Двухконтурная тормозная система – Многоконтурный пневматический тормозной привод грузовых автомобилей.

Двухконтурная тормозная система

ДВУХКОНТУРНЫЙ ТОРМОЗНОЙ ПРИВОД — применяется на автомобилях после 1987 года выпуска.  Его отличием является то, что тормозной  гидравлический привод разделен на два контура. Первый контур приводит в действие передние тормозные механизмы, а  второй — задние.  Управление осуществляется одной педалью .Снижение давления в одном из контуров не приводит к выходу из строя второго  контура. Нажатие  на  педаль перемещает поршни переднего и заднего контуров в главном тормозном  цилиндре.

Двухконтурная тормозная система — тормозная система транспортного средства, в которой используется двухконтурный тормозной привод.
Двухконтурный тормозной привод — тормозной привод, имеющий после тормозного крана или главного цилиндра два независимо действующих тормозных контура, каждый из которых соединен со своими тормозными механизмами транспортного средства.

Разделение тормозных контуров


Сейчас тормозные приводы на всех легковых автомобилях выполняются по двухконтурной схеме, которая помогает остановить машину при разрыве тормозного шланга
или других неисправностях гидропривода. Существуют три основных схемы разделения контуров.
1) Один контур действует на тормоза передней оси, а другой — на заднюю ось (“Жигули”, “Волга”, УАЗ).
   Недостаток ее вытекает из того, что передняя ось обеспечивает 60-70% тормозных сил, а задняя — только 30-40%. При выходе из
   строя первого контура  тормозной путь удлиняется почти втрое.

2) Вторая схема — диагональная (переднеприводные ВАЗы, ИЖ-2126, “Таврия”). Один контур действует на правое
   переднее
и левое заднее, а второй — на левое переднее и правое заднее. При
   неисправности любого из контуров тормозной путь увеличивается вдвое и вдобавок машина норовит развернуться.

3) Третий вариант заключается в том, что

первый контур действует на все колеса, а второй — только на передние  
   
и обеспечивает 2/3 тормозного усилия передних колес (“Москвич”, “Нива”). В результате при отказе первого контура
   тормозной путь увеличится примерно на треть, а при неисправности второго — тоже на треть при нормальном торможении и всего на
   10% — при торможении на “юз”. Таким образом, эта схема наиболее безопасна. Но расплачиваться за это приходится сложными и
   дорогими суппортами.

.

Двухконтурная пневматическая тормозная система — Легкое дело

Двухконтурная пневматическая тормозная система

В настоящее время подавляющее большинство современных грузовых автомобилей оснащено двухконтурной пневматической тормозной системой. Использование такой системы значительно повышает надежность в случае какого-либо отказа одного из контуров. Фактически это интеграция двух тормозных систем. На первый взгляд такая конструкция покажется достаточно сложной для понимания, но если был изучен принцип работы простейшей тормозной системы, то и двухконтурная система будет воспринята. Вообще говоря следует представлять, что в двухосном транспортном средстве один контур обеспечивает торможение колес передней оси, а второй контур выполняет торможение колес второй оси. В случае отказа одного из контуров, функцию торможения будет выполнять другой.

Итак, воздух закачивается компрессором во «влажный» ресивер, который защищен от избыточного давления предохранительным клапаном. Затем сжатый воздух поступает из «влажного» ресивера в первичный «сухой» ресивер и далее во вторичный «сухой» ресивер. С этого момента двухконтурная тормозная система готова к работе. По воздушным магистралям сжатый воздух из первичного «сухого» ресивера подведен к ножному клапаны с тормозной педалью. Аналогичная ситуация и со вторичным «сухим» ресивером, от которого воздух также поступает к ножному клапану. При этом ножной клапан состоит фактических из двух разделов, т.е. представляет собой два клапан в одном. Один из отделов обслуживает первичный тормозной контур, а второй отдел обслуживает вторичный тормозной контур. Когда выполняется торможение, воздух из первичного ресивера через ножной клапан подается на задние тормозные камеры. В то же время воздух из вторичного ресивера через подается на передние тормозные камеры. При утечке воздуха в первичном контуре, вторичный будет оставаться работоспособным, и наоборот. Первичный и вторичный контуры снабжены сигнализаторами о низком давлении, которые расположены в кабине. Кроме того, каждый грузовик, тягач или автобус оборудуется аварийным или стояночным тормозом. Принцип его работы основан на использовании мощной пружины для приложения тормозного усилия. Дело в том, что существует вероятность утечки воздуха из тормозной системы. В аварийном тормозе давление воздуха не дает пружине разжаться и произвести торможение. При утечке воздуха, когда давление в системе будет 20-30 фунтов на дюйм, пружина разожмется и тормоза автоматически сработают, транспортное средство остановится. Аварийный тормоз сильно зависит от регулировки пружины.

