Генераторный режим – Режимы работы (двигательный, генераторный, торможение) двигателя постоянного тока ДПТ

Генераторный режим

Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдёт в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозным. В генераторном режиме работы скольжение .

Для работы асинхронной машины в генераторном режиме требуется источник реактивной мощности, создающий магнитное поле. При отсутствии первоначального магнитного поля в обмотке статора поток создают с помощью постоянных магнитов, либо при активной нагрузке за счёт остаточной индукции машины и конденсаторов, параллельно подключенных к фазам обмотки статора.

Асинхронный генератор потребляет реактивный ток и требует наличия в сети генераторов реактивной мощности в виде синхронных машин, синхронных компенсаторов, батарей статических конденсаторов (БСК). Из-за этого, несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном в качестве ветрогенераторовмалой мощности, вспомогательных источников небольшой мощности и тормозных устройств. Зато генераторный режим асинхронного двигателя используется довольно часто. В таком режиме работают двигатели эскалаторов метро, которые едут вниз. В генераторном режиме работают двигатели лифтов, в зависимости от соотношения веса в кабине и в противовесе.

Режим холостого хода

Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. В режиме реального холостого хода s=0,01-0,08. В режиме идеального холостого хода n2=n1, следовательно 

s=0 (на самом деле этот режим недостижим, даже при допущении, что трение в подшипниках не создаёт свой момент нагрузки — сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора. При s=0 поле статора не пересекает обмотки ротора и не может индуцировать в нём ток, а значит не создаётся магнитное поле ротора.)

Режим электромагнитного тормоза (противовключение)

Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Для режима справедливы неравенства:

.

Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.

Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.

Вопрос10.двигатель постоянного тока смешанного возбуждения. Схема включения и его характеристики.  В этом двигателе (рис. 8.63, а) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения — параллельной и последовательной. Поэтому его механические характеристики (рис. 8.63,б, кривые 3 и 4) располагаются между характеристиками двигателей с параллельным (прямая 1) и последовательным (кривая 2) возбуждением. В зависимости от соотношения МДС параллельной и последовательной обмоток при

Рис. 8.63. Схема двигателя со смешанным возбуждением и его механические характеристики

номинальном режиме можно приблизить характеристики двигателя со смешанным возбуждением к характеристике 1 (при малой МДС последовательной обмотки) или к характеристике 2 (при малой МДС параллельной обмотки). Одним из достоинств двигателя со смешанным возбуждением является то, что он, обладая мягкой механической характеристикой, может работать при холостом ходе, так как его частота вращения n0 имеет конечное значение.

Вопрос11.конструктивная схема асинхронной машины. Вопрос12.параллельная работа трансформаторов. Условия включения.

На трансформаторных подстанциях обычно устанавливается несколько параллельно работающих трансформаторов. Это обусловлено следующими причинами: — условиями обеспечения надежности электроснабжения путем резервирования; -необходимостью расширения подстанции; -уменьшением потерь при малых нагрузках путем от­ключения части параллельно работающих трансформаторов.

1. В п. 2.19 «Правил технической эксплуатации» предписано следующее: «2.19. Допускается параллельная работа трансформаторов (автотрансформаторов) при условии, что ни одна из обмоток не будет нагружена током, превышающим допустимый ток для данной обмотки. Параллельная работа трансформаторов разрешается при следующих условиях: группы соединения обмоток одинаковы, соотношение мощностей трансформаторов не более 1:3, коэффициенты трансформации отличаются не более чем на ±0,5%, напряжения короткого замыкания отличаются не более чем на ±10%, произведена фазировка трансформаторов. Для выравнивания нагрузки между параллельно работающими трансформаторами с отличными напряжениями к.з. допускается в небольших пределах изменение коэффициента трансформации путем переключения ответвлений при условии, что ни один из трансформаторов не будет перегружен. 2. Как правило, на параллельную работу должны включаться одинаковые трансформаторы (с точностью до производственных отклонений).

