабопульсирующих потоков, является поляризация измерительных электродов, при которой изменяется сопротивление преобразователя, а следовательно, появляются существенные дополнительные погрешности. Поляризацию уменьшают, применяя электроды из специальных материалов (угольные, каломелиевые) или специальные покрытия для электродов (платиновые, танталовые). Такие расходомеры зачастую требуют каждодневного технического ухода (подрегулировка нуля, поднастройка и т. п.).

В расходомерах с переменным магнитным полем явление поляризации электродов отсутствует, однако появляются другие эффекты, также искажающие полезный сигнал:

  • трансформаторный эффект, когда на витке, образуемом жидкостью, находящейся в трубопроводе, электродами, соединительными проводами и вторичными приборами наводится трансформаторная ЭДС, источником которой является обмотка электромагнита или внешние синхронные наводки (например, от соседних расходомеров). Для их компенсации в измерительную схему прибора вводят компенсирующие цепи или питают электромагнит переключаемым постоянным током.
  • ёмкостный эффект, возникающий из-за большой разности потенциалов между системой возбуждения магнитного поля и электродами и паразитной ёмкости между ними (соединительные провода и т. п.). Средством борьбы с этим эффектом является тщательная экранировка.

Первичные преобразователи электромагнитных расходомеров не имеют частей, выступающих внутрь трубопровода (электроды устанавливаются заподлицо со стенкой трубопровода), сужений или изменений профиля. Благодаря этому гидравлические потери на приборе минимальны. Кроме того, преобразователь расходомера и технологический трубопровод можно чистить и стерилизовать без демонтажа. Поэтому эти расходомеры используют в биохимической и пищевой промышленности, где доминирующими являются требования к стерильности среды. Отсутствие полых углублений исключает застаивание и коагулирование измеряемого продукта.

На показания электромагнитных расходомеров не влияют физико-химические свойства измеряемой жидкости (вязкость, плотность, температура и т. п.), если они не изменяют её электропроводность.

Конструкция первичных преобразователей позволяет применять новейшие изоляционные, антикоррозийные и другие покрытия, что даёт возможность измерять расход агрессивных и абразивных сред. В специальных расходомерах с переменным магнитным полем электроды также могут быть изолированы от жидкости, образуя конденсатор в измерительной цепи.

Метод чувствителен к неоднородностям (пузырькам), турбулентности потока, неравномерности распределения скоростей потока в сечении канала.

Метод чувствителен к паразитным токам заземления протекающим по трубе. Поэтому при риске возникновения таких токов участки перед и после расходомера делаются из металлической трубы с тщательным электрическим соединением участков для минимизации паразитных токов через воду в районе расходомера.

Расходомеры (особенно с постоянными магнитами) могут забивать сечение трубы металлическим мусором удерживаемым магнитной системой расходомера. Для борьбы с этим явлением расходомеры с электромагнитами периодически отключаются на короткое время чтобы поток воды унес мусор.

Отмеченные преимущества и обеспечили достаточно широкое распространение электромагнитных расходомеров, несмотря на их относительную конструктивную сложность.

Электромагнитные расходомеры применяют для измерения очень малых (3 • 10−9 м3/с) расходов (например, для измерения расхода крови по кровеносным сосудам) и больших расходов жидкостей (3 м3/с). Причём диапазон измерения расходомера одного типоразмера достигает значения 1000:1.

Электромагнитные расходомеры непригодны для измерения расхода газов, а также жидкостей с электропроводностью менее 10−3 – 10−5 См/м (10−5 – 10−7 Ом−1•см−1), например, лёгких нефтепродуктов, спиртов и т. п. Применение разрабатываемых в настоящее время специальных автокомпенсирующих устройств позволит существенно снизить требования к электропроводности измеряемых сред и создать электромагнитные расходомеры для измерения расхода любых жидкостей, в том числе и нефтепродуктов.[источник не указан 3050 дней]

Оснащение молочного завода электромагнитными расходомерами

Наибольшее применение расходомеры нашли в учёте водных и энергетических ресурсов (в частности в отопительных системах).

Электромагнитные расходомеры широко применяют в металлургической, биохимической и пищевой промышленности, в строительстве и руднообогатительном производстве, в медицине, так как они малоинерционны по сравнению с расходомерами других типов. Расходомеры незаменимы в тех процессах автоматического регулирования, где запаздывание играет существенную роль, или при измерении быстро меняющихся расходов.

