Единица измерения момента крутящего – Перевод единиц измерения Крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента. Таблица.

Содержание

Перевод единиц измерения Крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента. Таблица.


Техническая информация тут
  • Перевод единиц измерения величин
  • Таблицы числовых значений
  • Алфавиты, номиналы, единицы тут
  • Математический справочник
  • Физический справочник
  • Химический справочник
  • Материалы
  • Рабочие среды
  • Оборудование
  • Инженерное ремесло
  • Инженерные системы
  • Технологии и чертежи
  • Личная жизнь инженеров
  • Калькуляторы
  • Поиск на сайте DPVAПоставщики оборудованияПолезные ссылкиО проектеОбратная связьОтветы на вопросы.Оглавление


    Адрес этой страницы (вложенность) в справочнике dpva.ru:  главная страница  / / Техническая информация / / Алфавиты, номиналы, единицы / / Перевод единиц измерения величин. Перевод единиц измерения физических величин. Таблицы перевода единиц величин. Перевод химических и технических единиц измерения величин. Величины измерения. Таблицы соответствия величин.
     / / Перевод единиц измерения Крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента. Таблица.

    Поделиться:   

    ]]>

    Таблица перевода единиц измерения величин крутящего момента. Единицы момента силы, единицы вращательного момента, единицы вертящего момента, единицы вращающего момента.

    Таблица перевода единиц измерения крутящего момента.
    Перевести из: Перевести в:

    Н*м

    Н*см

    Н*мм

    кН*м

    Дин*м

    Дин*см

    Дин*мм

    кгс*м

    кгс*см

    кгс*мм

    гс*м

    гс*см

    гс*мм

    (Унция силы)*фут

    (Унция силы)*дюйм

    (Фунт силы)*фут

    (Фунт силы)*дюйм

    Н*м (единица СИ) это:

    1

    102

    103

    10-3

    105

    107

    108

    0.1019

    10.1971

    101.9716

    101.9716

    10197.1621

    101971.6212

    11.8009

    141.6119

    7.375*10-1

    8.8507

    Н*см это:

    10-2

    1

    10

    10-5

    103

    105

    106

    1.0197*10-3

    0.1019

    1.0197

    1.0197

    101.9716

    1019.7162

    Вращающий момент — это… Что такое Вращающий момент?

    Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

    Момент силы приложенный к гаечному ключу

    Отношение между векторами силы, момента силы и импульса во вращающейся системе

    Момент силы

    В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

    \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},

    где  \mathbf{F}  — сила, действующая на частицу, а  ~\mathbf{r}

     — радиус-вектор частицы!

    Предыстория

    Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

    Работа, совершаемая при действии силы \vec F на рычаг \vec r, совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

    Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок ~dl

    , которому соответствует бесконечно малый угол d\varphi. Обозначим через \vec dl вектор, который направлен вдоль бесконечно малого отрезка ~dl и равен ему по модулю. Угол между вектором силы \vec F и вектором \vec dl
    равен ~\beta , а угол ~\alpha\vec r и вектором силы \vec F.

    Следовательно, бесконечно малая работа ~dA, совершаемая силой \vec F на бесконечно малом участке ~dl

    равна скалярному произведению вектора \vec dl и вектора силы, то есть  dA = \vec F \cdot \vec dl .

    Теперь попытаемся выразить модуль вектора \vec dl через радиус вектор \vec r, а проекцию вектора силы \vec F на вектор \vec dl

    , через угол ~\alpha .

    В первом случае, используя теорему Пифагора, можно записать следующее равенство  \sin \frac {d\varphi}{2} = \frac {~dl}{2}, где в случае малого угла справедливо   \frac {d\varphi}{2} = \frac {~dl}{2} и следовательно \left


    Для проекции вектора силы \vec F на вектор \vec dl

    , видно, что угол  \beta = \frac{\pi}{2} - \alpha, так как для бесконечно малого перемещения рычага ~dl, можно считать, что траектория перемещения перпендикулярна рычагу \vec r, а так как  \cos{\left(\frac{\pi}{2} - \alpha \right )} = \sin{\alpha}, получаем, что  \left
    .

    Теперь запишем бесконечно малую работу через новые равенства dA=\left или dA=\left.