Для включения трансформаторов Tp1 и Тр2 на параллельную работу  необходимо, чтобы при холостом ходе в их обмотках не возникали уравнительные токи и чтобы нагрузка распределялась между обоими трансформаторами в соответствии с их номинальной мощностью Вопрос13.облость применения машин переменного тока. Машина постоянного тока как и любая электрическая машина обратима: может работать как генератор и как двигатель. Причем двигатели нашли большее применение, чем генераторы.

В табл. 1.1 приведены характеристики некоторых электрических машин постоянного тока.

Таблица 1.1Характеристики электрических машин постоянного тока

Назначение

Использование

Р, кВт

I, А

U, В

Примечание

Двигатели

Трамвай

40¸50

75¸100

550

Имеют преимущества перед двигателями переменного тока:

1) широкое регулирование частоты вращения;

2) развивают большой пусковой момент

Электровоз

600¸900

400¸600

1500

Прокатный

стан

11500

11500

1000

Атомоход

«Ленин»

18000

18000

1000

Генераторы

Для

электролиза

60¸120

10000

6¸12

Чаще используются

генераторы переменного

тока с выпрямителями

Тепловоз (старые модификации)

2700

3600

750

Режимы работы (двигательный, генераторный, торможение) двигателя постоянного тока ДПТ

В двигателях параллельного возбуждения при неизменном то­ке в обмотке возбуждения (IВ = const) магнитный поток изменяется при нагрузке весьма незначительно, поэтому с некоторым при­ближением можно принять Ф = const. В этом случае электромаг­нитный момент [см. (25.24)] пропорционален току в цепи якоря и механическая характеристика n = f(M) может быть представлена зависимостью n = f(I

a) (рис. 29.8). Если эту характеристику про­должить в обе стороны за пределы осей координат (прямая 1), то можно показать, что электрическая машина в зависимости от ве­личины и знака внешнего момента, действующего на ее вал со стороны связанного с ним механизма, может работать в трех ре­жимах: двигательном, тормозном и генераторном.

При работе двигателя без нагрузки ток в цепи якоря Ia0не­большой. При этом частота вращения n = n0 (точка А). Затем с по­явлением на валу двигателя нагрузочного момента, противодейст­вующего вращающему, ток в цепи якоря возрастает, а частота вращения уменьшается. Если увеличить противодействующий момент до значения, при котором якорь двигателя остановится (точка

В), то ЭДС Ea = 0  и ток двигателя достигает значения clip_image002[4]clip_image002[4]

Если двигатель применяют для привода механизма, на­грузочный момент которого может быть больше вращающегося (например, привод барабана, на который наматывается трос с гру­зом), то при последующем увеличении нагрузочного момента это­го механизма якорь машины вновь начнет вращаться, но теперь уже в другую сторону. Теперь момент, действующий на вал элек­трической машины со стороны нагрузочного механизма, будет вращающим, а электромагнитный момент машины — тормозя­щим, т. е. электрическая машина перейдет в

тормозной ре­жим. При работе машины в этом режиме ЭДС якоря действует согласованно с напряжением, т. е.

clip_image002[6]clip_image002[6].

При использовании машины в тормозном режиме необходимо принять меры для ограничения тока якоря. С этой целью в цепь якоря включают добавочное сопротивление, величина которого обеспечивает получение искусственной характеристики двигателя, пересекающейся с осью абсцисс при токе якоря clip_image002[8]clip_image002[8]

(штрихо­вая прямая).

