Генератор это википедия – Электрический генератор — это… Что такое Электрический генератор?

Содержание

Генератор сигналов — Википедия

Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический и т. д.), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например, усилителя, охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра).

  • По форме выходного сигнала:

Существуют также генераторы более сложных сигналов, таких, как телевизионная испытательная таблица

  • По частотному диапазону:
    • Низкочастотные
    • Высокочастотные
  • По принципу работы:
  • По назначению:

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы.

Генераторы гармонических колебаний[править | править код]

Блок схема генератора

Генератор гармонических колебаний представляет собой усилитель с положительной обратной связью. Термин положительная обратная связь означает, что фазовый сдвиг в петле обратной связи близок к 2π{\displaystyle 2\pi }, т. е. цепь обратной связи не инвертирует сигнал.

2\pi
LC-генератор с перекрёстными связями. В этом генераторе синусоидальность выходного сигнала обеспечивается колебательным контуром в стоках транзисторов.

Необходимыми условиями для возникновения гармонических незатухающих колебаний с малыми искажениями синусоиды являются:

  1. петлевой сдвиг фазы равен 360°,
  2. обратная связь резонансная или квазирезонансная, как, например, в генераторе с мостом Вина, или сам усилитель является частотноизбирательным (резонансным).
  3. петлевое усиление точно равно 1,
  4. рабочая точка усилительного каскада находится на его линейном или приблизительно линейном участке.

Пояснения необходимости 2-го и 3-го условий.

Если петлевое усиление ниже 1 — то колебания затухают. Если петлевое усиление больше 1 — то колебания нарастают до физического ограничения, так, амплитуда выходного напряжения усилителя не может быть больше напряжения питания

[4], при таком ограничении форма синусоидального напряжения искажается.

Примером структур с положительной обратной связью может служить мультивибратор, или иные релаксационные генераторы, но в таких схемах применены частотно-неизбирательные обратные связи и усилители, поэтому генерируемые ими колебания далеки от синусоидальных.

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку.[5]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема («индуктивная трёхточка»). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера[править | править код]

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью[править | править код]

Colpitts ob.jpg Fazowaja diagramma2.jpg

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. При оптимально рассчитанном емкостном делителе запас устойчивости по фазе составляет менее 30°.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Meisner bez perekosa fazy.jpg Fazowaja diagramma1.jpg

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор излучает одну частоту и имеет наибольший запас устойчивости по фазе (± 90°).

Далеко не полный список устройств, в которых применяются генераторы сигналов:

  • Устройства связи — радиоприемники (гетеродин в супергетеродинных радиоприёмниках), телевизионные приемники, мобильные телефоны, приёмопередатчики, аппаратура передачи данных и др.
  • Цифровая и вычислительная техника обязательно содержит генератор тактовых импульсов.
  • Импульсные источники питания, инверторы, источники бесперебойного электропитания.
  • Измерительные приборы — осциллографы, измерительные вольтметры, амперметры и др.
  • Медицинское оборудование — электрокардиографы, томографы, рентгенографы, электронные тонометры, аппараты для ультразвукового исследования (УЗИ), физиотерапевтические приборы и др.
  • Эхолоты.
  • Бытовая техника — программируемые стиральные машины, СВЧ-печи, посудомоечные машины и др.

Устройства, имеющие в своём составе генератор сигналов, потенциально способны создавать электромагнитные помехи другим электронным устройствам, поэтому при их разработке и эксплуатации приходится учитывать вопросы электромагнитной совместимости.

  • Шамшин И. Г., История технических средств коммуникации. Учеб. пособие., 2003. Дальневосточный Государственный Технический Университет.

генератор — Викисловарь

Морфологические и синтаксические свойства[править]

падеж ед. ч. мн. ч.
Им. генера́тор генера́торы
Р. генера́тора генера́торов
Д. генера́тору генера́торам
В. генера́тор генера́торы
Тв. генера́тором генера́торами
Пр. генера́торе генера́торах

ге-не-ра́-тор

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Корень: -генер-; суффикс: -атор

[Тихонов, 1996].