1 — компрессор, 2 — говернер, 3 — осушитель воздуха, 4 — «влажный» ресивер, 5 — первичный ресивер, 6 — вторичный ресивер, 7 — педаль тормоза с ножным клапаном, 8 — ограничительный клапан передней оси, 9 — ускорительный клапан, 10 — задняя тормозная камера, 11 — передняя тормозная камера,

Несколько более сложная тормозная система используется в автопоездах, т.е. в сцепке тягача с полуприцепом. Тормозная система полуприцепа подключается к системе тягача с помощью специальных гибких магистралей с разъемами, которые не допускают утечки воздуха. Перед подключением необходимо убедиться, что разъемы не загрязнены Состав входят также специальные предохранительные клапаны, которые не допускают утечку воздуха в тормозах тягача, если полуприцеп случайно оторвется. Кроме того на полуприцепе устанавливается ресивер, который обеспечивает нормальное или аварийное торможение, и некоторые другие клапаны.

Современные коммерческие транспортные средства оснащаются интегрированными электронными системами, к которым относятся антиблокировочная система (ABS — anti-lock brake system). ABS контролирует скорость вращения каждого колеса. Если во время торможения какое-либо колесо блокируется, то ABS уменьшает тормозное усилие на это колесо тем самым не позволяя колесу скользить на влажной или скользкой дороге, а также во время прохождения поворотов. В состав типичной ABS входят датчики и зубчатые кольца, электронный блок управления (ECU — electronic control unit), клапаны. ECU является мозгом системы. Датчики, установленные на каждом колесе, посылают в ECU информацию о скорости вращения колеса и при необходимости ECU дает команду об уменьшении тормозного усилия на это колесо. Как правило, в кабине водителя срабатывает специальная лампа, сигнализирующая о работе ABS. На полуприцепе может быть также установлена ABS.

Кроме ABS на транспортном средстве могут присутствовать и другие системы, обеспечивающие безопасность дорожного движения. Например, система автоматического управления тягой (ATC — automatic traction control ), которая также как ABS отслеживает скорость вращения каждого колеса. При этом сравниваются скорости вращения задних ведущих и передних ведомых колес. Если какое-либо колесо вращается быстрее остальных, например, при попадании на скользкий участок дороги, то ATC его притормаживает.

Эффективным техническим решением стала система курсовой устойчивости (ESP — Electronic Stability Program), которая предотвращает занос или опрокидывание транспортного средства, а также «складывание» автопоезда. Система имеет три датчика, которые измеряют угол рыскания (отклонение от курса), поперечное ускорение и положение рулевого колеса. ECU анализирует эти данные и при необходимости притормаживает одно или несколько колес.

http://www.mehanik.ru

Двухконтурная тормозная система. — Советы бывалых

08 сентября 2006

Двухконтурная тормозная система.

Контуры “левое переднее – правое переднее” и “левое заднее – правое заднее” с использованием штатного регулятора. Используется совместно с задними дисковыми тормозами на ВАЗ 21083.

ВНИМАНИЕ!
Любое вмешательство в тормозную систему запрещено! Вы должны об этом помнить! Мы снимаем с себя любую ответственность в случае возникновения форс-мажорных обстоятельств.

 

 

 

Плюсы схемы.
1.Одинаковые усилия на левых и правых колесах автомобиля.
2.Регулятор начинает регулировать усилие на задних колесах в более широких пределах.

Минусы схемы.
При отказе контура “левое переднее – правое переднее” эффективность торможения резко падает. Следите за состоянием контура!