    Теперь видно, что произведение \left есть ни что иное как модуль векторного произведения векторов \vec F и \vec r, то есть  \left, которое и было принято обозначить за момент силы ~M или модуля вектора момента силы  \left.

    И теперь полная работа записывается очень просто A = \int\limits_ 0^ \varphi \left или A = \int\limits_ 0^ \varphi\left.

    Единицы

    Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

    E= \tau \theta\ ,

    где Е — энергия, τ — вращающий момент, θ — угол в радианах.

    Специальные случаи

    Формула момента рычага

    E= \tau \theta\

    Момент рычага

    Очень интересен особый случай, представляемый как определение момента силы в поле:

    τ = МОМЕНТ РЫЧАГА * СИЛУ

    Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

    \boldsymbol{T} = РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

    Сила под углом

    Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

    Статическое равновесие

    Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

    Момент силы как функция от времени

    Момент силы — производная по времени от момент импульса,

    \boldsymbol{\tau} ={d\mathbf{L} \over dt} \,\! ,

    где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

    \mathbf{L}=I\,\boldsymbol{\omega} \,\! ,

    То есть если I постоянная, то

    \boldsymbol{\tau}=I{d\boldsymbol{\omega} \over dt}=I\boldsymbol{\alpha} \,\! ,

    где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

    Отношение между моментом силы и мощностью

    Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

    \boldsymbol{P} = МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

    В системе СИ мощность \boldsymbol{P} измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

    Отношение между моментом силы и работой

    \boldsymbol{E} = МОМЕНТ СИЛЫ * УГОЛ

    В системе СИ работа \boldsymbol{E} измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

    Обычно известна угловая скорость \boldsymbol{w} в радианах в секунду и время действия МОМЕНТА \boldsymbol{t}.

    Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

    \boldsymbol{E} = МОМЕНТ СИЛЫ * \boldsymbol{w} * \boldsymbol{t}

    Момент силы относительно точки

    Если имеется материальная точка  O_F\,\! , к которой приложена сила \vec F , то момент силы относительно точки  O\,\! равен векторному произведению радиус-вектора \vec r, соединяющий точки O и OF, на вектор силы \vec F:

    \vec M_O = \left[ \vec r \times \vec F \right].

    Момент силы относительно оси

    Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

    Единицы измерения

    Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

    Измерение момента

    На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

    См. также

    Wikimedia Foundation. 2010.

    Вращательный момент — это… Что такое Вращательный момент?

    Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

    Момент силы приложенный к гаечному ключу

    Отношение между векторами силы, момента силы и импульса во вращающейся системе

    Момент силы

    В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

    \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},

    где  \mathbf{F}  — сила, действующая на частицу, а  ~\mathbf{r}  — радиус-вектор частицы!

    Предыстория

    Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

    Работа, совершаемая при действии силы \vec F на рычаг \vec r, совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

    Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок ~dl, которому соответствует бесконечно малый угол d\varphi. Обозначим через \vec dl вектор, который направлен вдоль бесконечно малого отрезка ~dl и равен ему по модулю. Угол между вектором силы \vec F и вектором \vec dl равен ~\beta , а угол ~\alpha\vec r и вектором силы \vec F.

    Следовательно, бесконечно малая работа ~dA, совершаемая силой \vec F на бесконечно малом участке ~dl равна скалярному произведению вектора \vec dl и вектора силы, то есть  dA = \vec F \cdot \vec dl .

    Теперь попытаемся выразить модуль вектора \vec dl через радиус вектор \vec r, а проекцию вектора силы \vec F на вектор \vec dl, через угол ~\alpha .

    В первом случае, используя теорему Пифагора, можно записать следующее равенство  \sin \frac {d\varphi}{2} = \frac {~dl}{2}, где в случае малого угла справедливо   \frac {d\varphi}{2} = \frac {~dl}{2} и следовательно \left


    Для проекции вектора силы \vec F на вектор \vec dl, видно, что угол  \beta = \frac{\pi}{2} - \alpha, так как для бесконечно малого перемещения рычага ~dl, можно считать, что траектория перемещения перпендикулярна рычагу \vec r, а так как  \cos{\left(\frac{\pi}{2} - \alpha \right )} = \sin{\alpha}, получаем, что  \left.

    Теперь запишем бесконечно малую работу через новые равенства dA=\left или dA=\left.