Произношение[править]

  • МФА: ед. ч. [ɡʲɪnʲɪˈratər]  мн. ч. [ɡʲɪnʲɪˈratərɨ]

Семантические свойства[править]

Генератор [1] электроэнергии И это правильно хотя бы потому, что инициатива по всем новым машинам исходила от него, от Ильюшина, генератором [2] идей был он
Значение[править]
  1. техн. механизм или устройство, преобразующее энергию одного вида в энергию другого вида, чаще всего, в электрическую ◆ Генератор постоянного тока (то же, что динамо-машина).
    ◆ Вся работа, при условии получения генератора, может быть закончена в несколько месяцев. И. Э. Бабель, «Статьи в газете «Заря Востока»», 1922 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ В пещере в это время устанавливали большие паровые машины и огромные генераторы электрического тока. В. А. Обручев, «Тепловая шахта», 1920 г. (цитата из Национального корпуса русского языка, см. Список литературы)
  2. перен. некто или нечто, являющееся источником чего-либо ◆ И одновременно указание на источник силы автора как практика: он и генератор идей, и их исполнитель – важнейшее условие эффективного управления. ◆ Один из самых обыкновенных способов объяснения изомерии, помимо, как думают, химического строения, заключается в том, что химики приурочивают изомерию к различию способа образования вещества и говорят, что вещества не тождественны в силу различия своих генераторов или реакций, давших веществам начало. А. М. Бутлеров, «Теоретические и экспериментальные работы по химии», 1851–1886 г. (цитата из Национального корпуса русского языка, см. Список литературы) ◆ И это правильно хотя бы потому, что инициатива по всем новым машинам исходила от него, от Ильюшина, генератором идей был он. Ф. И. Чуев, «Ильюшин», 1998 г. (цитата из Национального корпуса русского языка, см. Список литературы)
  3. техн. печь особого устройства для производства генераторного газа ◆ В технике пользование газообразным топливом также распространено, с той разницей, что здесь, вместо дорогого светильного газа, применяют гораздо более дешёвый, так называемый «генераторный газ», получаемый при неполном сгорании топлива в специально устроенном генераторе. П. Н. Лебедев, «Способы получения высоких температур», 1899 г. (цитата из Национального корпуса русского языка, см. Список литературы)
Синонимы[править]
  1. источник, производитель
  2. источник, родитель, начало, кладезь
Антонимы[править]
  1. частичн.: потребитель
  2. губитель, убийца
Гиперонимы[править]
  1. источник, устройство, агрегат
  2. источник
  3. печь, реактор
Гипонимы[править]
  1. солнечная батарея, лёдогенератор, парогенератор, газогенератор, электростанция, электрогенератор, тахогенератор, теплогенератор
  2. аэроионогенератор

Родственные слова[править]

Этимология[править]

Происходит от лат. generātor «производитель, предок, родитель», из generāre «производить, порождать, создавать», далее из genus «происхождение, род», далее из genere «рожать, порождать» (восходит к праиндоевр. *gen-/*gon-/*gn- «порождать»).

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

Библиография[править]

Interrobang.svg Для улучшения этой статьи желательно:
  • Добавить все семантические связи (отсутствие можно указать прочерком, а неизвестность — символом вопроса)
  • Добавить хотя бы один перевод для каждого значения в секцию «Перевод»

Измерительный генератор — Википедия

Материал из Википедии — свободной энциклопедии

Генератор сигналов низкочастотный Г3-109 Функциональный генератор. В правом верхнем углу панели видны кнопки переключения формы выходного сигнала.

Измери́тельный генера́тор, (генератор сигна́лов, сигнал-генератор) от лат. generator — производитель, — электронное устройство, мера для воспроизведения электрического или электромагнитного сигнала (синусоидального, импульсного, шумового или специальной формы).

Генераторы применяются для проверки и настройки радиоэлектронных устройств, каналов связи, при поверке и калибровке средств измерений и в других целях.

Устройство и принцип действия. Общие сведения[править | править код]

Генератор является радиоэлектронным устройством, в зависимости от вида сигнала содержащее разные функциональные узлы. Общими узлами, для разных видов генераторов, являются: источник исходного сигнала (например, перестраиваемый автогенератор или стабилизированный кварцевый синтезатор частоты, генератор шума), усилители, выходные формирователи сигнала, выходной аттенюатор, устройства и цепи управления, устройства стабилизации выходного уровня сигнала и блок питания. Дополнительно, в составе генератора могут быть различные модуляторы, формирователи временных интервалов, устройства внешнего запуска и другие устройства.

В некоторых генераторах специальной формы сигнала форма выходного сигнала синтезируется цифровым методом, с помощью ЦАП.

Существуют также генераторы сигнала в оптическом диапазоне длин волн, их работа основана на принципах квантовой электроники.