Главный тормозной цилиндр.
От ГТЦ отходят 3 трубки 2 вперед, одна – назад.
От первого поршня ГТЦ, который ближе к вакуумному усилителю, отходят трубки на передние колеса. От дальнего – под днище на задние. Лишнюю дырку можно заглушить болтом с медной шайбой.

Регулятор давления.
На регуляторе глушатся два отверстия – одно с торца, второе рядом с ним – бывшая магистраль “правое переднее – левое заднее” Этого контура больше не будет.

Собираем.
Единственная трубка, которая идет от ГТЦ сажается на единственный вход колдуна, на единственный выход колдуна ставится тройник от классики, после тройника трубки на задние колеса. Прокачиваем – наслаждаемся. Желательно использовать все тормозные колодки одной фирмы, желательно известных мировых производителей. Комбинации могут привести к невозможности настроить тормоза.


Требуемые детали:

Трубка тормозная около 20 см

Тормозной тройник от классики

Оконечник тормозной трубки

Подшипник (донор шариков)

Жидкость тормозная 1 литр DOT4

www.tech-cars.ru

Двухконтурная тормозная система

 

ДВУХКОНТУРНАЯ ТОРМОЗНАЯ СИСТЕМА, содержащая главный тормозной цилиндр с двумя поршнями, разделяющими его корпус на две камеры, одна из которых соединена с передним, а другая — с задним тормозными контурами, и регулятор давления в заднем тормозном контуре , отличающаяся тем, что, с целью повыщения остаточной эффективности торможения при повреждении переднего контура , в корпусе главного тормозного цилиндра выполнен радиальный канал, нормально перекрытый задней частью поршня, ограничивающего камеру, соединенную с передним тормозным контуром, при этом указанный канал подключен к заднему тормозному контуру параллельно регулятору давления. (О со 00 1ЧЭ

СОЮЗ СОВЕТСНИХ

СОЦИАЛИСТИЧЕСНИХ

РЕСПУБЛИН

„„SU„„1031821 з(51) В 60 Т 826

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К А ВТОРСКОМЪ(СВИДЕТЕЛЬСТВУ (21) 3406112/27-11 (22) 10.03.82 (46) 30.07.83. Бюл. № 28 (72) Д. А. Соцков и А. Э. Юрц

ГОСУДАРСТВЕННЫЙ НОМИТЕТ СССР

llO ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТНРЫТИЙ (71) Владимирский политехнический институт (53) 629.! 13-59 (088.8) (56) 1. Авторское свидетельство СССР № 880827, кл. В 60 Т 8/26, 1980. (54) (57) ДВУХКОНТУРНАЯ ТОРМОЗНАЯ

СИСТЕМА, содержащая главный тормозной цилиндр с двумя поршнями, разделяющими его корпус на две камеры, одна из которых соединена с передним, а другая— с задним тормозными контурами, и регуляtор давления в заднем тормозном контуре, отличающаяся тем, что, с целью повышения остаточной эффективности торможения при повреждении переднего контура, в корпусе главного тормозного цилиндра выполнен радиальный канал, нормально перекрытый задней частью поршня, ограничивающего камеру, соединенную с передним тормозным контуром, при этом указанный канал подключен к заднему тормозному контуру параллельно регулятору давления.

1031821

Составитель В. Ляско

Техред И. Верес Корректор Л. Бокшан

Тираж 675 Подписное

Редактор М. Рачкулинец

Заказ 5302/2!

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий! 13035, Москва, Ж вЂ” 35, Раушская наб., д. 4/5

Филиал ППП «Патент», г. Ужгород, ул. Проектная, 4

Изобретение относится к автомобилестроению, а более конкретно к тормозным системам, используемым в колесных транспортных средствах.

Наиболее близкой к предлагаемой является двухконтурная тормозная система, содержащая главный тормозной цилиндр с двумя поршнями, разделяющими его корпус на две камеры, одна из которых соединена с передним, а другая — с задним тормозными контурами, и регулятор давления в заднем тормозном контуре (1).