    Теперь видно, что произведение \left есть ни что иное как модуль векторного произведения векторов \vec F и \vec r, то есть  \left, которое и было принято обозначить за момент силы ~M или модуля вектора момента силы  \left.

    И теперь полная работа записывается очень просто A = \int\limits_ 0^ \varphi \left или A = \int\limits_ 0^ \varphi\left.

    Единицы

    Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

    E= \tau \theta\ ,

    где Е — энергия, τ — вращающий момент, θ — угол в радианах.

    Специальные случаи

    Формула момента рычага

    E= \tau \theta\

    Момент рычага

    Очень интересен особый случай, представляемый как определение момента силы в поле:

    τ = МОМЕНТ РЫЧАГА * СИЛУ

    Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

    \boldsymbol{T} = РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

    Сила под углом

    Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

    Статическое равновесие

    Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

    Момент силы как функция от времени

    Момент силы — производная по времени от момент импульса,

    \boldsymbol{\tau} ={d\mathbf{L} \over dt} \,\! ,

    где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

    \mathbf{L}=I\,\boldsymbol{\omega} \,\! ,

    То есть если I постоянная, то

    \boldsymbol{\tau}=I{d\boldsymbol{\omega} \over dt}=I\boldsymbol{\alpha} \,\! ,

    где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

    Отношение между моментом силы и мощностью

    Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

    \boldsymbol{P} = МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

    В системе СИ мощность \boldsymbol{P} измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

    Отношение между моментом силы и работой

    \boldsymbol{E} = МОМЕНТ СИЛЫ * УГОЛ

    В системе СИ работа \boldsymbol{E} измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

    Обычно известна угловая скорость \boldsymbol{w} в радианах в секунду и время действия МОМЕНТА \boldsymbol{t}.

    Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

    \boldsymbol{E} = МОМЕНТ СИЛЫ * \boldsymbol{w} * \boldsymbol{t}

    Момент силы относительно точки

    Если имеется материальная точка  O_F\,\! , к которой приложена сила \vec F , то момент силы относительно точки  O\,\! равен векторному произведению радиус-вектора \vec r, соединяющий точки O и OF, на вектор силы \vec F:

    \vec M_O = \left[ \vec r \times \vec F \right].

    Момент силы относительно оси

    Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

    Единицы измерения

    Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

    Измерение момента

    На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

    См. также

    Wikimedia Foundation. 2010.

    Единицы измерения крутящего момента двигателей — OneKu

    Содержание статьи:

    В технических характеристиках двигателей и конструкций, оснащенных двигателями, постоянно фигурирует загадочный показатель нм, как единица измерения крутящего момента. Если с мощностью в лошадиных силах все понятно даже на интуитивном уровне, лошадь – она и есть лошадь, то здесь могут возникнуть некоторые затруднения.

    Архимедов рычаг

    Широко известный ученый Архимед как-то изрек знаменитую фразу: «Дайте мне рычаг, и я переверну Землю». Можно сказать, что именно эта фраза и послужила началом рождения показателя единицы измерения крутящего момента. Как известно, планета Земля несколько тяжеловата для того, чтобы человек, даже такой уважаемый и известный, как Архимед, мог ее перевернуть. Ключ – это использование рычага, позволяющего на порядки увеличивать силу воздействия на объект. Рычаг представляет собой фактически любой предмет, способный свободно вращаться вокруг точки опоры. Если точка опоры находится ровно в середине рычага, при приложении одинаковых усилий с каждого конца рычага вся конструкция будет стоять на месте. Ситуация изменится лишь при смещении точки опоры в одну из сторон. Лучше всего это видно на приведенном ниже рисунке.

    Вам будет интересно:Краткая история педагогики: этапы развития, значение и цели

    Оно крутится

    Как видно, рычаг крутится вокруг точки опоры, совершая неполный оборот. Соотношение прикладываемой силы к длинному плечу рычага и получаемого усилия на коротком плече составляет основу единиц измерения крутящего момента. Соотношение это очень простое: усилия, помноженные на длину соответствующего плеча рычага, должны быть равны. Закон сохранения энергии работает всегда. Этот принцип действия можно распространить и на пару шестеренок разного диаметра, и вообще на любые взаимодействующие при помощи вращения агрегаты механизмов разных диаметров, представляющие собой, по сути, плечи условных рычагов.