Если при работе двигателя в режиме х.х. к его валу приложить момент, направленный в сторону вращения якоря, то частота вра­щения, а следовательно, и ЭДС Ea начнут возрастать. Когда ЭДС Ea = U, машина не будет потреблять тока из сети (точка С) и час­тота вращения якоря достигает значения, называемого погранич­ной частотой вращения nxx

clip_image028clip_image028

Рис. 29.8. Режимы работы машины постоянного тока:

1 — с параллельным (независимым) возбуждением;

2 — со смешанным возбуждением;

3 — с последовательным возбуж­дением

При дальнейшем увеличении внешнего момента на валу ма­шины ЭДС Ea станет больше напряжения, а в цепи якоря опять возникает ток, но другого направления. При этом машина перей­дет в генераторный режим: механическая энергия, затрачи­ваемая на вращение якоря, будет преобразовываться в электриче­скую и поступать в сеть.

Перевод машины из двигательного в генераторный режим ис­пользуют для торможения двигателя, так как в генераторном ре­жиме электромагнитный момент является тормозящим (рекупера­тивное торможение).

§ 10.1. Режим работы асинхронной машины

В соответствии с принципом обратимости элек­трических машин (см. § В.2) асинхронные машины могут работать как в двигательном, так и в генератор­ном режимах. Кроме того, возможен еще и режим электромагнитного торможения противовключением.

Двигательный режим. Принцип действия трехфазного асинхронного двигателя рассмотрен в § 6.2. При включенииобмотки статора в сеть трех­фазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмот­кой ротора, наводит в ней ЭДС. При этом в стерж­нях обмотки ротора появляются токи (см. рис. 6.4). В результате взаимодействия этих токов с вращаю­щимся магнитным полем на роторе возникают элек­тромагнитные силы. Совокупность этих сил создает электромагнитный вращающий момент, под дейст­вием которого ротор асинхронного двигателя при­ходит во вращение с частотойn2 < n1в сторону вра­щения поля статора. Если вал асинхронного двигателя механически соединить с валом какого-либо исполнительного механизма ИМ (станка, подъ­емного крана и т. п.), то вращающий момент двига­теля М, преодолев противодействующий (нагрузоч­ный) момент Мнагр, исполнительного механизма, приведет механизм во вращение. Следовательно, электрическая мощность Р1, поступающая в двига­тель из сети, в основной своей части преобразуется в механическую мощностьР1 и передается исполни­тельному механизму ИМ (рис. 10.1, б).

Весьма важным параметром асинхронной ма­шины является скольжение — величина, характери­зующая разность частот вращения ротора и вра­щающегося поля статора:

S = (n1n2)/ n1 (10.1)

Скольжение выражают в долях единицы либо в процентах. В последнем случае величину, получен­ную по (10.1), следует умножить на 100.

Вполне очевидно, что с увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n2умень­шается. Следовательно, скольжение асинхронного двигателя зави­сит от механической нагрузки на валу двигателя и может изме­няться в диапазоне 0 <s 1.

При включении асинхронного двигателя в сеть в начальный момент времени ротор под влиянием сил инерции неподвижен (n2=0). При этом скольжениеs равно единице.

Рис. 10.1. Режимы работы асинхронной машины

В режиме работы двигателя без нагрузки на валу (режим холостого хода) ротор вращается с частотой лишь немного меньшей синхронной частоты вращения n1 и скольжение весьма мало отличается от нуля (s≈ 0). Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжением shom. Для асинхронных дви­гателей общего назначения shom = 18%, при этом для двигателей большой мощностиsном= 1%, а для двигателей малой мощностиsном = 8%.

Преобразовав выражение (10.1), получим формулу для опре­деления асинхронной частоты вращения (об/мин):

n2 = n1(1-s). (10.2)

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины посредством приводного дви­гателя ПД (двигатель внутреннего сгорания, турбина и т. п.), яв­ляющегося источником механической энергии, вращать в направ­лении вращения магнитного поля статора с частотойn2> n1, то направление движения ротора относительно поля статора изме­нится на обратное (по сравнению с двигательным режимом работы пой машины), так как ротор будет обгонять поле статора. При этом скольжение станет отрицательным, а ЭДС, наведенная в обмотке ротора, изменит свое направление. Электромагнитный момент на роторе М также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора и станет тормозящим по отношению к вращающемуся моменту приводного двигателя М1(рис. 10.1, а). В этом случае механическая мощность приводного двигателя в основной своей части будет преобразована в электрическую активную мощность Р2 перемен­ного тока. Особенность работы асинхронного генератора состоит в том, что вращающееся магнитное поле в нем создается реактивной мощностьюQтрехфазной сети, в которую включен генератор и да он отдает вырабатываемую активную мощностьР2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора, т. е. в нем возбуждается вращающееся маг­нитное поле.

Скольжение асинхронной машины в генераторном режиме может изменяться в диапазоне — ∞ < s < 0, т. е. оно может прини­мать любые отрицательные значения.

Режим торможения противовключением. Если у работаю­щего трехфазного асинхронного двигателя поменять местами любую пару подходящих к статору из сети присоединительных проводов, то вращающееся поле статора изменит направление вращения на обратное. При этом ротор асинхронной машины под действием сил инерции будет продолжать вращение в прежнем правлении. Другими словами, ротор и поле статора асинхронной машины будут вращаться в противоположных направлениях. В этих условиях электромагнитный момент машины, направленный в сторону вращения поля статора, будет оказывать на ротор тормозящее действие (рис. 10.1, в). Этот режим работы асинхронной машиины называется электромагнитным торможением противовключением. Активная мощность, поступающая из сети в машину при этом режиме, частично затрачивается на компенсацию механической мощности вращающегося ротора, т. е. на его торможение.

В режиме электромагнитного торможения частота вращения ротора является отрицательной, а поэтому скольжение приобрета­ет положительные значения больше единицы:

s = [n1 — (- n2)] / n1 = (n1 + n2) /n1 > 1.(10.3)

Скольжение асинхронной машины в режиме торможения противовключением может изменяться в диапазоне 1 < s < + ∞ , т. е. оно может принимать любые положительные значения больше единицы.

Обобщая изложенное о режимах работы асинхронной маши­ны, можно сделать вывод: характерной особенностью работы асинхронной машины является неравенство частот вращения маг­нитного поля статора n1 и ротора n2, т. е. наличие скольжения, так как только в этом случае вращающееся магнитное поле наводит в обмотке ротора ЭДС и на роторе возникает электромагнитный момент. При этом каждому режиму работы асинхронной машины соответствует определенный диапазон изменений скольжения, а следовательно, и частоты вращения ротора.

Из рассмотренных режимов работы наибольшее практическое применение получил двигательный режим асинхронной машины, т. е. чаще используют асинхронные двигатели, которые составля­ют основу современного электропривода, выгодно отличаясь от других электродвигателей простотой конструкции и высокой на­дежностью. Поэтому теорию асинхронных машин принято изла­гать применительно к асинхронным двигателям.

Генераторный режим асинхронного двигателя: особенности создания своими руками

Генераторный режим асинхронного двигателяУстройство представляет собой модель, которая с помощью переменного напряжения может воспроизводить электроэнергию. Генераторный режим асинхронного двигателя включает в себя две активные обмотки, благодаря которым запускается функционал устройства. Это обмотка возбуждения и статорный вариант.

Схема работы

Асинхронный генератор считается одним из наиболее простых и надёжных в плане эксплуатации. Процесс работы выглядит следующим образом:

  • В якорной обмотке с помощью напряжения, что идёт от аккумулятора, создаётся магнитное поле.
  • Вращение элементов поля можно организовать своими руками или же автоматизировать процесс с помощью использования реле.
  • Скорость магнитного поля позволяет вырабатывать электромагнитную индукцию, что провоцирует возникновение электричества.

Из-за наличия внутри оборудования короткозамкнутого ротора не все схемы имеют возможность обеспечивать обмотку напряжением. Поэтому даже в случае активного вращения вала клемы будут обесточены.