По ГОСТ 15094 генераторы подразделяются на 6 видов: низкочастотные, высокочастотные, импульсные, сигналов специальной формы, шумовых сигналов и качающейся частоты. Однако, следует учитывать, что классификационные границы условны, некоторые генераторы занимают промежуточное положение между низко- и высокочастотными, некоторые бывают комбинированными по виду сигнала.

Для оптических генераторов существует аналогичная классификация. Кроме генераторов стандартизованных видов бывают генераторы отраслевого назначения (в составе контрольно-измерительной аппаратуры).

  • Г2 — генераторы шума, генерируют белый или розовый шум.
    • ПРИМЕРЫ: Г2-37, Г2-47, Г2-59.
  • Г3 — генераторы низкой частоты, обычно от 20 Гц до 200 кГц, реже до 2 или 10 МГц, модуляция сигнала в генераторах производства до 80-х гг, как правило, не предусмотрена.
    • ПРИМЕРЫ: Г3-102, Г3-109, Г3-118, Г3-119, Г3-122.
  • Г4 — генераторы высокой частоты, предназначены для работы в радиочастотном диапазоне с различными видами модуляции.
    • ПРИМЕРЫ: Г4-83, Г4-129, Г4-153, Г4-154, РГ4-14, РГ4-17-01А, Г4-219, Г4-220.
  • Г5 — генераторы импульсов, воспроизводят последовательности прямоугольных импульсов, некоторые генераторы способны генерировать заданные оператором кодовые импульсные последовательности.
    • ПРИМЕРЫ: Г5-54, Г5-60, Г5-80, Г5-89, Г5-100, Г5-103, Г5-109.
  • Г6 — генераторы сигналов специальной формы, воспроизводят последовательности импульсов разной формы: треугольной, пилообразной, трапецеидальной и др. Такие генераторы часто называют функциональными генераторами.
    • ПРИМЕРЫ: Г6-17, Г6-22, Г6-39.
  • Г7 — синтезаторы частот, используют различные методы синтеза частоты из сигнала с высокой стабильностью частоты, могут иметь в своем составе модуляторы.
    • ПРИМЕРЫ: Г7-14, Г7-15, Г7М-20, Г7М-40.
  • Г8 — генераторы качающейся частоты.
  • ОГ — генераторы излучения в оптическом диапазоне.
    • ПРИМЕРЫ: ОГ-2-1, ОГ4-163, ОГ5-87
  • Генераторы отраслевого назначения — обычно это специализированные устройства, предназначенные для настройки определённого оборудования с целью повышения производительности труда при настройке, воспроизводят специальные сигналы, например, сложной формы или со сложными комбинированными методами модуляции, манипуляции, с задаваемыми циклограммами перестройки параметров сигнала. Наравне с калибраторами предназначены для проверки и настройки определённых видов радиоаппаратуры.
Мультиметр со встроенными генераторами-пробниками частот 1 и 465 кГц
  • Генераторы-пробники — простые компактные устройства для оперативной проверки функционирования электронных систем. Обычно генерируют одну или несколько фиксированных частот или импульсов без строгого нормирования параметров сигнала. Такие генераторы часто встраивают в мультиметры.

Основные нормируемые характеристики[править | править код]

  • Диапазон генерируемых частот.
  • Точность установки частоты и её нестабильность.
  • Диапазон установки выходных уровней (напряжения или мощности).
  • Точность установки выходного уровня, погрешность аттенюатора.
  • В зависимости от вида генератора могут быть дополнительные параметры — характеристики модуляции, временные характеристики импульсов.

Литература[править | править код]

Нормативно-техническая документация[править | править код]

  • ГОСТ 11113-74 Генераторы импульсов измерительные. Типы, основные параметры, технические требования.
  • ГОСТ 16863-71 Генераторы измерительные диапазона частот 0,1—35 МГц. Методы и средства поверки.
  • ГОСТ 23767-79 Генераторы измерительные. Общие технические требования и методы испытаний.
  • ГОСТ 8.314-78 Генераторы низкочастотные измерительные. Методы и средства поверки.
  • ГОСТ 8.322-78 Генераторы сигналов измерительные. Методы и средства поверки в диапазоне частот 0,03-17,44 ГГц.
  • IEC 60624(1978) Генераторы импульсные. Представление характеристик.
  • Документы, определяющие методы и средства поверки генераторов — ГОСТ 8.206, ГОСТ 8.314, ГОСТ 8.322, ГОСТ 16863, ГОСТ 12152.

Бесщёточный синхронный генератор — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Генератор.

Бесщёточный синхронный генератор — синхронная машина, работающая только в генераторном режиме, ротор которой не имеет коллекторно-щёточного узла, а ток в обмотке возбуждения (в роторе) индуцируется за счёт переменного магнитного поля, создаваемого основной и/или дополнительной обмоткой статора.

Существует несколько практических реализаций бесщёточного синхронного генератора, отличающихся способом индуцирования тока в обмотке возбуждения и регулированием напряжения на выходных зажимах.

Генераторы с компаундным возбуждением и компенсирующей ёмкостью[править | править код]

Наиболее простым по технической реализации является бесщёточный генератор с компаундным возбуждением и компенсирующей ёмкостью, подключенной к дополнительной обмотке. Такой генератор представляет собой явнополюсную синхронную машину с обмоткой возбуждения в роторе.

Обмотка возбуждения разбита на две секции, концы каждой из которых замкнуты через диод. Таким образом, индуцированный ток в обмотке возбуждения может протекать только в одном направлении, создавая постоянное магнитное поле.

Статор имеет две обмотки: основную и дополнительную. К основной обмотке подключается нагрузка. К дополнительной обмотке подключается компенсирующий конденсатор. Основная обмотка занимает 2/3 пазов статора, а дополнительная 1/3 пазов.

Работает генератор следующим образом. При начале вращения ротора тока в обмотках нет. Однако магнитопроводы статора и ротора имеют остаточную намагниченность. За счёт последней в обмотках начинает индуцироваться ток. Так как за счёт диодов ток в обмотке ротора может протекать только в одном направлении, магнитопровод ротора начинает намагничиваться. При этом вращающееся магнитное поле, создаваемое ротором, индуцирует в обмотках статора электродвижущую силу. Поскольку дополнительная обмотка статора нагружена на конденсатор, через неё начинает протекать переменный ток. Этот переменный ток создаёт переменное, но не вращающееся магнитное поле статора, которое индуцирует электродвижущую силу в обмотке ротора. Под действием этой электродвижущей силы в обмотке ротора возникает ток, который выпрямляется диодами и ещё сильнее намагничивает ротор. Это в свою очередь вызывает увеличение электродвижущей силы и тока в обмотках статора, что в свою очередь ещё сильнее намагничивает ротор. Процесс возбуждения развивается лавинообразно до входа магнитопроводов статора и ротора в режим насыщения. В основной обмотке статора возникает электродвижущая сила номинальной величины. Генератор готов к подключению нагрузки.

При подключении нагрузки к основной обмотке в ней появляется ток, который создает своё магнитное поле. Если бы возбуждение генератора осталось на прежнем уровне, то напряжение на его выходных зажимах снизилось бы по двум причинам: падение напряжения на внутреннем сопротивлении и смещение магнитного поля относительно оси обмотки статора. Однако обмотки статора расположены таким образом, что их магнитные оси повернуты на 90 градусов. За счёт этого происходит поворот магнитного поля ротора в направлении основной обмотки, что увеличивает ЭДС индукции в ней. Чем больше ток основной обмотки — тем больше поворот магнитного поля ротора. Таким образом происходит стабилизация выходного напряжения генератора. Такой способ регулирования называется компаундным.

Генератор с компаундным возбуждением прост по конструкции, обладает малым весом и стоимостью, что обусловило его широкое применение в переносных бензиноэлектрических агрегатах («бензиновые электростанции»). В то же время этому типу генераторов присущ ряд недостатков, а именно:

  • генератор может быть только однофазным;
  • в случае подключения к генератору нагрузки с нелинейным характером сопротивления (например, нагреватель, включенный через диод) процесс компаундирования нарушается — напряжение на выходе генератора может оказаться сильно завышенным.
  • коэффициент полезного действия генератора относительно невысок, так как существенная часть энергии переменного магнитного поля теряется на перемагничивание магнитопроводов, работающих в режиме близком к насыщению.

Генераторы с независимым возбуждением[править | править код]

Недостатки генераторов с компаундным возбуждением и емкостной компенсацией устраняются в бесщёточных генераторах с независимым возбуждением. В этом случае передача электрической энергии к обмотке возбуждения (в виде переменного тока) происходит через вращающийся трансформатор, а выпрямление переменного тока для питания обмотки возбуждения происходит в самом роторе за счёт выпрямителя. Такие генераторы сложнее по конструкции (необходим вращающийся трансформатор). Регулирование напряжение может осуществляться как за счёт компаундирования, так и с применением электронного регулятора.

Кварцевый генератор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 августа 2018; проверки требуют 8 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 августа 2018; проверки требуют 8 правок. Кварцевый генератор внутри микросборки формата DIP-микросхемы. Внутри находится печатная плата, тонкий круглый кварцевый резонатор с металлизированными обкладками сверху и снизу (находится слева на фотографии), микросхема и обвязка.

Ква́рцевый генера́тор — автогенератор электромагнитных колебаний с колебательной системой, в состав которой входит кварцевый резонатор. Предназначен для получения колебаний постоянной частоты с высокой температурной и временно́й устойчивостью, низким уровнем фазовых шумов.

Частота[править | править код]

Частота собственных колебаний кварцевого генератора может находиться в диапазоне от нескольких кГц до сотен МГц. Она определяется физическими размерами резонатора, упругостью и пьезоэлектрической постоянной кварца, а также тем, как вырезан резонатор из кристалла. Так как кварцевый резонатор является законченным электронным компонентом, его частоту можно изменять внешними элементами и схемой включения в очень узком диапазоне выбором резонансной частоты (параллельный или последовательный) или понизить параллельно включённым конденсатором. Существуют, однако, кустарные методики подстройки резонатора. Это целесообразно в случаях, когда желательно иметь несколько резонаторов с очень близкими параметрами. Для уменьшения частоты на кристалл кратковременно воздействуют парами иода (это увеличивает массу серебряных обкладок), для увеличения частоты обкладки резонатора шлифуют.

В 1997 году компания Epson Toyocom выпустила в свет серию генераторов SG8002, в конструктиве которых присутствуют блок подстроечных конденсаторов и два делителя частоты. Это позволяет получить практически любую частоту в диапазоне от 1 до 125 МГц. Однако данное достоинство неизбежно влечёт за собой недостаток — повышенный джиттер (фазовый шум). Цитата: Генератор с внутренними цепями фазовой автоподстройки частоты необходимо с предельной осторожностью применять в схемах, содержащих внешние цепи ФАПЧ.[1]

Стабильность частоты[править | править код]

Колебания кварцевого генератора характеризуются высокой стабильностью частоты (10−5 ÷ 10−12), что обусловлено высокой добротностью кварцевого резонатора (104 ÷ 105).

Уровень фазовых шумов[править | править код]

У лучших генераторов спектральная плотность мощности фазовых шумов может быть менее −100 дБн/Гц на отстройке 1 Гц и менее −150 дБн/Гц на отстройке 1 кГц при выходной частоте 10 МГц.

Мощность[править | править код]

Мощность кварцевого генератора не превышает нескольких десятков милливатт[источник не указан 2070 дней]. При более высокой мощности кристалл кварцевого резонатора может разрушиться из-за возникающих в нём сильных механических напряжений. На практике, при необходимости получения большей мощности от стабилизированного кварцевым резонатором генератора применяется усилитель.

Тип выходного сигнала[править | править код]

Генераторы могут изготавливаться как в модификации с синусоидальным выходным сигналом, так и с сигналом прямоугольной формы, совместимым по логическим уровням с одним из стандартов (TTL, CMOS, LVCMOS, LVDS и т. д.).

Наличие и тип термостабилизации[править | править код]

  • термокомпенсированные (TCXO)
  • термостатированные (OCXO, DOCXO)

Возможность перестройки частоты[править | править код]

  • постоянной частоты
  • частота управляется напряжением (VCXO)
  • частота управляется цифровым кодом (NCXO)

Внешнее напряжение на кварцевой пластинке вызывает её деформацию. А она, в свою очередь, приводит к появлению электрического заряда на поверхности кварца (пьезоэлектрический эффект). В результате этого механические колебания кварцевой пластины сопровождаются синхронными с ними колебаниями заряда на её поверхности, и наоборот.

Для обеспечения связи резонатора с остальными элементами схемы непосредственно на кварц наносятся электроды, либо кварцевая пластинка помещается между обкладками конденсатора.

Для получения высокой добротности и стабильности резонатор помещают в вакуум и поддерживают постоянной его температуру.

Примеры схемотехнической реализации[править | править код]

Кварцевые генераторы используют для измерения времени (кварцевые часы, электронные часы), в качестве стандартов частоты. Кварцевые генераторы широко применяются в цифровой технике в качестве генераторов тактовых импульсов.

  • Смагин А. Г., Ярославский М. И. Пьезоэлектричество кварца и кварцевые резонаторы. — М.: «Энергия», 1970. — 488 с. — 6000 экз.
  • Шитиков Г. Т., Цыганков П. Я., Орлов О. М. Высокостабильные кварцевые автогенераторы / Под ред. Г. Т. Шитикова. — М.: «Советское радио», 1974. — 376 с. — 11 300 экз.
  • Альтшуллер Г. Б. Управление частотой кварцевых автогенераторов. — Изд. 2-е, перераб. и доп.. — М.: «Связь», 1975. — 304 с. — 7000 экз.
  • Альтшуллер Г. Б., Елфимов Н. Н., Шакулин В. Г. Кварцевые генераторы: Справочное пособие. — М.: Радио и связь, 1984. — 232 с. — 27 000 экз.

Генератор текста — Википедия

Генера́тор те́кста — компьютерная программа, генерирующая тексты (сленг генерёнку), корректные с точки зрения большинства языковых норм, но, как правило, лишённые смысла (в связи с чем такие программы иногда называют «бредогенераторами», «генераторами шизофазии»).

Иногда у читающего сгенерированный такой программой текст (например, использующей цепь Маркова) может сложиться впечатление, что этот текст является осмысленным, особенно если текст имеет тематику, с которой читающий слабо знаком. Например, некоторые люди не понимают философию и считают любой философский текст, содержащий большое число специфических терминов, бредом, поэтому они не могут определить искусственный характер псевдофилософского текста, написанного программой.

Существуют разные виды генераторов текста, различающиеся своими возможностями (например, некоторые из них могут самостоятельно формировать новые слова).

Джонатан Свифт в «Путешествиях Гулливера», пародируя Ars magna Раймунда Луллия, сатирически описал машину из Лагадо, генерирующую тексты.

Генерация текста путём составления из полностью случайных слов даёт мусорный результат: бессмысленный для человека и легко распознаётся анализаторами текстов, и поэтому не применяется. Обычно применяется генерация по вручную написанным фразам-шаблонам.

В случаях когда не важен смысл генерируемого текста, он составляется из «мешанки» предложений из разных исходных текстов, или из частей предложений. Такой метод совместно с шаблонами и синонимизацией используется в чат-ботах и ботах-комментаторах в соцсетях и блогах. Такие боты копируют собеседнику фразы, записанные с других чатов или сайтов. Более продвинутые чат-боты сортируют фразы по ключевым словам, поэтому их ответ более приближен к теме диалога.

Синонимайзеры и генерация фраз по шаблонам[править | править код]

Часто генераторы текстов совмещены с программами-синонимайзерами, которые автоматически меняют слова на синонимы, в целях рерайта и придания уникальности фразам. Слова, которые надо заменять в шаблоне на синонимы, заменяются макросами.

Чем длиннее текст, тем заметнее неестественность в автоподставленных синонимах. Поэтому в текстах «сделанных для людей» (СДЛ) синонимайзеры могут применяться только для создания уникальных коротких текстов: заголовков и анкоров с ключевыми словами, комментариев и абзацев. Синонимайзеры более успешно применяются в английском языке, который, в отличие от русского языка, имеет простую морфологию.

Виды синонимизации:

  • Программа-переводчик. Иногда, для синонимизации советуют помещать тексты в программу-переводчик, переводить на иной язык, а затем обратно переводить на русский. Однако, результатом будет бредотекст, ибо переводчики тоже плохо поддерживают склонения слов и их правильный порядок в предложениях.
  • Генерация по заданному шаблону. Популярен SEO anchor generator, он имеет онлайн-версию с несколькими базами, которые, однако, нельзя редактировать.
  • Генерация по шаблону с возможностью подключения базы синонимов. Самые известные генераторы: Generating the web, Article clone easy, и генератор входящий в Allsubmitter (программа для раскрутки сайта ссылками).
  • Синонимизация по базе синонимов. Известен синонимайзер SmartRewriter, он позволяет редактировать базы, немного понимает морфологию. Есть синонимайзеры с функцией «разбавления» текста, например, путём добавления прилагательных. Один из таких — Ifritus, расширяющий текст «описательными связями».
  • С учётом морфологии. Такие программы редки ввиду своей сложности. Бывают в виде программ, библиотеки функций, онлайн-сервиса, или онлайн-API для программистов. Например, Морфер способен склонять словосочетания, и phpMorphy, pyMorphy склоняют только отдельные слова.

«Мешанка» текста из разных источников[править | править код]

Дорвеи быстро «вылетают» из поисковой выдачи из-за некачественности своих текстов. Поэтому дорвейщики стараются генерировать текст по минимуму. Случайно генерируются только небольшие фразы в разных элементах страницы, подходящие по смыслу. А абзацы текста парсятся целиком с других сайтов такой же тематики, и, возможно синонимизируются, или используется «мешанка».

  • Обычно в генерируемом тексте используется «мешанка» предложений, взятых из различных текстов. Источниками могут быть сборки рассказов в несколько мегабайтов текста, или страницы сайтов схожей тематики. Но если источниками являются только 1-3 сайтов, простая онлайн-проверка на плагиат это покажет. Вполне возможно, что такую проверку делают и поисковики, имея базу всех текстов когда-либо выложенных в интернет.
  • Также предложения генерёнки могут составляться из частей предложений нескольких источников, разделяясь запятой. Проверка по Advego показывает, что уникальность такой мешанки выше на 30 % и более.
  • Некоторые доргены (генераторы дорвеев) собирают текстовые фрагменты, парся сниппеты поисковой выдачи в интернет. Таковы доргены Seodor и SED.

«Умные» генераторы[править | править код]

Ряд компаний развивает более сложную технологию. Создаются синтаксические структуры по частям речи и членам в предложениях, слова в словарях категоризируются по семантике, с дальнейшей автоподстановкой их в предложения. Однако, ввиду крайней сложности и объёма работ, авторских прав на эти разработки, и коммерческой тайны (подобные системы в принципе позволяют создать очень прибыльные коммерческие проекты), вряд ли стоит ожидать появления общающихся роботов и роботов-переводчиков в ближайшие годы.

На данном уровне развития компьютерных технологий в свободном доступе отсутствуют генераторы текста со сравнительно осмысленным текстом. Генераторы с бессмысленным набором слов или с шаблонными фразами имеют узкую сферу применения.

Разработка и оптимизация сайтов[править | править код]

Генераторы текстов широко используются при разработке и поисковой оптимизации сайтов: для генерации названий, описаний, и содержимого целых сайтов с помощью доргенов (генераторов дорвеев).

Существуют крупные англоязычные сайты, зарабатывающие на размещении рекламы, на которых весь контент пишут не журналисты, а боты — статьи автоматически рерайтятся из других источников. Примеры таких сайтов: Demand Mediaruen и Associated Contentruen[1]. Русский язык, в отличие от английского, имеет сложную морфологию, поэтому появление подобных ботов-рерайтеров в рунете сильно осложнено.

Материалы, созданные при помощи генератора текстов и использующиеся в целях поисковой оптимизации, требуют обязательного тщательного отбора по критерию уникальности.[прояснить] Производится данный отбор при помощи специализированного программного обеспечения, имеющего различный алгоритм проверки.[источник не указан 1660 дней]

Виртуальные собеседники[править | править код]

Виртуальные собеседники (чат-боты) — программы, предназначенные имитировать общение в чатах. Они массово применяются для рассылки спама в соцсетях (спам-боты), а также как автоответчики, способные реагировать на множества ключевых слов по разным сценариям.

Поскольку при этом человек не видит своего собеседника, у него может сложиться впечатление, что он переписывается с живым человеком. Тем не менее, ещё ни одному чат-боту не удавалось с успехом пройти тест Тьюринга, а программам, использующим генераторы текста, это сделать ещё сложнее.

Массовая пропаганда и троллинг в соцсетях[править | править код]

В связи с развитием интернет-пропаганды и «кибер-войн» в соцсетях применяются боты для массовой имитации общественного мнения. При создании ботов у них автоматически генерируются имена и интернет-адреса, а при их ответах — текст комментариев, обычно провокационного, пропагандистского, или оскорбительного содержания.

Относительно широкую известность в русскоязычном Интернете получил генератор текста Rareguest, оформленный в виде php-скрипта. Некоторое время он использовался в рамках сатирического интернет-проекта «Гавгав-центр», а затем получил распространение в качестве робота для живых журналов, блогов и т. д. Вот примеры последовательной генерации однотипных сообщений данным роботом:

Все ваши посты — типичное клише лживой инсинуации, которая стремится дискредитировать и осмеять всякого, кто начинает прозревать и открыто говорить о преступлениях преступного режима. Колет глаза держимордам кровавого кремлёвского упыря правда об их бесчеловечии и о фашистской сути кровавого кремлёвского режима! Интересной особенностью данного форума является то, что путинисты в основном занимаются флудом или обсуждением личностей, а топиков по существу проблем России, вроде этого, боятся как черт ладана. Во врунете достаточно простора, где НКВД-фашисты, вроде вас, могут, не отягощаясь правдой и анализом сталино-путинизма, проводить своё время. Потому и считаю я вас, путинистов, моральными выродками. Ведь подобного рода «участники дискуссии» не появляются на подконтрольных кремлю и ястржембскому «чеченских» сайтах врунета. Пути-Пут и его кровожадные подёнщики ответят за всё.

На этих примерах видно, что даже знакомый с обсуждаемой проблематикой читатель может принять сообщения робота за сообщения реального живого человека, пусть и несколько экзальтированного. Выдает робота в этих сообщениях только типовая структура построения предложений и их комбинирования.

Проверка качества рецензирования издательств[править | править код]

Известны случаи, когда генераторы текстов успешно использовались для выявления низкого качества (а иногда и полного отсутствия) рецензирования в научных журналах. Особенно известна в этом плане программа SCIgen.

Генератор тактовых импульсов — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 мая 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 23 мая 2019; проверки требует 1 правка. Тактовый генератор персонального компьютера, основанный на чипе ICS 952018AF и резонаторе частотой 14,3 МГц У этого термина существуют и другие значения, см. Генератор.

Генератор тактовых импульсов (генератор тактовой частоты) предназначен для синхронизации различных процессов в цифровых устройствах — ЭВМ, электронных часах, таймерах и других. Он вырабатывает электрические импульсы (обычно прямоугольной формы) заданной частоты, которая часто используется как эталонная — считая количество импульсов, можно, например, измерять временные интервалы.

В микропроцессорной технике один тактовый импульс, как правило, соответствует одной атомарной операции. Обработка одной инструкции может производиться за один или несколько тактов работы микропроцессора, в зависимости от архитектуры и типа инструкции. Частота тактовых импульсов определяет скорость вычислений.

В зависимости от сложности устройства, используют разные виды генераторов.

Микросхема синтезатора частот в ноутбуке. Используется для получения разных тактовых импульсов на основе опорного генератора тактовых импульсов

Классический[править | править код]

В несложных конструкциях, не критичных к стабильности тактового генератора, часто используется последовательное включение нескольких инверторов через RC-цепь. Частота колебаний зависит от номиналов резистора и конденсатора. Основной недостаток данной конструкции — низкая стабильность, достоинство — предельная простота.

Кварцевый[править | править код]

Пример — генератор Пирса.

Кварц + микросхема генерации[править | править код]

Микросхема генерации при подключении к её входам кварцевого резонатора будет выдавать на остальных выводах частоту, делённую или умноженную на исходную. Такой способ используется в часах, а также на старых материнских платах (где частоты шин были заранее известны, только внутренняя частота центрального процессора умножалась).

Для построения тактового генератора не требуется никакая специальная микросхема.

Программируемая микросхема генерации[править | править код]

В современных материнских платах необходимо большое количество разных частот, помимо опорной частоты системной шины, которые, по возможности, не должны быть зависимы друг от друга. Хотя базовая частота всё же формируется кварцевым резонатором, она необходима лишь для работы самой микросхемы. Выходные же частоты корректируются самой микросхемой. Например, частота периферийной шины AGP может быть всегда равна стандартной (66 МГц) и не зависеть от частоты системной шины процессора.

Если в электронной схеме необходимо разделить частоту на 2, используют Т-триггер в режиме счётчика импульсов. Соответственно, для увеличения делителя увеличивают количество счётчиков (триггеров).

Тактовый генератор[править | править код]

Тактовый генератор — автогенератор, формирующий рабочие такты процессора («частоту»). В некоторых микропроцессорах и микроконтроллерах выполняется встроенным.

Кроме тактирования процессора, в обязанности тактового генератора входит организация циклов системной шины. Поэтому его работа часто тесно связана с циклами обновления памяти, контроллером ПДП и дешифратором сигналов состояния процессора.

Отправить ответ

avatar
  Подписаться  
Уведомление о