    Крутящий момент

    Теперь можно взять вращающийся вал двигателя. Радиус вала двигателя – это условный рычаг, а при его вращении возникает сила, направленная перпендикулярно к оси вращения. Схематично это показано на следующем рисунке.

    Здесь R – это радиус вала, а F – вектор силы, образуемой при вращении вала. Как и при обычном рычаге, их произведение (R*F) и будет моментом силы, или крутящим моментом. Поскольку, в соответствии с международной системой единиц, сила измеряется в ньютонах, а расстояние – в метрах, единицей измерения крутящего момента является ньютон-метр, или сокращенно – нм.

    Однако имеются и другие обозначения. Иногда для измерения силы используют не ньютоны, а килограммы (кгс), тогда эту величину можно пересчитать в «классику» при помощи коэффициента. 1 кгс на метр равен 9,81 нм. В странах, не использующих метрическую систему, в качестве единицы измерения крутящего момента электродвигателя применяют фунтофут. Звучит непривычно, но тем не менее. 1 фунтофут равен 1,36 нм. Существует зависимость между мощностью, частотой оборотов и создаваемым крутящим моментом. Она очень простая. Мощность равна произведению частоты оборотов на крутящий момент, деленную на коэффициент. Коэффициент зависит от единиц измерения крутящего момента и других указанных величин.

    Если речь идет о лошадиных силах, кгс на метр и оборотах в минуту, этот коэффициент равен 716,2, для нм и киловатт – 9549. В открытом доступе имеются соответствующие калькуляторы. В технических характеристиках обычно указывают крутящий момент, измеренный непосредственно на валу двигателя.

    Источник

    Единицы измерения крутящего момента двигателей

    В технических характеристиках двигателей и конструкций, оснащенных двигателями, постоянно фигурирует загадочный показатель нм, как единица измерения крутящего момента. Если с мощностью в лошадиных силах все понятно даже на интуитивном уровне, лошадь – она и есть лошадь, то здесь могут возникнуть некоторые затруднения.

    крутящий момент единица измерения нм

    Архимедов рычаг

    Широко известный ученый Архимед как-то изрек знаменитую фразу: «Дайте мне рычаг, и я переверну Землю». Можно сказать, что именно эта фраза и послужила началом рождения показателя единицы измерения крутящего момента. Как известно, планета Земля несколько тяжеловата для того, чтобы человек, даже такой уважаемый и известный, как Архимед, мог ее перевернуть. Ключ – это использование рычага, позволяющего на порядки увеличивать силу воздействия на объект. Рычаг представляет собой фактически любой предмет, способный свободно вращаться вокруг точки опоры. Если точка опоры находится ровно в середине рычага, при приложении одинаковых усилий с каждого конца рычага вся конструкция будет стоять на месте. Ситуация изменится лишь при смещении точки опоры в одну из сторон. Лучше всего это видно на приведенном ниже рисунке.

    крутящий момент электродвигателя единицы измерения

    Оно крутится

    Как видно, рычаг крутится вокруг точки опоры, совершая неполный оборот. Соотношение прикладываемой силы к длинному плечу рычага и получаемого усилия на коротком плече составляет основу единиц измерения крутящего момента. Соотношение это очень простое: усилия, помноженные на длину соответствующего плеча рычага, должны быть равны. Закон сохранения энергии работает всегда. Этот принцип действия можно распространить и на пару шестеренок разного диаметра, и вообще на любые взаимодействующие при помощи вращения агрегаты механизмов разных диаметров, представляющие собой, по сути, плечи условных рычагов.

    Крутящий момент

    Теперь можно взять вращающийся вал двигателя. Радиус вала двигателя – это условный рычаг, а при его вращении возникает сила, направленная перпендикулярно к оси вращения. Схематично это показано на следующем рисунке.

    единицы измерения крутящего момента

    Здесь R – это радиус вала, а F – вектор силы, образуемой при вращении вала. Как и при обычном рычаге, их произведение (R*F) и будет моментом силы, или крутящим моментом. Поскольку, в соответствии с международной системой единиц, сила измеряется в ньютонах, а расстояние – в метрах, единицей измерения крутящего момента является ньютон-метр, или сокращенно – нм.