Недостатком известной тормозной системы с разделением контуров по осям автомобиля является снижение остаточной эффективности заднего контура при повреждении переднего вследствие снижения приводного давления регулятором.

Цель изобретения — повышение остаточной эффективности заднего контура двухконтурной тормозной системы с разделением контуров по осям транспортного средства для сокращения его тормозного пути и создания возможности более широкого применения этой наиболее простой и надежной схемы разделения контуров.

Указанная цель достигается тем, что в двухконтурной тормозной системе, содержащей главный тормозной цилиндр с двумя поршнями, разделяющими его корпус на две камеры, одна из которых соединена с передним, а другая — с задним тормозными контурами, и регулятор давления в заднем тормозном контуре, в корпусе главного тормозного цилиндра выполнен радиальный канал, нормально перекрытий задней частью поршня, ограничивающего камеру, соединенную с передним тормозным контуром, при этом указанный канал подключен к заднему тормозному контуру параллельно регулятору давления.

На чертеже показана схема двухконтурной тормозной системы.

Тормозная система включает в себя главный тормозной цилиндр 1, управляемый педалью 2, содержащий две рабочие полости. Полость А, соединенная с задним тормозным контуром 3 трубопроводом 4 через регулятор 5 давления, а полость Б— с передним тормозным контуром трубопроводом 6. В каждой полости расположены поршни 7 и 8. Помимо основных каналов 9 и 10, каждый из которых соединяет одну из полостей с соответствующим тормозным контуром, в корпусе цилиндра выполнен радиальный канал 11, нормально закрытый задней частью поршня 8 переднего тормозного контура и. соединенный трубопроводом 12 непосредственно с задним тормозным контуром.

Тормозная система работает при исправных контурах в обычном режиме, так как при рабочем ходе поршня 8 канал 11 остается закрытым. При повреждении переднего тормозного контура ход поршя 8 увеличивается, канал 11 открывается и дав20 ление жидкости из полости А через трубопровод 12, минуя регулятор 5 давлеиия, поступает непосредственно к заднему тормозному контуру.

Кроме повышения остаточной эффективности заднего контура, предлагаемая система упрощает операцию прокачки заднего контура при удалении воздуха из системы, так как при увеличении хода поршня 8 исключается влияние регулятора давления.

Технико-экономический эффект изобретения выражается в уменьшении количества дорожно-транспортных происшествий за счет уменьшения тормозного пути при торможении задним контуром, а также в создании возможности расширения сферы применения наиболее простой схемы двухконтурной тормозной системы с разделением контуров по осям транспортного средства за счет повышения остаточной эффективности заднего контура путем отключения регулятора давления при повреждении

40 переднего контура.

Двухконтурная тормозная система Двухконтурная тормозная система 

Контуры тормозной системы автомобиля — схема работы

Описание контуров тормозной системы

Что делать если гидропривод тормозной системы разгерметизируется и тормозная жидкость начнет вытекать под давлением? Это очень опасная ситуация: вы нажимаете на педаль тормоза, а она проваливается и автомобиль даже не думает останавливаться. Чтобы уберечь водителя от столь неприятной ситуации и сохранить способность тормозить, пусть и с частичной потерей эффективности, гидропривод разделили на контуры.

Примечание
В случае утечек и, как следствие, разгерметизации, одного контура, питаемого, например, через левое отверстие в главном тормозном цилиндре, левый поршень, вытеснив жидкость через обрыв магистрали, упрется удлинителем в дно цилиндра, образовав для правой рабочей полости фиктивное дно. Если же разгерметизация произойдет в контуре, подпитываемом из правой полости, то правый поршень, вытеснив жидкость, упрется удлинителем в левый поршень, передавая на него усилие со стороны штока.

Существует несколько схем разделения гидропривода тормозов на контуры. Все они приведены на рисунке 7.13, самые распространенные изображены на рисунках А и Б.

На рисунке видно, что передняя (1) и задняя (2) полости главного тормозного цилиндра отвечают каждая за свой контур, отделяющий или дублирующий гидроприводы передних и задних тормозных механизмов.

Различные схемы разделения гидропривода тормозов на контуры
Различные схемы разделения гидропривода тормозов на контуры
Различные схемы разделения гидропривода тормозов на контуры
Рисунок 7.13 Различные схемы разделения гидропривода тормозов на контуры.