Виды, устройство и принцип действия расходомеров

 О чем эта статья

Перейти к выбору и покупке расходомеров

Расходомер, как видно из названия — устройство, предназначенное для измерения расхода какого-либо вещества — как правило, жидкости или газа. Если имеется канал диаметром d и по нему со средней скоростью Va перемещается жидкость или газ, то расходом является величина:


где A=πd2/4 — площадь поперечного сечения канала.

Следует сразу отметить, что вещества, расход которых необходимо измерить, могут быть сжимаемыми (газ) или несжимаемыми (жидкость), и методики измерения расхода в обоих случаях имеют свои особенности.

Независимо от типа используемого устройства определения расхода вещества является довольно сложной комплексной задачей, при решении которой приходится учитывать множество факторов, таких как:

  1. Физические характеристики исследуемой среды
  2. Физические характеристики окружающей среды
  3. Форма канала и свойства материала, из которого он изготовлен

К каждому датчику как правило прилагается набор документов описывающих технические параметры прибора, его ограничения и рекомендации по эксплуатации. Перед покупкой изучите все эти документы и выберете наиболее подходящее для ваших задач устройство.

Среди довольно большого разнообразия расходомеров по принципу действия можно выделить следующие основные группы:

  • Датчики скорости потока по перепаду давления
  • Тепловые расходомеры
  • Ультразвуковые расходомеры
  • Электромагнитные расходомеры
  • Микрорасходомеры
  • Кориолисовские расходомеры
  • Расходомеры с мишенями
  • Детекторы изменения скорости потока

Рассмотрим основные виды расходомеров.

Тепловые расходомеры

В основе метода лежит довольно простая идея: если локально изменять свойства вещества в потоке (например, температуру) и регистрировать эти изменения на некотором удалении от места воздействия, можно определить среднюю скорость перемещения вещества в потоке (рисунок 1). Предположим, в потоке установлена пара датчиков температуры (A и B) и один нагревательный элемент C, причём расстояния AC>BC. Если вещество неподвижно, повышение температуры происходит локально за счёт теплопроводности, и датчик B нагревается быстрее, поскольку расположен ближе к нагревательному элементу. Если же поток придёт в движение, температура в области A упадёт до исходной температуры вещества в потоке, а температура в области B будет чуть выше исходной. Анализ данных с датчиков позволяет однозначно судить о скорости перемещения вещества в потоке.


Рисунок 1. Общая схема расположения ключевых элементов теплового расходомера.

Подобным образом изменению могут быть подвергнуты и другие параметры вещества (например, его химический состав), однако в большинстве случаев это недопустимо, например, когда речь идёт о медицинском применении расходомеров.

Ультразвуковые расходомеры

В устройствах данного типа используется свойство звуковых волн изменять скорость своего распространения в подвижной среде. Если установить источник (A) и приёмник (B) ультразвука со смещением (рисунок 2), то о скорости потока можно судить по изменению скорости распространения звуковой волны вдоль отрезка AB.


Рисунок 2. Общая схема расположения ключевых элементов ультразвукового расходомера

Кроме того, для измерения локальной скорости потока может быть использован эффект Допплера, для этого источник и приёмник располагаются как указано на рисунке 3. Исходный сигнал, а также сигнал с приёмника отправляются на смеситель. Частота ультразвука, которую фиксирует приёмник, изменяется в зависимости от скорости потока, исходная частота остаётся неизменной. Частота сигнала на выходе из смесителя является разностью частот исходного и принятого сигнала — по этой величине можно однозначно судить о локальной скорости вещества в потоке.


Рисунок 3. Общая схема расположения ключевых элементов расходомера на эффекте Допплера

Ультразвук достаточно часто используется в производстве датчиков. Например, существуют ультразвуковые дефектоскопы

Электромагнитные расходомеры

Если жидкость проводит ток, её перемещение поперёк линий магнитного поля приведёт к возникновению ЭДС, пропорциональной скорости потока. На практике эта схема реализуется путём установки электромагнитов таким образом, чтобы линии магнитного потока были перпендикулярны потенциальному перемещению потока жидкости, а также установкой пары электродов, фиксирующих наведённую движением потока ЭДС (рисунок 4).