    Однако имеются и другие обозначения. Иногда для измерения силы используют не ньютоны, а килограммы (кгс), тогда эту величину можно пересчитать в «классику» при помощи коэффициента. 1 кгс на метр равен 9,81 нм. В странах, не использующих метрическую систему, в качестве единицы измерения крутящего момента электродвигателя применяют фунтофут. Звучит непривычно, но тем не менее. 1 фунтофут равен 1,36 нм. Существует зависимость между мощностью, частотой оборотов и создаваемым крутящим моментом. Она очень простая. Мощность равна произведению частоты оборотов на крутящий момент, деленную на коэффициент. Коэффициент зависит от единиц измерения крутящего момента и других указанных величин.

    Если речь идет о лошадиных силах, кгс на метр и оборотах в минуту, этот коэффициент равен 716,2, для нм и киловатт – 9549. В открытом доступе имеются соответствующие калькуляторы. В технических характеристиках обычно указывают крутящий момент, измеренный непосредственно на валу двигателя.

    Механический момент — это… Что такое Механический момент?

    Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

    Момент силы приложенный к гаечному ключу

    Отношение между векторами силы, момента силы и импульса во вращающейся системе

    Момент силы

    В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

    \boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},

    где  \mathbf{F}  — сила, действующая на частицу, а  ~\mathbf{r}  — радиус-вектор частицы!

    Предыстория

    Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

    Работа, совершаемая при действии силы \vec F на рычаг \vec r, совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

    Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок ~dl, которому соответствует бесконечно малый угол d\varphi. Обозначим через \vec dl вектор, который направлен вдоль бесконечно малого отрезка ~dl и равен ему по модулю. Угол между вектором силы \vec F и вектором \vec dl равен ~\beta , а угол ~\alpha\vec r и вектором силы \vec F.

    Следовательно, бесконечно малая работа ~dA, совершаемая силой \vec F на бесконечно малом участке ~dl равна скалярному произведению вектора \vec dl и вектора силы, то есть  dA = \vec F \cdot \vec dl .

    Теперь попытаемся выразить модуль вектора \vec dl через радиус вектор \vec r, а проекцию вектора силы \vec F на вектор \vec dl, через угол ~\alpha .

    В первом случае, используя теорему Пифагора, можно записать следующее равенство  \sin \frac {d\varphi}{2} = \frac {~dl}{2}, где в случае малого угла справедливо   \frac {d\varphi}{2} = \frac {~dl}{2} и следовательно \left


    Для проекции вектора силы \vec F на вектор \vec dl, видно, что угол  \beta = \frac{\pi}{2} - \alpha, так как для бесконечно малого перемещения рычага ~dl, можно считать, что траектория перемещения перпендикулярна рычагу \vec r, а так как  \cos{\left(\frac{\pi}{2} - \alpha \right )} = \sin{\alpha}, получаем, что  \left.

    Теперь запишем бесконечно малую работу через новые равенства dA=\left или dA=\left.

    Теперь видно, что произведение \left есть ни что иное как модуль векторного произведения векторов \vec F и \vec r, то есть  \left, которое и было принято обозначить за момент силы ~M или модуля вектора момента силы  \left.

    И теперь полная работа записывается очень просто A = \int\limits_ 0^ \varphi \left или A = \int\limits_ 0^ \varphi\left.

    Единицы

    Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

    E= \tau \theta\ ,

    где Е — энергия, τ — вращающий момент, θ — угол в радианах.

    Специальные случаи

    Формула момента рычага

    E= \tau \theta\

    Момент рычага

    Очень интересен особый случай, представляемый как определение момента силы в поле:

    τ = МОМЕНТ РЫЧАГА * СИЛУ

    Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

    \boldsymbol{T} = РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

    Сила под углом

    Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

    Статическое равновесие

    Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

    Момент силы как функция от времени

    Момент силы — производная по времени от момент импульса,

    \boldsymbol{\tau} ={d\mathbf{L} \over dt} \,\! ,

    где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

    \mathbf{L}=I\,\boldsymbol{\omega} \,\! ,

    То есть если I постоянная, то

    \boldsymbol{\tau}=I{d\boldsymbol{\omega} \over dt}=I\boldsymbol{\alpha} \,\! ,

    где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

    Отношение между моментом силы и мощностью

    Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

    \boldsymbol{P} = МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

    В системе СИ мощность \boldsymbol{P} измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

    Отношение между моментом силы и работой

    \boldsymbol{E} = МОМЕНТ СИЛЫ * УГОЛ

    В системе СИ работа \boldsymbol{E} измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

    Обычно известна угловая скорость \boldsymbol{w} в радианах в секунду и время действия МОМЕНТА \boldsymbol{t}.

    Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

    \boldsymbol{E} = МОМЕНТ СИЛЫ * \boldsymbol{w} * \boldsymbol{t}

    Момент силы относительно точки

    Если имеется материальная точка  O_F\,\! , к которой приложена сила \vec F , то момент силы относительно точки  O\,\! равен векторному произведению радиус-вектора \vec r, соединяющий точки O и OF, на вектор силы \vec F:

    \vec M_O = \left[ \vec r \times \vec F \right].

    Момент силы относительно оси

    Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

    Единицы измерения

    Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

    Измерение момента

    На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

    См. также

    Wikimedia Foundation. 2010.

    что такое, формула и в чем измеряется

    Мощность двигателя – важнейший его показатель. Как в плане эксплуатации, так и в плане начисления налогов на авто. Крутящий момент нередко путают с мощностью или упускают его из виду в процессе оценки ходовых качеств авто. Многие упрощают автомобиль, считая, что большое количество лошадиных сил – главное преимущество любого мотора. Однако, вращающий момент – более важный показатель. Особенно, если автомобиль не предполагается использовать в качестве спортивного.Крутящий момент двигателя

    Что такое крутящий момент

    Крутящим моментом называют единицу силы, которая необходима для поворота коленчатого вала ДВС. Эта не «лошадиная сила», которой должна обозначаться мощность.

    ДВС вырабатывает кинетическую энергию, вращая таким образом коленвал. Показатель мощности двигателя (сила давления) зависит от скорости сгорания топлива. Крутящий момент – результат от действия силы на рычаг. Эта сила в физике считается в ньютонах. Длина плеча коленвала считается в метрах. Поэтому обозначение крутящего момента – ньютон-метр.

    Технически, крутящий момент – это усилие, которое должно осуществляться двигателем для разгона и движения машины. При этом сила, оказывающая действие на поршень, пропорциональна объему двигателя.

    Маховик – одна из важнейших деталей, которая должна через редуктор передавать вращательный момент от мотора к коробке передач, от стартера на коленвал, от коленвала на нажимной диск. Собственно, крутящий момент – итог давления на шатун.

    Формула расчета крутящего момента

    Показатель КМ рассчитывается так: мощность (в л. с.) равно крутящий момент (в Нм) умножить на обороты в минуту и разделить на 5,252. При меньших чем 5,252 значениях крутящий момент будет выше мощности, при больших – ниже.

    В пересчете на принятую в России систему (кгм – килограмм на метр) – 1кг = 10Н, 1 см = 0,01м. Таким образом 1 кг х см = 0,1 Н х м. Посчитать вращательный момент в разных системах измерений ньютоны/килограммы и т.д. поможет конвертер – в практически неизменном виде он доступен на множестве сайтов, с его помощью можно определять данные по практически любому мотору.

    График:График зависимости крутящего момента двигателя от оборотов

    На графике изображена зависимость крутящего момента двигателя от его оборотов

    От чего зависит крутящий момент

    На КМ будут влиять:

    • Объем двигателя.
    • Давление в цилиндрах.
    • Площадь поршней.
    • Радиус кривошипа коленвала.

    Основная механика образования КМ заключается в том, что чем больше двигатель по объему, тем сильней он будет нагружать поршень. То есть – будет выше значение КМ. Аналогична взаимосвязь с радиусом кривошипа коленвала, но это вторично: в современных двигателях этот радиус сильно изменить нельзя.

    Давление в камере сгорания – не менее важный фактор. От него напрямую зависит сила, давящая на поршень.

    Для снижения потерь крутящего момента при тряске машины во время резкого газа можно использовать компенсатор. Это специальный (собранный вручную) демпфер, компенсация которого позволит сохранить вращающий момент и повысить срок эксплуатации деталей.

    На что влияет крутящий момент

    Главная цель КМ – набор мощности. Часто мощные моторы обладают низким показателем КМ, поэтому не способны разогнать машину достаточно быстро. Особенно это касается бензиновых двигателей.

    ВАЖНО! При выборе авто стоит рассчитать оптимальное соотношение вращательного момента с количеством оборотов, на которых чаще всего мотор будет работать. Если держать вращательный момент на соответствующем уровне, это позволит оптимально реализовать потенциал двигателя.

    Высокий КМ также может влиять на управляемость машины, поэтому при резком увеличении скорости не лишним будет использование системы TSC. Она позволяет точнее направлять авто при резком разгоне.

    Широко распространенный 8-клапанный двигатель ВАЗ выдает вращательный момент 120 (при 2500-2700 оборотах). Ручная коробка или АКПП стоит на машине – не принципиально. При использовании КПП немаловажен опыт водителя, на автоматической коробке плавный старт обеспечивает преобразователь.

    Как увеличить крутящий момент

    Увеличение рабочего объема. Чтобы повышать КМ используются разные методы: замена установленного коленвала на вал с увеличенным эксцентриситетом (редко встречающаяся запчасть, которую трудно находить) или расточка цилиндров под больший диаметр поршней. Оба способа имеют свои плюсы и минусы. Первый требует много времени на подбор деталей и снижает долговечность двигателя. Второй, увеличение диаметра цилиндров с помощью расточки, более популярен. Это может сделать практически любой автосервис. Там же можно настроить карбюратор для повышения КМ.

    Изменение величины наддува. Турбированные двигатели позволяют достичь более высокого показателя КМ благодаря особенностям конструкции – возможности отключить ограничения в блоке управления компрессором, который отвечает за наддув. Манипуляции с блоком позволят повысить объем давления выше максимума, указанного производителем при сборке автомобиля. Способ можно назвать опасным, поскольку у каждого двигателя есть лимитированный запас нагрузок. Кроме того, часто требуются дополнительные усовершенствования: увеличение камеры сгорания, приведение охлаждения в соответствие повышенной мощности. Иногда требуется отрегулировать впускной клапан, иногда – сменить распредвал. Может потребоваться замена чугунного коленвала на стальной, замена поршней.

    Изменение газодинамики. Редко используемый вариант, поскольку двигатель – сложная конструкция, созданием которого занимаются профессионалы. Теоретически можно придумать, как убрать ограничения, заложенные конструкторами для увеличения срока эксплуатации двигателя и его деталей. Но на практике, если убрать ограничитель, результат не гарантирован, поскольку поменяются все характеристики: например, динамика вырастет, но шина не будет цепляться за дорогу. Чтобы усовершенствовать двигатель такие образом надо быть не просто автомобильным конструктором, но и математиком, физиком и т.д.

    ВАЖНО! Простой способ повысить КМ – использовать масляный фильтр. Он снизит засорение двигателя и продлит срок эксплуатации всех деталей.

    Определение крутящего момента на валуИзмерение крутящего момента на валу

    Для измерения крутящего момента на валу автомобильного двигателя применяется множество методик. Это может быть показатель подачи топлива, температуры выхлопных газов и т.д. Такие методы не гарантируют высокой точности.

    Распространенный метод повышенной точности – применение тензометрического моста. На вал крепятся тензометры, электрически соединенные по мостовой схеме. Сигнал передается на считывающее устройство.

    Измеритель крутящего момента

    Главная сложность в измерителе крутящего момента, использующего тензометры, является точность передачи данных. Применявшиеся ранее контактные, индукционные и светотехнические устройства не гарантировали необходимой эффективности. Сейчас данные передаются по цифровым радиоканалам. Измеритель представляет собой компактный радиопередатчик, который крепится на вал и передает данные на приемник.Электронный измеритель крутящего момента

    Сейчас такие устройства доступны по стоимости и просты в эксплуатации. Применяются в основном в СТО.

    Датчик крутящего момента

    Аналогичные устройства, измеряющие КМ, в автомобиле могут быть установлены не только на коленвал, но и на рулевое колесо. Он ставится на модели машин с электроусилителем руля и позволяет отслеживать работу системы управление автомобилей. При выходе датчика из строя, усилитель, как правило, отключается.

    Максимальный крутящий момент

    Максимальным называется крутящий момент, представляющий пик, после которого момент не растет, несмотря на количество оборотов. На малых оборотах в цилиндре скапливается большой объем остаточных газов, в результате чего показатель КМ значительно ниже пикового. На средних оборотах в цилиндры поступает больше воздуха, процент газов снижается, крутящий момент продолжает расти.

    При высоких оборотах растут потери эффективности: от трения поршней, инерционных потерь в ГРМ, разогрева масла и т.д. будет зависеть работа мотора. Поэтому рост качества работы двигателя прекращается или само качество начинает снижаться. Максимальный крутящий момент достигнут и начинает снижаться.График крутящего момента автомобилей ВАЗ

    В электродвигателях максимальный вращательный момент называется «критический».

    Таблица марок автомобилей с указанием крутящего момента:

    Модели автомобиля ВАЗКрутящий момент (Нм, разные марки двигателей)
    210793 – 176
    210879-186
    210978-118
    2110104-196
    2112104-162
    2114115-145
    2121 (Нива)116-129
    2115103-132
    210692-116
    210185-92
    210585-186
    Двигатели ЗМЗ
    406181,5-230
    409230
    Других популярные в России марки автомобилей
    Ауди А6500-750
    БМВ 5290-760
    Бугатти Вейрон1250-1500
    Дэу Нексия123-150
    КАМАЗ~650-2000+
    Киа Рио132-151
    Лада Калина127-148
    Мазда 6165-420
    Мицубиси Лансер143-343
    УАЗ Патриот217-235
    Рено Логан112-152
    Рено Дастер156-240
    Тойота Королла128-173
    Хендай Акцент106-235
    Хендай Солярис132-151
    Шевроле Каптив220-400
    Шевроле Круз118-200

    Какому двигателю отдать предпочтение

    Сегодня множество моделей производители оснащают разными типами моторов: бензиновым или дизельным. Эти модели идентичны только по цене и другим характеристикам.

    Из-за разных типов мотора одна и та же модель может отличаться по показателям мощности мотора и крутящему моменту, при этом разница может быть значительной.

    Бензиновый двигатель

    Бензиновый двигатель формирует воздушно-топливную смесь, заполняющую цилиндр. Температура внутри него поднимается до примерно 500 градусов. У таких моторов номинальный коэффициент сжатия составляет порядка 9-10, реже 11 единиц. Поэтому, когда происходит впрыск необходимо использование свечей зажигания.

    Дизельный двигатель

    В цилиндрах работающего на дизеле движка коэффициент сжатия смеси может достигать показателя в 25 единиц, температура – 900 градусов. Поэтому смесь зажигается без использования свечи.

    Электродвигатель

    Автомобильный трехфазный асинхронный электродвигатель работает по совершенно другим законам, поэтому его мощность и КМ отличаются от традиционных кардинально. Электромотор состоит из ротора и статора, кратность которых позволяет выдавать пиковый КМ (600 Нм) на любой скорости. При этом мощность электродвигателя, например, у Теслы, составляет 416 л. с.

    Чтобы ответить на вопрос – дизельный, бензиновый или электродвигатель лучше, надо сначала исключить третий вариант, поскольку электродвигатели пока не так распространены, как первые два типа.

    ВАЖНО! Что касается выбора между бензиновым и дизельным двигателями, они в первую очередь отличаются мощностью и крутящим моментом. На практике это означает, что при одинаковом объеме двигателя дизельный быстрее разгоняется, а бензиновый позволяет давать более высокую скорость.


    Кроме того, благодаря большему крутящему момент автомобиль, использующийся как грузовой, обладает большей грузоподъемностью за счет двигателя. Особенно если двигатель дизель-генераторный.

    Улучшение разгона авто за счет изменения момента вращения

    Чем выше показатель крутящего момента – тем быстрее двигатель набирает мощность. Таким образом, вырастет скорость движения. На практике это означает, что, например, во время разгона крутящий момент позволит быстрее обогнать едущий впереди автомобиль.

    Чтобы улучшить разгон автомобиля за счет изменения момента вращения, достаточно повысить показатели последнего. Как это сделать – описано выше.

    Зависимость мощности от крутящего момента

    Крутящий момент, как говорилось выше, это показатель того, с какой скоростью двигатель может набирать обороты. По сути, мощность мотора – прямая производная от КМ на коленвале. Чем больше оборотов – тем выше показатель мощности.

    Зависимость мощности от вращательного момента выражается формулой: Р = М*n (Р – мощность, М – крутящий момент, n – количество оборотов коленвала/мин).

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о