Двухконтурный гидравлический привод тормозов

Категория:

   Рулевое управление и тормозная система

Публикация:

   Двухконтурный гидравлический привод тормозов

Читать далее:



Двухконтурный гидравлический привод тормозов

В автомобилях ВАЗ-2101 «Жигули» и «Москвич-2140» применен двухконтурный гидравлический привод тормозов. У автомобиля ВАЗ-2101 передние и задние колеса имеют независимые гидравлические приводы тормозов от сдвоенного главного цилиндра. У автомобиля «Москвич-2140» один контур воздействует при помощи малых цилиндров на все колеса, а второй — на дисковые тормоза передних колес, которые для этой цели оснащены дополнительными большими колесными тормозными цилиндрами. При выходе из строя одного из контуров другой обеспечивает работу тормозов.

На автомобилях установлены также регуляторы изменения давления жидкости в задних колесных тормозных цилиндрах в зависимости от нагрузки, приходящейся на эти колеса. Необходимость подобной регулировки объясняется следующим. При торможении автомобиля, как известно, происходит перераспределение нагрузки: задняя часть кузова приподнимается, и нагрузка на задние колеса уменьшается. Это может вызвать при постоянном соотношении тормозных сил на передних и задних колесах блокировку колес заднего моста (движение юзом) и занос задней части автомобиля.

У автомобиля «Москвич-2140» тормозная система оснащена вакуумным усилителем, объединенным в блоке со сдвоенным главным цилиндром.

Рекламные предложения на основе ваших интересов:

Сдвоенный (тандемный) цилиндр и регулятор давления автомобилей «Жигули» работают следующим образом. Перемещающиеся внутри чугунного корпуса цилиндра (рис. 207) поршни выталкивают жидкость по стальным омедненным трубкам соответственно к задним и передним колесным тормозным цилиндрам. В поршнях сделаны пазы для жидкости и для установочных болтов, ограничивающих перемещение поршней. Поршни имеют возвратные пружины, а также уплотнительные манжеты. На задний торец главного цилиндра надет резиновый чехол, защищающий его от пыли и грязи.

При отпущенной педали тормоза поршни пружинами отводятся в заднее положение; при этом манжета не соприкасается с поршнем, так как упирается в распорное кольцо, закрепленное установочным болтом. Между поршнем, манжетой и распорным кольцом образуется лабиринт, по которому жидкость из отверстия Г через отверстие Ж заполняет полость между поршнем и уплотнительной манжетой. Аналогично заполняется и левая секция цилиндра.

В процессе торможения под действием толкателя поршень перемещается влево и соприкасается с манжетой, которую прижимает к поршню пружина, упирающаяся другим концом в тарелку. Вследствие этого кольцевая щель закрывается, сообщение с питательным бачком через отверстие Г прекращается, свободный ход поршня заканчивается и давление жидкости перед поршнем возрастает.

Рис. 1. Сдвоенный главный тормозной цилиндр автомобиля ВАЗ-2101 «Жигули»

Рис. 2. Регулятор давления задних колес автомобилей «Жигули»:

При неисправности привода тормозов задних колес и утечке жидкости из передней полости Е цилиндра поршень «проваливается», сжимая пружину. Дойдя до установочного болта, поршень останавливается, а поршнем жидкость подается только к тормозам передних колес. Эффективность действия передних тормозов не изменяется. В случае повреждения привода тормозов передних колес поршень сжимает пружину и, действуя как удлинитель толкателя, перемещает поршень. При этом жидкость подается только к тормозам задних колес.

На кронштейне кузова установлен корпус регулятора давления, связанный с балкой заднего моста тягой и торсионным рычагом. Положение регулятора можно изменять, перемещая болт в пазу кронштейна. Из главного цилиндра жидкость вначале поступает в регулятор давления, а из него уже к колесным цилиндрам задних колес. Таким образом, регулятор давления работает как ограничительный клапан, отсекающий подачу тормозной жидкости к тормозам задних колес.