Составляющие элементы

Генератор из асинхронного двигателя своими руками 220 В создать несложно, но предварительно нужно понять, какие детали входят в механизм. Даже простые модели требуют нужных элементов для воссоздания электричества. Стандартный асинхронный двигатель включает в себя:

  • Двигатель асинхронный трехфазныйСтатор из сетевой обмотки на три фазы. Они размещаются по его рабочей поверхности в виде намотки.
  • Обмотку, напоминающую звезду и состоящую из контактных колец, что имеют выход к ротору.
  • Щётки, которые не совершают по факту никакой работы, но способствуют включению реостата. Такое приспособление влияет на функциональность обмотки и изменяет параметры её сопротивления.
  • Иногда в механизме может быть встроен специальный автоматический короткозамыкатель, который может закоротить обмотку и остановить элемент реостата, даже если деталь пребывает в работе.

В стадии замыкания щёток и контактных колец могут включаться дополнительно элементы для их разводки. Не все генераторы оснащены такими деталями, приспособление можно увидеть у новых моделей.

Секреты и тонкости

Ветрогенератор из асинхронного двигателяЧтобы сделать асинхронный двигатель в режиме генератора нужно не только изучить модель устройства, но и подобрать нужные элементы. Специалисты советуют использовать неполярные батареи конденсаторного типа, поскольку электролитические элементы в данную схему не вписываются.

Трёхфазный тип запускает детали конденсаторов с помощью звезды. Это даёт возможность запустить генеративный процесс с небольшими оборотами ротора, но такой способ негативно сказывается на выходе напряжения.

Можно создать генератор, используя и однофазный механизм, но это только в случае, если имеются короткозамкнутые роторы. Нельзя использовать для переделки под генератор коллекторный тип двигателей, поскольку их мощность слишком высока для такого механизма. В домашних условиях узнать о ёмкости батареи конденсаторного типа нельзя. Это стоит учитывать в процессе переделки.

Узнать, подходит ли батарея для генератора можно исходя из её веса. Тяжесть детали должна быть равной электродвигателю.

Процесс изготовления

Принцип работы асинхронного двигателяДля этой цели может использоваться механизм из бытовой техники, например, со стиральной машинки. Сначала снимается верхний слой из сердечника двигателя, чтобы открылся доступ ко всем составляющим элементам. После этого по всему сердечнику нужно проделать дополнительные отверстия и сделать небольшое углубление.

Из ротора снимаются размеры и создаётся шаблон в виде полосы, соответствующий реальным параметрам механизма. На каждый полюс образовавшегося пространства нужно прикрепить неодимовой магнит. Для процесса может потребоваться от 8 до 10 магнитов.

Зафиксировать магниты лучше суперклеем, но можно применять и другие варианты из доступных подручных средств. Для герметизации устройства ротор можно обернуть бумагой и залепить торцовую часть пластилином.

Свободные места между магнитами нужно обработать используя эпоксидную смолу. Поле того, как заливка высохнет, можно снять бумажную оболочку, в которую и заливалась смесь. После этого начинается этап шлифовки поверхности ротора. Деталь нужно зафиксировать в тиски. Далее, определяется состояние проводов и происходит тестирование созданного генератора.

Процесс преобразования асинхронного двигателя в генератор такого же типа завершён. Применять устройство можно в разных вариантах работ.

Что касается оценки уровня эффективности, то генератор из трёхфазного двигателя в этом плане ничем не отличается от асинхронного типа. Одним из плюсов первого варианта является наличие конденсаторной батареи, улучшающей процесс работы генератора и по своей структуре считающейся одним из наиболее сложных технических элементов устройства.

Режим генератора

Этот режим служит для преобразования механической энергии в электрическую, т.е. асинхронная машина должна развивать на валу тормозной момент и отдавать в сеть электрическую энергию. Асинхронная машина переходит в режим генератора, если ротор начинает вращаться быстрее магнитного поля (). Этот режим может наступить, например, при регулировании частоты вращения ротора.

Пусть . При этом изменится (по сравнению с режимом двигателя) направление ЭДС и тока ротора, а также изменится направление электромагнитной силы и электромагнитного момента. Машина начинает развивать на валу тормозной момент (потребляет механическую энергию) и возвращает в сеть электрическую энергию (изменилось направление тока ротора, т.е. направление передачи электрической энергии).

При ,.

При ,.

Таким образом, в режиме генератора скольжение изменяется в пределах:

.

Режим электромагнитного тормоза

Этот режим работы наступает, если ротор и магнитное поле вращаются в разные стороны. Этот режим работы имеет место при реверсе асинхронного двигателя, когда изменяют порядок чередования фаз, т.е. изменяется направление вращения магнитного поля, а ротор по инерции вращается в прежнем направлении.

Электромагнитная сила будет создавать тормозной электромагнитный момент, под действием которого будет снижаться частота вращения ротора, а затем произойдёт реверс.

В режиме электромагнитного тормоза машина потребляет механическую энергию, развивая на валу тормозной момент, и одновременно потребляет из сети электрическую энергию. Вся эта энергия идёт на нагрев машины.

При ,.

При ,.

Таким образом, в режиме электромагнитного тормоза скольжение изменяется в пределах:

.

Зависимость электромагнитного момента от скольжения

Выражение для электромагнитного момента справедливо для любого режима работы и может быть использовано для построения зависимости момента от скольжения при изменении последнего от до.

Рассмотрим часть этой характеристики, соответствующая режиму двигателя, т.е. при скольжении, изменяющемся от 1 до 0. Обозначим момент, развиваемый двигателем при пуске в ход (S=1) как . Скольжение, при котором момент достигает наибольшего значения, называют критическим скольжением, а наибольшее значение момента – критическим моментом. Отношение критического момента к номинальному называют перегрузочной способностью двигателя

Участок характеристики, на котором скольжение изменяется от 0 до , соответствует устойчивой работе двигателя. На этом участке располагается точка номинального режима (,). В пределах изменения скольжения от 0 доизменение нагрузки на валу двигателя будет приводить к изменению частоты вращения ротора, изменению скольжения и вращающего момента. С увеличением момента нагрузки на валу частота вращения ротора станет меньше, что приведет к увеличению скольжения и электромагнитного (вращающего) момента. Если момент нагрузки превысит критический момент, то двигатель остановится.

Участок характеристики, на котором скольжение изменяется от до 1, соответствует неустойчивой работе двигателя. Этот участок характеристики двигатель проходит при пуске в ход и при торможении.

2) Генераторный режим Рис. 2

Для построения векторной диаграммы необходимо рассмотреть соотношение, величины вторичного тока I2 при вращающемся с любым скольжением роторе:

В генераторном режиме s<0 и, согласно выше написанному выражению, по-прежнему , т.е.становится отрицательной и меняет свою фазу на 180. Физически это объясняется тем, что поле вращается относительно ротора по сравнению с двигательным режимом в обратною сторону, вследствие чего изменяются знаки эдс E2S и активной составляющей тока I2. В результате изменяется также знак вращающего момента, т.е. последний действует против направления вращения и становится тормозящим. На основании изложенного построена векторная диаграмма на рисунке 2.

3) Режим противовключения Рис. 3

По сравнению с двигательным и генераторным режимами работы в режиме противовключения сопротивление мало. Поэтому на основании следующего равенства:

можно заключить, что ток I2 и угол велики. Соответственно этому первичный токI1 и угол сдвига фаз так же велики. Это также указывает на опасность режима в тепловом соотношении. Поэтому приU1=U1Hрассматриваемый режим допускается лишь кратковременно. На основании выше изложенного построим векторную диаграмму режима противовключения.

Рис. 3

3.Характеристики синхронного генератора.

Отдельную группу характеристик СГ составляют характеристики, которые определяют зависимость между напряжением на зажимах якоря U, током якоряIи током возбужденияifприf=fнилиn=nни φ=constв установившемся режиме работы. Эти характеристики дают наглядное представление о ряде основных свойств синхронных генераторов.

Характеристика холостого хода: определяет зависимостьU=f(if) приI=0 иf=fн.

Рабочая точка 2 располагается на участке перегиба Х.Х.Х. При использовании точки 1 имеется недоиспользование машины; при использовании в качестве рабочей точки 3 происходит насыщение машины и резкий рост тока возбуждения.

Характеристика 3-х фазного КЗ: снимается при замыкании зажимов всех фаз обмотки якоря накоротко и определяет зависимостьI=f(if) приU=0 иf=fн.

Пренебрегая активным сопротивлением якоря уравнение в режиме КЗ имеет вид:

Так как на индуктивном сопротивлении рассеяния фазы падение напряжения мало (ЭДС от результирующего магнитного потока индуцируется магнитным потоком малой величины) магнитная цепь не насыщена и характеристика имеет линейный характер.

Отношение КЗ – это отношение установившегося тока КЗ IKOпри токе возбуждения, который при холостом ходе иn=nндаетE=Uн, к номинальному току якоряIн:Еслиif0иifk– соответственно токи возбуждения на ХХ, когдаU=Uн, и при установившемся КЗ, когдаI=Iн, то по подобию треугольниковOAA’иOBB’. Величина о.к.з., определяет предельную величину нагрузки, которую способен нести генератор при установившемся режиме работы, причем чем больше о.к.з., тем больше предельная нагрузка. Чем больше величина зазора δ между статором и ротором, тем больше о.к.з.

Внешняя характеристика:определяет зависимостьU=f(I) приif=const,cosφ=const,f=fни показывает, как изменяется напряжения машиныUвеличины нагрузки и неизменном токе возбуждения.

Вид внешних характеристик объясняется характером действия реакции якоря.

При индуктивной нагрузке существует большая продольная размагничивающая реакция якоря, которая растет с увеличением тока нагрузки I, и поэтомуUс увеличениемIуменьшается; при чисто активной нагрузке она тоже есть, только слабее т.к. угол ψ междуEиIменьше. При опережающем токе (емкостная нагрузка) возникает продольная намагничивающая реакция якоря и поэтому с увеличениемIнапряжениеUрастет.

ΔUн– это изменение напряжения на зажимах генератора при изменении нагрузки от номинального значения до нуля и при неизменном токе возбуждения.

Регулировочные характеристики:определяет зависимостьif=f(I) приU=const,cosφ=constиf=constи показывают, как нужно регулировать ток возбуждения генератора, для того, чтобы при изменении нагрузки напряжение на выходе оставалось неизменным.

Вид регулировочных характеристик также объясняется характером действия реакции якоря. При отстающем токе (кривая 1) продольная реакция якоря является размагничивающей и для компенсации ее влияния на величины ФδиUс увеличениемIнеобходимо значительно увеличивать ток возбужденияif. При чисто активной нагрузке (кривая 2) размагничивающая продольная реакция якоря слабее и требуется меньшее увеличениеif. При опережающем токе (кривая 3) продольная реакция якоря стремится увеличивать ФδиU, вследствие чего для сохраненияU=constнеобходимо с увеличениемIуменьшатьif.

Индукционная нагрузочная характеристика:определяет зависимостьU=f(if) приI=const,cosφ=constиf=constиспользуется для определения размагничивающего действия реакции якоря и показывает, как измениться напряжения генератораUс изменением тока возбужденияifпри условии постоянства тока нагрузкиIиcosφ.

Наибольший интерес представляет индукционная нагрузочная характеристика (кривая 2), которая соответствует чисто индуктивной нагрузке генератора, когда cosφ=0(инд.). Обычно она снимается дляI=Iн.

В режиме индукционной характеристики существует чисто продольная размагничивающая реакция якоря. Поэтому индукционная характеристика (кривая 2) идет ниже характеристики холостого хода (кривая 1).

Точка А соответствует симметричному установившемуся короткому замыканию генератора при I=Iн, когдаU=0 и также ψ=90º.

7.2 Режимы работы асинхронной машины

Характерной особенностью асинхронной машины является неравенство частот вращения магнитного поля статора n1 и ротора n2, так как только в этом случае вращающееся магнитное поле наводит в обмотке ротора ЭДС и на роторе возникает электромагнитный момент.

В соответствии с принципом обратимости асинхронные машины могут работать в двигательном, генераторном режимах и режиме электромагнитного торможения.

Двигательный режим. При включении обмотки статора в сеть трехфазного тока возникает вращающееся магнитное поле, которое, сцепляясь с короткозамкнутой обмоткой ротора, наводит в ней ЭДС. При этом в стержнях обмотки ротора появляются токи.

В результате взаимодействия этих токов с вращающимся магнитным полем на роторе возникают электромагнитные силы. Эти силы создают электромагнитный вращающий момент, под действием которого ротор приходит во вращение с частотой

где n1 – частота вращающегося поля статора; n2 – частота вращения ротора.

Если вал асинхронного двигателя механически соединить с валом какого-либо мexaнизма, то вращающий момент двигателя М, преодолев противодействующий момент, приведет его во вращение. Таким образом, электрическая мощность Р1 поступающая из сети, преобразуется в механическую мощность Р2 и передается исполнительному механизму.

Важным параметром является скольжение – величина, характеризующая разность частот вращения ротора и вращающегося поля статора:

(7.2)

Скольжение выражают в долях единицы или в процентах.

При включении асинхронного двигателя в сеть в начальный момент времени ротор под влиянием сил инерции неподвижен (n2=0) и скольжение при этом равно единице. В режиме холостого хода ротор вращается с частотой немного меньшей синхронной частоты вращения (n2 n1) и скольжение практически не отличается от нуля. С увеличением нагрузочного момента на валу асинхронного двигателя частота вращения ротора n2 уменьшается. То есть скольжение асинхронного двигателя зависит от механической нагрузки и может изменяться в диапазоне . Скольжение, соответствующее номинальной нагрузке двигателя, называют номинальным скольжениемsном. Для двигатeлeй общего назначения sном = 1÷8 %, при этом для двигателей большой мощности sном= 1 %, а для двигателей малой мощности Sном = 8 %.

+Sкр

+1

Генераторный

режим

S

Рисунок 7.2 – Режимы работы асинхронной машины

Генераторный режим. Если обмотку статора включить в сеть, а ротор асинхронной машины приводным двигателем вращать в направлении вращения магнитного поля статора с частотой n2>n1, то скольжение станет отрицательным, а ЭДС в обмотке ротора изменит свое направление. Электромагнитный момент на роторе также изменит свое направление, т. е. будет направлен встречно вращающемуся магнитному полю статора. В этом случае механическая мощность приводного двигателя будет преобразована в электрическую мощность P2.

Особенность асинхронного генератора в том, что вращающееся магнитное поле в нем создается реактивной мощностью Q трехфазной сети, в которую включен генератор и куда он отдает вырабатываемую активную мощность P2. Следовательно, для работы асинхронного генератора необходим источник переменного тока, при подключении к которому происходит возбуждение генератора (возбуждается вращающееся магнитное поле).

Режим торможения противовключением. Если у работающего трехфазного асинхронного двигателя поменять местами любую пару подходящих к статору из сети присоединительных проводов, то вращающееся поле статора изменит направление вращения на обратное. Но ротор асинхронной машины под действием сил инерции будет продолжать вращение в прежнем направлении, т. е. ротор и поле статора асинхронной машины будет вращаться в противоположных направлениях. Электромагнитный момент машины будет оказывать на ротор тормозящее действие.

Отправить ответ

avatar
  Подписаться  
Уведомление о