Рисунок 4. Общая схема расположения ключевых элементов электромагнитного расходомера

Возможно несколько различных реализаций данного метода, однако изменения в целом касаются схемы обработки данных и не затрагивают принципиальные основы метода.

Вихревые расходомеры (Расходомеры с мишенями)

В расходомерах данного типа основным элементом является дискообразная или шарообразная мишень, укреплённая на эластичном тросе, один противоположный конец которого неподвижно закреплён (рисунок 5). Поток жидкости или газа приводит к смещению мишени, что вызывает деформацию троса, а установленные на нём тензодатчики регистрируют тип и степень деформации. Полученные данные позволяют судить о скорости потока вещества, а также о его направлении.


Рисунок 5. Схема расположения ключевых элементов вихревого расходомера

Достоинством таких датчиков является возможность проведения измерений расхода и скорости потока в двух или даже в трёх различных направлениях. Для обеспечения подобной многозадачности необходимо обеспечить симметричность мишени для всех нужных направлений.

Кориолисовские расходомеры

Обычно кориолисовский расходомер состоит из трубки, которая подвергается вибрационному воздействию от внешнего генератора колебаний (рисунок 6). Если трубка пуста, колебания приведут к синхронному ускорению всех участков трубки. Если же по трубке перемещается жидкость, на неё из-за воздействия ускорения, вызванного колебательным воздействием, будет также действовать кориолисова сила, направленная в различные стороны для входного и выходного потоков жидкости, что приведёт к сдвигу фазы колебаний трубки. Величина фазового рассогласования зависит от массы жидкости, протекающей по трубке в единицу времени.


Рисунок 6. Схема функционирования кориолисовского расходомера

Главным достоинством устройств данного типа является их универсальность — они могут применяться для определения скорости потока большого спектра веществ — как жидкостей, так и газов. Основным же недостатком кориолисовских расходомеров является их относительно высокая стоимость.

Микрорасходомеры

Этот класс представлен расходомерами теплового или емкостного принципа действия в миниатюрном исполнении. Требования к габаритам обусловлены областью применения подобных устройств — это, как правило, химическое производство или медицинские технологии. По принципу действия микрорасходомеры полностью идентичны своим крупногабаритным аналогам, однако стоимость миниатюрных устройств, как правило, гораздо выше.

Расходомеры по перепаду давления

Для понимания принципа функционирования данного типа расходомеров проще всего прибегнуть к аналогии с законом Ома. В рамках данной аналогии давление эквивалентно напряжению, а скорость потока эквивалентна силе тока. Если на пути прохождения потока установить препятствие (сопротивление), возникнет перепад давления до и после препятствия (падение напряжения на сопротивлении). Определение перепада давление можно осуществлять как непосредственно измеряя давление жидкости до и после прохождения препятствия, так и с помощью дифференциального датчика давления, установленного на ответвлении от основного канала. Аналогично можно определить силу тока на участке цепи, зная падение напряжения на сопротивлении известного номинала.

Детектор изменения скорости потока (датчики наличия расхода)

Часто требуется определение не количественных, а качественных характеристик потока жидкости или газа. К примеру, от устройства необходимо получать сигнал только в случае, если скорость потока отклоняется от номинальной. В данном случае чаще всего используются пороговые расходомеры на основе пьезоэффекта. В потоке устанавливается пара пьезокристаллов, включенных в электрическую цепь навстречу друг другу. Один из кристаллов изолирован от внешнего воздействия, второй находится непосредственно в потоке вещества (Рисунок 7).


Рисунок 7. Схема расположения ключевых элементов порогового расходомера на пьезокристаллах

В случае если кристаллы находятся в одинаковых условиях, заряды на них имеют равную величину и разные знаки, напряжение на резисторе R равно нулю. Если же скорость потока изменяется, возникает изменение заряда на не изолированном кристалле, баланс зарядов нарушается, напряжение на резисторе изменяется — регистрация этого явления позволяет сделать вывод об отклонении скорости потока от номинального значения.

Приборы, в основу которых положен данный метод, как правило, могут быть использованы для анализа как жидких, так и газообразных сред.

Механические расходомеры

К этой группе относится ряд устройств, полностью лишённых электронных компонентов. В расходомерах такого типа скорость потока может измеряться, например, путём определения скорости вращения механической турбины при погружении её в поток. Механические расходомеры довольно дешевы, однако их точность, как правило, не позволяет использовать их в большинстве критичных к этому параметру приложений. Помимо низкой точности, их недостатком является наличие подвижных частей, препятствующих потоку жидкости или газа, что также снижает точностные характеристики приборов данного типа. Однако, это не мешает им широко использоваться в приборах учета расхода воды установленных в квартирах.

Опубликована 04-03-12.


Если вам понравилась статья нажмите на одну из кнопок ниже

Расходомеры жидкости профессиональный учет расхода

Расходомеры жидкости контактные и бесконтактные. Промышленные расходомеры жидкости ультразвуковые, турбинные, массовые, вихревые, электромагнитные, ротаметры, с овальными шестернями. Для профессиональных решений измерения расхода жидкости в пищевой, фармацевтической, нефтехимической промышленности, энергетике и коммунальных хозяйствах.


Области применения расходомеров жидкости

  • Нефтедобывающая, нефтеперерабатывающая промышленность (+ системы пластового давления, пластовая/сеноманская/подтоварная вода, водонагнетательные/водозаборные скважины)
  • Пищевая промышленность (жидкие продукты)
  • Машиностроение и приборостроение
  • Химическая, фармацевтическая, металлургическая, энергетическая промышленность (технологические жидкости)
  • Жилищно-коммунальное хозяйство
  • Целлюлозно-бумажная промышленность
  • Водоочистка/водоподготовка
  • Измерение расхода жидких сред на промпредприятиях

Возможные среды применения


Назначение расходомеров жидкости

  • Коммерческий учет жидкостей (нефти, смесей, воды и т.п.)
  • Измерение параметров скважин (дебит, расход + доп. параметры – температура, давление и т.п.)
  • Измерение расхода воды (теплофикационной, технологической, сточной и канализационной), учет расхода высоковязких жидкостей
  • Счетчики воды (в том числе в ЖКХ)
  • Заправка транспорта/оценка потребления топлива
  • Организация систем ППД, системы одновременно-раздельной эксплуатации пластов, ОРД, ОРЗ, ВСП, МСП, глубинно-исследовательские комплексы  (скважинное применение)
  • Защита оборудования, насосов от сухого хода и других критических ситуаций
  • Визуальная индикация расхода, контроль/регулирование в ТП (, сигнализация, слив/налив продукта из цистерн)
  • Регулирование смешивания/дозирования жидкостей в пищевой/фармацевтической/химической и иных отраслях


Преимущества

На достоинства приборов влияют используемые способы работы. С целью подобрать оптимальный для своего предприятия прибор с учетом всех достоинств и недостатков метода обратитесь к специалистам за консультациями. В целом же можно отметить, что:

  • Применение современных расходомеров позволяет улучшить рентабельность производства, особенно в нефтяной отрасли и в скважинных применениях (+ снижает затраты на организацию добычи продукта, организацию систем автоматики)
  • Отдельные модели (например, электромагнитные расходомер) нечувствительны к параметрам среды и могут применяться в особо коррозионных средах.

Недостатки

Недостатки приборов связаны с их методом работы. Некоторые общие свойства:

  1. Расходомеры с подвижными частями (ротаметры, ротационные счетчики, крыльчатые, роторные, реле потока) имеют меньшую надежность чем приборы без подвижных частей (например, вихревые)
  2. Расходомеры без электронных блоков (некоторые реле потока, ротаметры) более экономичны, не требуют питания и дают показания сразу на месте, но имеют подвижные части и менее надежны.


Принцип работы расходомеров жидкости

Расходомеры жидкости

На примере скважинного расходомера ЭВ-200 СКВ можно в общем оценить метод работы промышленных расходомеров. Прибор устанавливается на НКТ в нужной точке скважины, использует вихревой принцип (регистрируются вихри за телом обтекания и вычисляется расход). Электроника формирует сигнал выхода (в том числе с доп. датчиков давления и температуры) и передает далее в АСУТП. Так оценивается дебит, расход скважины, непрерывно контролируются параметры.

Заказать консультацию инженера

Отправить ответ

avatar
  Подписаться  
Уведомление о