В зависим(эсти от расстояния между кузовом и балкой заднего моста торсионный рычаг оказывает различное воздействие на поршень-клапан регулятора, увеличивая давление при сближении заднего моста с кузовом и уменьшая давление при их расхождении.

В верхней части ступенчатой расточки в корпусе регулятора давления размещены детали клапана. Поршень-клапан имеет грибовидную форму. Площадь его верхней головки диаметром Дх больше площади хвостовика диаметром Д2, поэтому по мере возрастания давления возникающая гидростатическая сила стремится опустить поршень вниз, а подпирающий его конец торсионного рычага и пружина этому препятствуют. Чем больше расстояние между задней частью кузова и балкой заднего моста, тем выше торсионный рычаг стремится подня1ъ поршень. В этот момент жидкость подается в колесные тормозные цилиндры под более высоким давлением из главного цилиндра, что соответствует увеличенной нагрузке на задний мост. Жидкость через отверстие Б поступает из главного цилиндра в полость А регулятора давления. Заполнив кольцевые зазоры вокруг хвостовика и головки поршня, а также полость В, жидкость через отверстие Г поступает к тормозным цилиндрам задних колес.

При торможении, когда кузов приподнимается над задним мостом и нагрузка на задние колеса резко снизится, поршень под давлением жидкости опустится вниз до соприкосновения с резиновым кольцом и подача жидкости к цилиндрам прекратится. Таким образом, давление жидкости в колесных тормозных цилиндрах регулируют в зависимости от нагрузки на колеса, причем параметры регулятора подбирают с таким расчетом, чтобы давление жидкости не создавало такой силы, при которой происходит блокировка колес.

Рекламные предложения:


Читать далее: Назначение и типы автомобилей-самосвалов

Категория: — Рулевое управление и тормозная система

Главная → Справочник → Статьи → Форум


Одно- и двухконтурный пневматические приводы тормозов

⇐ ПредыдущаяСтр 26 из 39Следующая ⇒

На грузовых автомобилях средней и большой массы широко применяются пневматические приводы к тормозным механизмам колес. Они обеспечивают также эффективное торможение прице­пов и полуприцепов автопоездов.

В пневматических приводах для приведения тормозных меха­низмов в действие используется энергия предварительно сжатого воздуха, которая позволяет получить практически любые усилия, необходимые для торможения автомобиля при незначительных усилиях на тормозной педали. Наряду с этим в системе пневмати­ческого привода устанавливается следящее устройство, обеспе­чивающее пропорциональность между усилием нажатия на тор­мозную педаль и усилием, создаваемым воздухом на разжимном устройстве тормозных механизмов.

Принципиальная схема одноконтурного пневмопривода рабо­чей тормозной системы автомобиля-тягача и прицепа показана на рис. 17.14. Компрессор /, установленный на двигателе и приво­димый в действие клиновидным ремнем от шкива коленчатого вала, накачивает воздух в воздушные баллоны 8. Давление сжатого воздуха, поддерживаемое в диапазоне 0,б…0,77 МПа, ограничи­вается регулятором давления 2. Предохранительный клапан 9 ис­ключает возможность повышения давления сжатого воздуха в си­стеме более 0,9… 1,0 МПа. Подвод сжатого воздуха к тормозным механизмам осуществляется через тормозной кран 6 со встроен-

Рис. 17.14. Схема одноконтурного пневмопривода авгтомобиля-тягача ЗИЛ-431410: а— пневмопривод тягача; б— пневмопривод прицепа; / — компрессор; 2 — регулятор давления; 3— тормозные камеры передних колес; 4— двухстрслочный манометр; 3 — педаль; б — тормозной кран; 7 — сливные краны для удаления конденсата; 8— воздушные баллоны; 9— предохранительный клапан; 10 — тормозные камеры задних колес автомобиля и прицепа; //. 14— разобщитель­ные краны; 12— соединительная головка; 13— гибкий шланг, 13— воздухорас­пределительный клапан

 

ным в него следящим устройством. При нажатии на педаль 5тор* мозной кран подает сжатый воздух из баллона 8 в тормозные ка­меры 3 и 10 соответственно передних и задних колес. Давление воздуха через мембраны 14 (см. рис. 17.1) тормозных камер пере* дается на разжимные кулаки тормозных механизмов.

