Гидропривода принцип работы: Гидравлический привод — Википедия – Устройство и принцип работы гидропривода

Содержание

Гидравлический привод назначение и устройство. Классификация и принцип работы гидроприводов. Гидропривод поворотного движения

Министерство образования города Москвы

Кафедра «Гидравлика и гидропневмопривод»

Реферат на тему: «Гидравлический привод»

Москва — 2010

1.0 Введение…………………………………………………………………………………3

1 Виды гидроприводов…………………………………………………………………4

1.1 По характеру движения выходного звена гидродвигателя……….4

Инженеры и проектировщики обычно используют электродвигатели для питания гидравлических насосов. В некоторых случаях двигатель и насос устанавливаются в конфигурации с прямым приводом. В других случаях они подключаются с использованием непрямого диска. Посмотрим на каждый тип диска.

Прямые приводы состоят из вала, соединяющего двигатель и насос. Они недороги, просты и устраняют все боковые нагрузки на подшипники насоса. Но прямые приводы все еще применимы только к небольшому числу приложений. Это связано с тем, что насос и двигатель должны быть жестко и точно установлены, чтобы обеспечить выравнивание валов насоса и двигателя. Насос может потребовать, чтобы поверхность пилота была сопряжена с пилотным отверстием на монтажной площадке. Даже при пилотируемых поверхностях техника должна быть предельно осторожна с выравниванием во время установки.

1.1.1 Гидропривод вращательного движения…………………………………4

1.1.2 Гидропривод поступательного движения………………………………5

1.1.3 Гидропривод поворотного движения……………………………………..5

1.2 По возможности регулирования………………………………………………5

1.2.1 Регулируемый гидропривод………………………………………………….5

Для некоторых применений набор согласованных элементов накачки может быть установлен на вал электродвигателя с перекрытием для обеспечения правильного выравнивания. Готовая установка напоминает встроенный насос-двигатель. Если между валом и насосом имеется гибкая муфта, это называется прямым приводом. Это один из самых распространенных способов управления насосом. Он имеет большую часть преимуществ прямого привода, но устраняет необходимость точного выравнивания вала. Боковые нагрузки на подшипники обычно низкие, но пропорциональны несоосности с некоторыми типами соединений, и привод прост.

1.2.2 Саморегулируемый гидропривод…………………………………………..5

1.3 По схеме циркуляции рабочей жидкости…………………………………5

1.3.1 Гидропривод с замкнутой схемой циркуляции………………………5

1.3.2 Гидропривод с разомкнутой системой циркуляции……………….6

1.4 По источнику подачи рабочей жидкости…………………………………7

1.4.1 Насосный гидропривод…………………………………………………………7

Муфты, обычно используемые в этом типе привода, должны учитывать углы пересекающихся валов, а также смещенные или непересекающиеся валы. Зазор сцепления или «обводка», как правило, не является проблемой. Непрямые приводы используют шестерни, шкивы или цепи, чтобы компенсировать вал двигателя от вала, вращающего насос, что дает очевидное преимущество в том, что он способен регулировать скорость или уровень оборотов вала насоса. Таким образом, насос может приводиться на необычной скорости с помощью стандартного двигателя.

Или поворот вала с некоторой нечетной скоростью может быть адаптирован к нагрузкам на насос с помощью соответствующего косвенного привода. С другой стороны, косвенные диски используют больше компонентов, добавляя сложность и стоимость. Они также требуют больше места и могут вызвать чрезмерные боковые нагрузки на вал насоса.

1.4.2 Магистральный гидропривод………………………………………………..7

1.4.3 Аккумуляторный гидропривод……………………………………………..7

1.5 По типу приводящего двигателя гидроприводы……………………….8

2 Преимущества……………………………………………………………………………8

3 Недостатки…………………………………………………………………………………8

Гидропривод вращательного движения

Простые непрямые приводы, в которых ведущий шкив или шестерня монтируются непосредственно на валу насоса, создают самые высокие боковые нагрузки. Чтобы свести к минимуму эти нагрузки, приводной элемент следует поместить как можно ближе к валу к насосу. Использование самого большого практического механизма или шкива также минимизирует нагрузки подшипников.

Гидропривод поступательного движения

Комплексные косвенные приводы почти полностью устраняют боковую нагрузку, используя гибко соединенный вал, поддерживаемый своими подшипниками. Это дает все преимущества косвенного привода, избегая при этом разрушительной боковой нагрузки. Из-за отдельных блоков подушек, валов, муфт и приводных компонентов, это самые сложные из всех приводов насосов.

4 Литература………………………………………………………………………………..10

Введение

Гидравлический привод (гидропривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии. Обязательными элементами гидропривода являются насос и гидродвигатель.

Гидропривод представляет собой своего рода «гидравлическую вставку» между приводным двигателем и нагрузкой (ма

Объёмный гидропривод — Википедия

Объёмный гидропривод — это гидравлический привод, в котором используются объёмные гидромашины[1]. Термин происходит от того, что принцип действия объёмных гидромашин основан на попеременном заполнении рабочего объёма жидкостью и вытеснения жидкости из него. Объёмный гидропривод машин позволяет с высокой точностью поддерживать или изменять скорость машины при произвольном нагружении, осуществлять слежение — точно воспроизводить заданные режимы вращательного или возвратно-поступательного движения, усиливая одновременно управляющее воздействие.

В последнее время иногда ошибочно называется гидростатическим приводом. Данное выражение ошибочно, поскольку термин «гидростатический» может быть отнесен только к покоящейся жидкости. Возникла данная ошибка, по видимому, вследствие некорректного использования онлайн-переводчиков с китайского языка.

Объёмный гидропривод машин применяется в металлорежущих станках, прессах, в системах управления летательных аппаратов, судов, тяжёлых автомобилей, мобильной строительно-дорожной технике, в системах автоматического управления и регулирования тепловых двигателей, гидротурбин. Реже объёмный гидропривод машин используется в качестве главных приводов транспортных установках на автомобилях, кранах.

Основные элементы объемного привода[править | править код]

Гидравлический привод состоит из нескольких основных элементов: насос или аккумулятор, гидродвигатель, органы регулирования и распределения гидравлической энергии, а также система защиты[2]. В качестве источника гидравлической энергии применяется насос либо аккумулятор. Приём энергии осуществляется посредством гидродвигателя. Для управления приводом используются соответствующие органы регулирования распределения энергии. Для обеспечения безопасной эксплуатации объемные гидроприводы оборудуются соответствующими комплексами защиты.

Отличительные особенности объёмного гидропривода перед гидродинамическим[править | править код]

Существует большое количество видов объёмных насосов. Некоторые из них: шестерённые насосы, аксиально-плунжерные, радиально-плунжерные, винтовые, пластинчатые и другие. Они отличаются от гидродинамических насосов тем, что способны работать при очень больших давлениях (до 300 МПа), в то время как гидродинамические (центробежные, осевые и др.) обычно работают при давлениях, не превышающих 1,5 МПа. С другой стороны, скорость и подача жидкости, нагнетаемой объёмными насосами обычно невелики в сравнении со скоростью нагнетаемой жидкости и подачей гидродинамических насосов.

Номинальная мощность (Вт), отдаваемая насосом в гидросистему или потребляемая гидродвигателем из гидросистемы, может быть определена по формуле:

NH=QHPH{\displaystyle N_{H}=Q_{H}P_{H}},

где QH{\displaystyle Q_{H}} — номинальная подача насоса (для гидродвигателя — номинальный расход рабочей жидкости), м³/с;

PH{\displaystyle P_{H}} — номинальное давление на выходе из насоса (для гидродвигателя — номинальное давление рабочей жидкости на входе в гидродвигатель), Н/м².

Преимущества объёмного гидропривода перед гидродинамическим[править | править код]

Причину компактности объёмного гидропривода по сравнению с гидродинамическим можно пояснить с помощью аналогии с электрическими сетями. Для передачи электроэнергии по линиям электропередачи её преобразуют сначала в энергию высокого напряжения. Повышение напряжения позволяет при сохранении мощности пропорционально уменьшить силу тока в линиях, уменьшая и сечение кабелей, и их массу. Точно так же передача гидравлической энергии по гидролиниям высокого давления (в системах объёмного гидропривода) позволяет уменьшить и расход жидкости (кратно), и поперечное сечение гидролиний. Кроме того, меньшую подачу могут обеспечить насосы меньшего размера и т. д. Эта аналогия не является чисто умозрительной — давление и электрическое напряжение являются величинами, характеризующими плотность энергии, переносимой единицей рабочего тела: давление в гидролинии — это величина энергии переносимой единицей объема жидкости, а напряжение в электрическое линии — энергия, переносимая единицей заряда. Аналогично и с током. В гидравлических системах аналогом тока выступает поток жидкости: объем, прошедшей по гидравлической линии за единицу времен На этом подобии разработан метод электрогидравлических аналогий, позволяющий производить теоретические исследования гидрооборудования на основе хорошо изученных процессов в электрических сетях. В свою очередь, способность работы объёмных гидромашин при высоких давлениях вытекает из принципа их работы и устройства.

Из приведённой выше формулы для мощности видно, что для обеспечения той же мощности при высоком давлении необходимо обеспечивать ме́ньшую подачу, чем при низком давлении. Поэтому при высоком давлении геометрические размеры всех узлов гидропривода становятся меньше. Поскольку, в отличие от гидродинамических гидромашин, объёмные гидромашины способны работать при высоких давлениях, то и объёмный гидропривод намного компактнее и меньше по массе гидродинамического привода. Это одно из тех обстоятельств, которые обусловили широкое распространение объёмного гидропривода по сравнению с гидродинамическим приводом.

Полный коэффициент полезного действия объёмного гидропривода имеет три составляющие:

η=ηгη0ηм,{\displaystyle \eta =\eta _{\text{г}}\eta _{0}\eta _{\text{м}},}

где ηг{\displaystyle \eta _{\text{г}}} — гидравлический КПД, характеризующий гидравлические потери в гидроприводе;

η0{\displaystyle \eta _{0}} — объёмный КПД, характеризующий утечки рабочей жидкости через зазоры и щели между деталями гидрооборудования;

ηм{\displaystyle \eta _{\text{м}}} — механический КПД, характеризующий потери на механическое трение деталей гидрооборудования.

  1. Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч. 2. Гидравлические машины и гидропневмопривод / Под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 с.
  2. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Башта Т. М., Руднев С. С., Некрасов Б. Б. и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  3. Схиртладзе А. Г., Иванов В. И., Кареев В. Н. Гидравлические и пневматические системы. — Издание 2-е, дополненное. М.: ИЦ МГТУ «Станкин», «Янус-К», 2003. — 544 с.

Общая характеристика привода

1.3. Преимущества и недостатки гидропривода

Широкое распространение гидропривода объясняется тем, что этот привод обладает рядом преимуществ перед другими видами приводов машин. Вот основные из них.

1. Бесступенчатое регулирование скорости движения выходного звена гидропередачи и обеспечение малых устойчивых скоростей. Минимальная угловая скорость вращения вала гидромотора может составлять 2…3 об/мин.

2. Небольшие габариты и масса. Время разгона, благодаря меньшему моменту инерции вращающихся частей не превышает долей секунды в отличие от электродвигателей, у которых время разгона может составлять несколько секунд.

3. Частое реверсирование движения выходного звена гидропередачи. Например, частота реверсирования вала гидромотора может быть доведена до 500, а штока поршня гидроцилиндра даже до 1000 реверсов в минуту. В этом отношении гидропривод уступает лишь пневматическим инструментам, у которых число реверсов может достигать 1500 в минуту.

4. Большое быстродействие и наибольшая механическая и скоростная жесткость. Механическая жесткость — величина относительного позиционного изменения положения выходного звена под воздействием изменяющейся внешней нагрузки. Скоростная жесткость — относительное изменение скорости выходного звена при изменении приложенной к нему нагрузки.

5. Автоматическая защита гидросистем от вредного воздействия перегрузок благодаря наличию предохранительных клапанов.

6. Хорошие условия смазки трущихся деталей и элементов гидроаппаратов, что обеспечивает их надежность и долговечность. Так, например, при правильной эксплуатации насосов и гидромоторов срок их службы доведен в настоящее время до 5…10 тыс. ч работы под нагрузкой. Гидроаппаратура может не ремонтироваться в течение долгого времени (до 10…15 лет).

7. Простота преобразования вращательного движения в возвратно-поступательное и возвратно-поворотные без применения каких-либо механических передач, подверженных износу.

Говоря о преимуществах гидропривода, следует отметить простоту автоматизации работы гидрофицированных механизмов, возможность автоматического изменения их режимов работы по заданной программе.

Гидроприводу присущи и недостатки, которые ограничивают его применение. Основные из них следующие.

1. Изменение вязкости применяемых жидкостей от температуры, что приводит к изменению рабочих характеристик гидропривода и создает дополнительные трудности при эксплуатации гидроприводов (особенно при отрицательных температурах).

2. Утечки жидкости из гидросистем, которые снижают КПД привода, вызывают неравномерность движения выходногозвена гидропередачи, затрудняют достижение устойчивой скорости движения рабочего органа при малых скоростях.

3. Необходимость изготовления многих элементов гидропривода по высокому классу точности для достижения малых зазоров между подвижными и неподвижными деталями, что усложняет конструкцию и повышает стоимость их изготовления.

4. Взрыво- и огнеопасность применяемых минеральных рабочих жидкостей.

5. Невозможность передачи энергии на большие расстояния из-за больших потерь на преодоление гидравлических сопротивлений и резкое снижение при этом КПД гидросистемы.

Со многими из этих недостатков можно бороться. Например, стабильность вязкости при изменении температуры достигается применением синтетических рабочих жидкостей. Окончательный выбор типа привода устанавливается при проектировании машин по результатам технико-экономических расчетов с учетом условий работы этих машин. Гидропривод, тем не менее, имеет преимущества по сравнению с другими типами приводов там, где требуется создание значительной мощности, быстродействие, позиционная точность исполнительных механизмов, компактность, малая масса, высокая надежность работы и разветвленность привода.

Наверх страницы

Принцип работы гидропривода гст–90

Гидропривод ГСТ–90 (рисунок 1.4) включает аксиально-плунжерные агрегаты: регулируемый гидронасос с шестеренным насосом подпитки и гидрораспределителем; нерегулируемый гидромотор в сборе с клапанной коробкой, фильтр тонкой очистки с вакуумметром, трубопроводы и шланги, а также бак для рабочей жидкости.

Вал 2 гидронасоса вращается в двух роликовых подшипниках. На шлице вала посажен блок цилиндров 25, в отверстиях которого перемещаются плунжеры. Каждый плунжер сферическим шарниром соединен с пятой, которая упирается на опору, расположенную на наклонной шайбе 1. Шайба соединена с корпусом гидронасоса при помощи двух роликовых подшипников, и благодаря этому может быть изменен наклон шайбы относительно вала насоса. Изменение угла наклона шайбы происходит под действием усилий одного из двух сервоцилиндров 11, поршни которых соединены с шайбой 1 при помощи тяг.

Внутри сервоцилиндров находятся пружины, воздействующие на поршни и устанавливающие шайбу так, чтобы расположенная в ней опора была перпендикулярна к валу. Вместе с блоком цилиндров вращается приставное дно, скользящее по распределителю, закрепленному на задней крышке. Отверстия в распределителе и приставном дне периодически соединяют рабочие камеры блока цилиндров с магистралями, связывающими гидронасос с гидромотором.

Рисунок 1.4 – Схема гидропривода ГСТ–90:

1 — шайба; 2 — выходной вал насоса; 3 — реверсивный регулируемый насос; 4 — гидролиния управления; 5 — рычаг управления; 6 — золотник управления положением люльки; 7 — гидролиния низкого давления; 8 — насос подпитки; 9 — обратный клапан; 10 — предохранительный клапан системы подпитки; 11 — сервоцилиндр; 12 — фильтр; 13 — вакуумметр; 14 — гидробак; 15 — теплообменник; 16 — золотник; 17 — переливной клапан; 18 — главный предохранительный клапан высокого давления; 19 — гидролиния низкого давления; 20 — гидролиния высокого давления; 21 — дренажная гидролиния; 22 — нерегулируемый мотор; 23 — выходной вал гидромотора; 24 — наклонная шайба гидромотора; 25 — блок цилиндров; 26 — тяга связи; 27 — торцевое уплотнение

Сферические шарниры плунжеров и скользящие по опоре пяты смазываются под давлением рабочей жидкостью.

Внутренняя плоскость каждого агрегата заполнена рабочей жидкостью и является масляной ванной для работающих в ней механизмов. В эту полость поступают и утечки из сопряжений гидроагрегата.

К задней торцевой поверхности гидронасоса крепятся насос подпитки 8 шестеренного типа, вал которого соединен с валом гидронасоса.

Насос подпитки всасывает рабочую жидкость из бака 14 и подает ее:

– в гидронасос через один из обратных клапанов;

– в систему управления через гидрораспределитель в количествах, ограниченных жиклером.

На корпусе насоса подпитки 8 расположен предохранительный клапан 10, который открывается при повышении давления, развиваемого насосом.

Гидрораспределитель 6 служит для распределения потока жидкости в системе управления, то есть для направления ее к одному из двух сервоцилиндров, в зависимости от изменения положения рычага 5 или запирания жидкости в сервоцилиндре.

Гидрораспределитель состоит из корпуса, золотника с возвратной пружиной, расположенной в стакане, рычага управления с пружиной кручения, а также рычага 5 и двух тяг 26, которые связывают золотник с рычагом управления и наклонной шайбой.

Устройство гидромотора 22 аналогично устройству насоса. Основные отличия заключаются в следующем: пяты плунжеров при вращении вала скользят по наклонной шайбе 24, имеющей постоянный угол наклона, а поэтому механизм ее поворота с гидрораспределителем отсутствует; вместо насоса подпитки к задней торцевой поверхности гидромотора крепится клапанная коробка. Гидронасос с гидромотором связаны с двумя трубопроводами (магистралями «гидронасос-гицромотор»). По одной из магистралей поток рабочей жидкости под высоким давлением движется от гидронасоса к гидромотору, по другой — под низким давлением возвращается обратно.

В корпусе клапанной коробки находятся два клапаны высокого давления, переливной клапан 17 и золотник 16.

Система подпитки включает насос подпитки 8, а также обратные 9, предохранительный 10 и переливной клапаны.

Система подпитки предназначена для снабжения рабочей жидкостью системы управления, обеспечения минимального давления в магистралях «гидронасос-гидромотор», компенсирования утечек в гидронасосе и гидромоторе, постоянного перемешивания рабочей жидкости, циркулирующей в гидронасосе и гидромоторе, с жидкостью в баке, отвода от деталей тепла.

Клапаны высокого давления 18 предохраняют гидропривод: от перегрузок, перепуская рабочую жидкость из магистрали высокого давления в магистраль низкого давления. Так как магистралей две и каждая из них в процессе работы может быть магистралью высокого давления, то и клапанов высокого давления тоже два. Переливной клапан 17 должен выпускать излишки рабочей жидкости из магистрали низкого давления, куда она постоянно подается насосом подпитки.

Золотник 16 в клапанной коробке подключает переливной клапан к той магистрали «гидронасос-гидромотор», в которой давление будет меньше.

При срабатывании клапанов системы подпитки (предохранительного и переливного) вытекающая рабочая жидкость попадает во внутреннюю полость агрегатов, где, смешавшись с утечками, по дренажным трубопроводам поступает в теплообменник 15 и далее в бак 14. Благодаря дренажному устройству, рабочая жидкость отводит тепло от трущихся деталей гидроагрегатов. Специальное торцевое уплотнение вала предотвращает вытекание рабочей жидкости из внутренней полости агрегата. Бак служит резервуаром для рабочей жидкости, имеет внутри перегородку, разделяющую его на сливную и всасывающую полости, снабжен указателем уровня.

Фильтр тонкой очистки 12 с вакуумметром задерживает посторонние частицы. Фильтрующий элемент выполнен из нетканого материала. О степени загрязненности фильтра судят по показаниям вакуумметра.

Двигатель вращает вал гидронасоса, а, следовательно, связанные с ним блок цилиндров и вал насоса подпитки. Насос подпитки всасывает рабочую жидкость из бака через фильтр и подает ее в гидронасос.

При отсутствии давления в сервоцилиндрах пружины, расположенные в них, устанавливают шайбу так, чтобы плоскость находящейся в ней опоры (шайбы) была перпендикулярна к оси вала. В этом случае при вращении блока цилиндров пяты плунжеров будут скользить по опоре, не вызывая осевого перемещения плунжеров, и гидронасос не будет посылать рабочую жидкость в гидромотор.

От регулируемого гидронасоса в процессе работы можно получить различный объем жидкости (подачу), подаваемый за один оборот. Для изменения подачи гидронасоса необходимо повернуть рычаг гидрораспределителя, который кинематически связан с шайбой и золотником. Последний, переместившись, направит рабочую жидкость, поступающую от насоса подпитки в систему управления, в один из сервоцилиндров, а второй сервоцилиндр соединится с полостью слива. Оказывающийся под действием давления рабочей жидкости поршень первого сервоцилиндра начнет движение, поворачивая шайбу, перемещая поршень во втором сервоцилиндре и сжимая пружину. Шайба, поворачиваясь в положение, заданное рычагом гидрораспределителя, будет перемещать золотник, пока не возвратит его в нейтральное положение (при этом положении выход рабочей жидкости из сервоцилиндров закрыт поясками золотника).

При вращении блока цилиндров пяты, скользя по наклонной опоре, вызовут перемещение плунжеров в осевом направлении, и вследствие этого произойдет изменение объема камер, образованными отверстиями в блоке цилиндров и плунжерами. Причем половина камер будет увеличивать свой объем, другая половина — уменьшать. Благодаря отверстиям в приставном дне и распределителе эти камеры поочередно соединяются с магистралями «гидронасос-гидромотор».

В камере, увеличивающей свой объем, рабочая жидкость поступает из магистрали низкого давления, куда подается насосом подпитки через один из обратных клапанов. Вращающимся блоком цилиндров рабочая жидкость, находящаяся в камерах, переносится к другой магистрали и вытесняется в нее плунжерами, создавая высокое давление. По этой магистрали жидкость попадает в рабочие камеры гидромотора, где ее давление передается на торцевые поверхности плунжеров, вызывая их перемещение в осевом направлении и, благодаря взаимодействию пят плунжеров с наклонной шайбой, заставляет блок цилиндров вращаться. Пройдя рабочие камеры гидромотора, рабочая жидкость выйдет в магистраль низкого давления, по которой часть ее возвратится к гидронасосу, а излишки через золотник и переливной клапан вытекут во внутреннюю полость гидромотора. При перегрузке гидропривода высокое давление в магистрали «гидронасос-гидромотор» может возрастать до тех пор, пока не откроется клапан высокого давления, который перепустит рабочую жидкость из магистрали высокого давления в магистраль низкого давления, минуя гидромотор.

Объемный гидропривод ГСТ–90 позволяет бесступенчато изменить передаточное отношение: на каждый оборот вала гидромотор потребляет 89 см3 рабочей жидкости (без учета утечек). Такое количество рабочей жидкости гидронасос может выдать за один или несколько, оборотов своего приводного вала в зависимости от угла наклона шайбы. Следовательно, меняя подачу гидронасоса, можно изменить скорость движения машин.

Для изменения направления движения машины достаточно наклонить шайбу в противоположную сторону. Реверсивный гидронасос при том же вращении его вала изменит направление потока рабочей жидкости в магистралях «гидронасос-гидромотор» на обратное (то есть магистраль низкого давления станет магистралью высокого давления, а магистраль высокого давления — магистралью низкого). Следовательно, для изменения направления движения машины необходимо рычаг гидрораспределителя повернуть в противоположную сторону (от нейтрального положения). Если же снять усилие с рычага гидрораспределителя, то шайба под действием пружин возвратится в нейтральное положение, при котором плоскость находящейся в ней опоры станет перпендикулярной к оси вала. Плунжеры не будут перемещаться в осевом направлении. Подача рабочей жидкости прекратится. Самоходная машина остановится. В магистралях «гидронасос-гидромотор» давление станет одинаковым.

Золотник в клапанной коробке под действием центрирующих пружин займет нейтральное положение, при котором переливной клапан не будет подключен ни к одной из магистралей. Вся жидкость, подаваемая насосом подпитки, через предохранительный клапан будет стекать во внутреннюю полость гидронасоса. При равномерном движении самоходной машины в гидронасосе и гидромоторе необходимо только компенсировать утечки, поэтому значительная часть рабочей жидкости, подаваемая насосом подпитки, окажется лишней, и ее надо будет выпускать через клапаны. Чтобы излишки этой жидкости использовать для отвода тепла, через клапаны выпускают нагретую, прошедшую гидромотор жидкость, а охлажденную — из бака. С этой целью переливной клапан системы подпитки, расположенный в клапанной коробке на гидромоторе, настроен на несколько меньшее давление, чем предохранительный на корпусе насоса подпитки. Благодаря этому при превышении давления в системе подпитки откроется переливной клапан и выпустит нагретую жидкость, вышедшую из гидромотора. Далее жидкость из клапана попадает во внутреннюю полость агрегата, откуда по дренажным трубопроводам через теплообменник направляется в бак.

Устройство и принцип действия гидропривода — Мегаобучалка

Бийский технологический институт (филиал)

Федерального государственного бюджетного образовательного учреждения высшего профессионального образования

«Алтайский государственный технический университет им. И.И. Ползунова»

 

 

Кафедра ПАХТ

 

РАСЧЕТНАЯ РАБОТА ПО ГИДРАВЛИКЕ

 

ПРОЕКТИРОВАНИЕ ОБЪЕМНОГО ГИДРОПРИВОДА

 

РЗ 170104.03.02

 

 

Выполнил: студ. гр. ВУАС-01 Тарановский С. Г.

 

Проверил: доцент каф. ПАХТ Корабельников Д.В.

 

Бийск 2013

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ.. 3

1 ОБЪЁМНЫЙ ГИДРОПРИВОД.. 4

1.1 Устройство и принцип действия гидропривода. 4

1.1.1 Принципиальные схемы гидроприводов. 4

1.2 Рабочие жидкости. 6

1.3 Объёмные насосы.. 6

1.3.1 Величины, характеризующие рабочий процесс объемных насосов. 7

1.3.2 Поршневые насосы.. 8

1.3.3 Насосы пластинчатые нерегулируемые. 9

1.3.4 Шестеренные гидромашины.. 11

1.4 Гидродвигатели. 11

1.4.1 Гидроцилиндры.. 11

1.4.2 Поворотные гидродвигатели. 12

1.4.3 Гидромоторы.. 13

1.4.4 Гидромоторы аксиально-поршневые типа Г15-2…Н (ГОСТ 21229—75) 14

1.5 Гидроаппаратура. 14

1.5.1 Гидрораспределители. 15

1.5.2 Гидроклапаны.. 16

1.5.3 Гидравлические дроссели. 16

2 ОСНОВНЫЕ ПРИНЦИПЫ ПРОЕКТИРОВАНИЯ ГИДРОСИСТЕМ… 17

2.1 Общие принципы построения схемы гидропривода. 17

2.2. Предварительный расчёт гидропривода. 20

2.3 Уточненный расчёт. 22

ЛИТЕРАТУРА: 25

 

ВВЕДЕНИЕ

 
 

В последнее время в связи с интенсивным развитием промышленного производства и широким внедрением в него средств автоматического управления чрезвычайно важно встаёт вопрос, связанный с конструированием гидропривода и его применением в машиностроении и других отраслях промышленности.

Использование гидропривода в станкостроении позволяет упростить кинематику станков, повысить точность, надёжность и уровень автоматизации.

Широкое применение гидроприводов в машиностроении определяется рядом их существенных преимуществ перед другими типами приводов и, прежде всего, получением больших усилий и мощностей при ограниченных размерах гидродвигателей. Гидроприводы обеспечивают широкий диапазон бесступенчатого регулирования скоростей (при условии хорошей плавности движения), возможность работы в динамических режимах с требуемым качеством переходных процессов, защиту системы от перегрузки и точный контроль действующих усилий. С помощью гидроцилиндров удаётся получить прямолинейное движение без кинематических преобразований, а также обеспечить определённое соотношение скоростей прямого и обратного ходов.



В современных станках и гибких производственных системах с высокой степенью автоматизации цикла требуется реализация различных движений. Компактные гидродвигатели легко встроить в станочные механизмы и соединить трубопроводами с насосной установкой, содержащей один или два насоса. Такая система открывает широкие возможности для автоматизации цикла, контроля и оптимизации рабочих процессов, применения копировальных, адаптивных или программных систем управления, легко поддается модернизации, состоит, главным образом, из унифицированных изделий, серийно выпускаемых специальными заводами. К основным преимуществам гидропривода следует также относить повышенную жесткость и долговечность.

Наиболее эффективно применение гидропривода в станках с возвратно-поступательным движением рабочего органа, в высокоавтоматизированных и многоцелевых станках, агрегатных станках и автоматических линиях, гибких производственных системах. Гидроприводами оснащается более трети выпускаемых в мире промышленных роботов.

Гидроприводы обладают серьёзными недостатками, ограничивающими их использование в станкостроении. К таковым относятся: потери на трение и утечки, снижающие КПД привода и вызывающие разогрев жидкости; чувствительность рабочей жидкости к нарушению температурного режима и загрязнению. Это вызывает необходимость применения вспомогательных устройств – теплообменников и фильтров тонкой очистки, что, в свою очередь, повышает стоимость гидроприводов и усложняет их техническое обслуживание.

Однако, при правильном конструировании, изготовлении и эксплуатации гидроприводов их недостатки могут быть сведены к минимуму.

Поэтому в последнее время проблеме разработки гидроприводов для станкостроения и других отраслей промышленности уделяется всё большее внимание.

ОБЪЁМНЫЙ ГИДРОПРИВОД

 

Устройство и принцип действия гидропривода

Объёмным гидроприводом называется совокупность объёмных гидромашин, гидроаппаратуры, гидролиний и вспомогательных устройств, предназначенных для передачи энергии и преобразования движения посредством жидкости.

Принцип действия объёмного гидропривода основан на малой сжимаемости капельных жидкостей и передаче давления по закону Паскаля. Рассмотрим простейший гидропривод (рисунок 1). Два цилиндра 1 и 2 заполнены жидкостью и соединены между собой трубопроводом. Поршень 1 под действием силы перемещается вниз, вытесняя жидкость в цилиндр 2. Поршень цилиндра 2 при этом перемещается вверх и преодолевает нагрузку .

Рисунок 1 — Схема простейшего гидропривода

Если пренебрегать потерями давления в системе, то по закону Паскаля давление в цилиндрах 1 и 2 будет одинаковым и равным:

,

где — площади поршней цилиндров 1 и 2.

Считая жидкость практически несжимаемой, можно записать:

или .

Мощность, затраченная на перемещение поршня в цилиндре 1, выражается соотношением . Так как величина является расходом жидкости Q, то условие передачи энергии можно представить в виде

,

где pQ — мощность потока жидкости;

— мощность, развиваемая поршнем цилиндра 2, то есть работа выходного звена системы в единицу времени.

В гидроприводах исполнительные механизмы машин получают энергию от её источника посредством потока жидкости. Движущаяся жидкость обладает тремя формами механической энергии: потенциальной энергией положения, потенциальной энергией давления и кинетической энергией. В объёмном гидроприводе потенциальная энергия давления жидкости преобразуется посредством объёмных гидродвигателей в механическую энергию движения выходного звена. Кинетической энергией и потенциальной энергией положения обычно пренебрегают, так как их величина несоразмерно мала по сравнению с энергией давления.

 

Гидромотор — Википедия

Материал из Википедии — свободной энциклопедии

Гидромотор (гидравлический мотор) — гидравлический двигатель, предназначенный для сообщения выходному звену вращательного движения на неограниченный угол поворота.

Условное графическое обозначение реверсивного нерегулируемого гидромотора

Конструкции гидромоторов аналогичны конструкциям соответствующих насосов. Некоторые конструктивные отличия связаны с обратным потоком мощности через гидромашину, работающую в режиме гидромотора. В отличие от насосов, в гидромоторе на вход подаётся рабочая жидкость под давлением, а на выходе снимается с вала крутящий момент.

Наибольшее распространение получили шестерённые, пластинчатые, аксиально-плунжерные и радиально-плунжерные гидромоторы.

Управление движением вала гидромотора осуществляется с помощью гидрораспределителя либо с помощью средств регулирования гидропривода.

Аксиально-плунжерные гидромоторы используются в тех случаях, когда необходимо получить высокие скорости вращения вала, а радиально-плунжерные — когда необходимы небольшие скорости вращения при большом создаваемом моменте вращения. Например, поворот башни некоторых автомобильных кранов осуществляют радиально-плунжерные гидромоторы. В станочных гидроприводах широко распространены пластинчатые гидромоторы. Шестерённые гидромоторы используются в несложных гидросистемах с невысокими требованиями к неравномерности вращения вала гидромотора.

Гидромоторы широко применялись в авиации разработки СССР в виде двухканальных гидроприводов закрылков и перекладки крыла, а также ряде вспомогательных систем, ввиду их небольших габаритов и большой мощности. Также гидромоторы часто используются в маневровых и узкоколейных тепловозах для передачи энергии от двигателя к колёсным парам.

В бытовых счётчиках расхода воды также используются небольшие гидромоторы.

Гидромоторы применяются в технике значительно реже электромоторов, однако в ряде случаев они имеют существенные преимущества перед последними. Гидромоторы меньше в среднем в 3 раза по размерам и в 15 раз[1] по массе, чем электромоторы соответствующей мощности. Диапазон регулирования частоты вращения гидромотора существенно шире: например, он может составлять от 2500 об/мин до 30-40 об/мин, а в некоторых случаях, у гидромоторов специального исполнения, доходит до 1-4 об/мин и меньше[2]. Время запуска и разгона гидромотора составляет доли секунды, что для электромоторов большой мощности (несколько киловатт) недостижимо. Для гидромотора не представляют опасности частые включения-выключения, остановки и реверс. Закон движения вала гидромотора может легко изменяться путём использования средств регулирования гидропривода.

Однако гидромоторы обладают теми же недостатками, которые присущи гидроприводу.

  1. ↑ Источник литературы 1, стр. 84
  2. ↑ Источник литературы 1, стр. 84-86
  • Свешников В. К., Усов А. А. Станочные гидроприводы: Справочник. — М.: Машиностроение, 1982. — 464 с.
  • Схиртладзе А. Г., Иванов В. И., Кареев В. Н. Гидравлические и пневматические системы. — Издание 2-е, дополненное. М.: ИЦ МГТУ «Станкин», «Янус-К», 2003 г. — 544 с.

расчет, схема, устройство. Типы гидравлических систем. Ремонт. Гидравлические и пневматические системы

Гидравлическая система представляет собой устройство, предназначенное для преобразования небольшого усилия в значительное с использованием для передачи энергии какой-либо жидкости. Разновидностей узлов, функционирующих по этому принципу, существует множество. Популярность систем этого типа объясняется прежде всего высокой эффективностью их работы, надежностью и относительной простотой конструкции.

гидравлическая система

Сфера использования

Широкое применение системы этого типа нашли:

  1. В промышленности. Очень часто гидравлика является элементом конструкции металлорежущих станков, оборудования, предназначенного для транспортировки продукции, ее погрузки/разгрузки и т. д.
  2. В авиакосмической отрасли. Подобные системы используются в разного рода средствах управления и шасси.
  3. В сельском хозяйстве. Именно через гидравлику обычно происходит управление навесным оборудованием тракторов и бульдозеров.
  4. В сфере грузоперевозок. В автомобилях часто устанавливается гидравлическая тормозная система.
  5. В судовом оборудовании. Гидравлика в данном случае используется в рулевом управлении, входит в конструктивную схему турбин.

Принцип действия

Работает любая гидравлическая система по принципу обычного жидкостного рычага. Подаваемая внутрь такого узла рабочая среда (в большинстве случаев масло) создает одинаковое давление во всех его точках. Это означает то, что, приложив малое усилие на маленькой площади, можно выдержать значительную нагрузку на большой.

Далее рассмотрим принцип действия подобного устройства на примере такого узла, как гидравлическая тормозная система автомобиля. Конструкция последней довольно-таки проста. Схема ее включает в себя несколько цилиндров (главный тормозной, заполненный жидкостью, и вспомогательные). Все эти элементы соединены друг с другом трубками. При нажатии водителем на педаль поршень в главном цилиндре приходит в движение. В результате жидкость начинает перемещаться по трубкам и попадает в расположенные рядом с колесами вспомогательные цилиндры. После этого и срабатывает торможение.

расчет гидравлической системы

Устройство промышленных систем

Гидравлический тормоз автомобиля — конструкция, как видите, довольно-таки простая. В промышленных машинах и механизмах используются жидкостные устройства посложнее. Конструкция у них может быть разной (в зависимости от сферы применения). Однако принципиальная схема гидравлической системы промышленного образца всегда одинакова. Обычно в нее включаются следующие элементы:

  1. Резервуар для жидкости с горловиной и вентилятором.
  2. Фильтр грубой очистки. Этот элемент предназначен для удаления из поступающей в систему жидкости разного рода механических примесей.
  3. Насос.
  4. Система управления.
  5. Рабочий цилиндр.
  6. Два фильтра тонкой очистки (на подающей и обратной линиях).
  7. Распределительный клапан. Этот элемент конструкции предназначен для направления жидкости к цилиндру или обратно в бак.
  8. Обратный и предохранительный клапаны.

Работа гидравлической системы промышленного оборудования также основывается на принципе жидкостного рычага. Под действием силы тяжести масло в такой системе попадает в насос. Далее оно направляется к распределительному клапану, а затем — к поршню цилиндра, создавая давление. Насос в таких системах предназначен не для всасывания жидкости, а лишь для перемещения ее объема. То есть давление создается не в результате его работы, а под нагрузкой от поршня. Ниже представлена принципиальная схема гидравлической системы.

гидравлическая тормозная система

Преимущества и недостатки гидравлических систем

К достоинствам узлов, работающих по этому принципу, можно отнести:

  • Возможность перемещения грузов больших габаритов и веса с максимальной точностью.
  • Практически неограниченный диапазон скоростей.
  • Плавность работы.
  • Надежность и долгий срок службы. Все узлы такого оборудования можно легко защитить от перегрузок путем установки простых клапанов сброса давления.
  • Экономичность в работе и небольшие размеры.

Помимо достоинств, имеются у гидравлических промышленных систем, конечно же, и определенные недостатки. К таковым относят:

  • Повышенный риск возгорания при работе. Большинство жидкостей, используемых в гидравлических системах, являются горючими.
  • Чувствительность оборудования к загрязнениям.
  • Возможность протечек масла, а следовательно, и необходимость их устранения.
гидравлические системы отопления

Расчет гидравлической системы

При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т. д.

Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:

  • Характеристик насоса.
  • Величины хода штоков.
  • Рабочего давления.
  • Гидравлических характеристик магистралей, других элементов и всей системы в целом.

Производится расчет гидравлической системы с использованием разного рода арифметических формул. К примеру, потери давления в трубопроводах определяются так:

  1. Расчетную длину магистралей делят на их диаметр.
  2. Произведение плотности используемой жидкости и квадрата средней скорости потока делят на два.
  3. Перемножают полученные величины.
  4. Умножают результат на коэффициент путевых потерь.

Сама формула при этом выглядит так:

  • ∆pi = λ х li(p) : d х pV2 :2.

В общем, в данном случае расчет потерь в магистралях выполняется примерно по тому же принципу, что и в таких простых конструкциях, как гидравлические системы отопления. Для определения характеристик насоса, величины хода поршня и т. д. используются другие формулы.

работа гидравлической системы

Типы гидравлических систем

Подразделяются все такие устройства на две основные группы: открытого и закрытого типа. Рассмотренная нами выше принципиальная схема гидравлической системы относится к первой разновидности. Открытую конструкцию имеют обычно устройства малой и средней мощности. В более сложных системах закрытого типа вместо цилиндра используется гидродвигатель. Жидкость поступает в него из насоса, а затем снова возвращается в магистраль.

Как выполняется ремонт

Поскольку гидравлическая система в машинах и механизмах играет значимую роль, ее обслуживание часто доверяют высококвалифицированным специалистам занимающихся именно этим видом деятельности компаний. Такие фирмы обычно оказывают весь комплекс услуг, связанных с ремонтом спецтехники и гидравлики.

схема гидравлической системы

Разумеется, в арсенале этих компаний имеется все необходимое для производства подобных работ оборудование. Ремонт гидравлических систем обычно выполняется на месте. Перед его проведением при этом в большинстве случаев должны быть произведены разного рода диагностические мероприятия. Для этого компании, занимающиеся обслуживанием гидравлики, используют специальные установки. Необходимые для устранения проблем комплектующие сотрудники таких фирм также обычно привозят с собой.

Пневматические системы

Помимо гидравлических, для приведения в движение узлов разного рода механизмов могут использоваться пневматические устройства. Работают они примерно по тому же принципу. Однако в данном случае в механическую преобразуется энергия сжатого воздуха, а не воды. И гидравлические, и пневматические системы довольно-таки эффективно справляются со своей задачей.

гидравлические и пневматические системы

Плюсом устройств второй разновидности считается, прежде всего, отсутствие необходимости в возврате рабочего тела обратно к компрессору. Достоинством же гидравлических систем по сравнению с пневматическими является то, что среда в них не перегревается и не переохлаждается, а следовательно, не нужно включать в схему никаких дополнительных узлов и деталей.

Отправить ответ

avatar
  Подписаться  
Уведомление о