При возвращении педали 5 (см. рис. 17.14) в исходное положе­ние тормозной кран 6 разобщает воздушные баллоны с тормоз­ными камерами, из которых сжатый возпух выходит наружу, вслед* ствие чего тормозные механизмы растормаживаются. Для выпуска1 конденсата баллоны снабжены сливными кранами 7. Двухстрслоч­ный манометр 4, установленный в кабине, дает возможность кон­тролировать давление в баллонах и в магистралях, подводящих воздух к тормозным камерам.

Для связи привода тормозов прицепа и полуприцепа с тор­мозной системой автомобиля применяются гибкий шланг 13 и соединительная головка /2, состоящая из двух половин, одна из которых связана с автомобилем, а другая — с прицепом. С обеих сторон соединительной головки установлены разобщительные кра­ны 11 и 14, служащие для отключения или включения магистралей тягача или прицепа (полуприцепа).

В пневматическом приводе прицепного состава используется воздухораспределительный клапан /5, который управляет снаб­жением тормозных камер и баллона сжатым воздухом из системы тягача. При снижении давления воздуха в соединительной магист­рали клапан соединяет тормозные камеры 10 прицепного состава с воздушным баллоном £ прицепа или полуприцепа, а при нормаль­ном давлении соединяет пневмосистему тягача с баллоном прице­па или полуприцепа и тормозные камеры — с атмосферой через комбинированный тормозной кран 6 (показано стрелками).

Рассмотренная схема одноконтурного пневмопривода автопо­езда длительное время применялась на автомобилях семейства ЗИЛ-130 и в настоящее время сохранилась на ряде модификаций автомобиля семейства ЗИЛ-431410. Однако одновременно осуще­ствляется выпуск автомобилей этой модели с многоконтурным приводом. Наряду с этим на отдельных моделях грузовых автомо­билей для повышения их активной безопасности применяют двух- контурный пневматический привод, включающий в себя две раз­дельные ветви трубопроводов для питания тормозных камер пере­дних и задних колес.

Типичным примером применения двухконтурного привода яв­ляются автомобили МАЗ-5335. Они оборудованы раздельным пнев­матическим приводом передних и задних тормозных механизмов. В этом приводе воздух, нагнетаемый компрессором 1 (рис. 17.15), поступает через влагомаслоотделитель 2 к регулятору давления 3. При этом сброс конденсата во влагомаслоотделителе производит­ся автоматически, и из регулятора давления воздух проходит в конденсационный баллон 4% из которого через двойной защит­ный клапан 5 подается в контуры привода передних и задних тор­мозных механизмов. Контур привода задних тормозов включает в

Рис. 17.15. Схема двухконтурного пневмопривода автомобиля МАЗ-5335: I— компрессор; 2— влагомаслоотделитель; 3— регулятор давления; 4— кон­денсационный баллон; 5 — двойной защитный клапан; б. 7— воздушные балло­ны; 8 —клапан управления пневмосистемой прицепа; 9— трубопровод; 10, 14 — тормозные камеры; // — соединительная готовка; 12— разобщительный кран;13— тормозной кран

 

себя верхнюю секцию тормозного крана 13 с трубопроводом 9, воздушный баллон (рессивер) 6 и тормозные камеры 10 задних тормозных механизмов. Контур привода передних тормозов состо­ит из нижней секции тормозного крана 13, воздушного баллона 7 и тормозных камер 14 передних тормозных механизмов. При по­вреждении контура привода передних или задних тормозных меха­низмов двойной защитный клапан 5 перекрывает неисправный кон­тур и обеспечивает подачу сжатого воздуха только в один исправ­ный контур.

Из баллона б сжатый воздух подводится к клапану 8 управления пневмосистемой прицепа, который связан с разобщительным кра­ном 12 и головкой 11, присоединяемой к тормозной системе при­цепа. К баллону 7дополнительно подключены потребители возду­ха (пнсвмоусилитель сцепления и др.). В общей системе пневмо­привода установлены две сигнальные лампы и два манометра для контроля за давлением воздуха в контурах рабочей тормозной си­стемы.




Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *