Как проверить фотоэлемент: ✅ Как проверить фотоэлемент мультиметром

Содержание

Как проверить фотоэлемент — Наука

Наука 2020

Фотоэлементы — это детекторы, которые зависят от света. Когда они не вблизи света, они имеют высокое сопротивление. Когда помещено около света, их сопротивление падает. Когда они размещены внутри цепе

Содержание:

Фотоэлементы — это детекторы, которые зависят от света. Когда они не вблизи света, они имеют высокое сопротивление. Когда помещено около света, их сопротивление падает. Когда они размещены внутри цепей, они пропускают ток в зависимости от количества света, который их освещает, и так называемые фоторезисторы. Их также называют легкими зависимыми резисторами или LDR.

Фотоэлементы сделаны из полупроводников, чаще всего сульфида кадмия. Те, что сделаны из сульфида свинца, используются для обнаружения инфракрасного излучения. Для проверки фотоэлемента используйте цифровой мультиметр.

    Включите мультиметр и установите его на настройку сопротивления. Сопротивление обычно обозначается греческой буквой омега. Если мультиметр не имеет автодиапазона, установите регулятор на очень высокий уровень, например, мегом.

    Поместите красный зонд мультиметра на одну ножку фотоэлемента, а черный зонд на другой. Направление не имеет значения. Возможно, вам придется использовать зажимы из кожи аллигатора, чтобы убедиться, что зонды не соскальзывают с проводов фотоэлемента.

    Защитите фотоэлемент, чтобы на него не падал свет. Сделайте это, положив руку на него или, например, накрыв его.

    Запишите сопротивление. Это должно быть очень высоко. Возможно, вам придется отрегулировать сопротивление, установив или понизив отметку, чтобы получить показания.

    Раскройте фотоэлемент. Отрегулируйте ручку на мультиметре, уменьшив настройку сопротивления. Через несколько секунд сопротивление должно составить сотни кОм.

    Повторите эксперимент, поместив фотоэлемент рядом с различными источниками света, такими как солнечный свет, лунный свет или частично затемненная комната. Каждый раз записывайте сопротивление. Фотоэлементы могут отрегулировать от нескольких секунд до нескольких минут, когда они удалены из источника света и помещены в темноту. Как и раньше, вам может потребоваться изменить настройки сопротивления, чтобы получить правильные показания.

Как проверить фоторезистор мультиметром — Морской флот

Фоторезисторами называют полупроводниковые приборы, проводимость которых меняется под действием света.

Рис. 2.2. Монокристаллический фоторезистор

Рис. 2.3. Пленочный фоторезистор

Рис. 2.4. Включение фоторезистора в цепь постоянного тока

Конструкция монокристаллического и пленочного фоторезисторов показана на рис. 2.2, 2.3. Основным элементом фоторезистора является в первом случае монокристалл, а во втором — тонкая пленка полупроводникового материала.

Если фоторезистор включен последовательно с источником напряжения (рис. 2.4) и не освещен, то в его цепи будет протекать темновой ток:

где Е — ЭДС источника питания;

RT — величина электрического сопротивления фоторезистора в темноте, называемая темновым сопротивлением;

RH — сопротивление нагрузки.

При освещении фоторезистора энергия фотонов расходуется на перевод электронов в зону проводимости. Количество свободных электронно-дырочных пар возрастает, сопротивление фоторезистора падает, и через него течет световой ток, обусловленный формулой:

Разность между световым и темновым током дает значение тока 1ф, получившего название первичного фототока проводимости

Когда лучистый поток мал, первичный фототок проводимости практически безынерционен и изменяется прямо пропорционально величине лучистого потока, падающего на фоторезистор. По мере возрастания величины лучистого потока увеличивается число электронов проводимости. Двигаясь внутри вещества, электроны сталкиваются с атомами, ионизируют их и создают дополнительный поток электрических зарядов, получивший название вторичного фототока проводимости. Увеличение числа ионизированных атомов тормозит движение электронов проводимости. В результате этого изменения фототока запаздывают во времени относительно изменений светового потока, что определяет некоторую инерционность фоторезистора.

Основные характеристики фоторезисторов

Фоторезистор (от фото- и резистор), представляет собой полупроводниковый резистор, омическое сопротивление которого определяется степенью освещенности. В основе принципа действия фоторезисторов лежит явление фотопроводимости полупроводников. Фотопроводимость — увеличение электрической проводимости полупроводника под действием света. Причина фотопроводимости — увеличение концентрации носителей заряда — электронов в зоне проводимости и дырок в валентной зоне. Светочувствительный слой полупроводникового материала в таких сопротивлениях помещен между двумя токопроводящими электродами. Под воздействием светового потока электрическое сопротивление слоя меняется в несколько раз (у некоторых типов фотосопротивлений оно уменьшается на два-три порядка). В зависимости от применяемого слоя полупроводникового материала фотосопротивления подразделяются на сернисто-свинцовые, сернисто-кадмиевые, сернисто-висмутовые и поликристаллические селено-кадмиевые. Фотосопротивления обладают высокой чувствительностью, стабильностью, они экономичны и надежны в эксплуатации. В целом ряде случаев они с успехом заменяют вакуумные и газонаполненные фотоэлементы.

Основные характеристики фотосопротивлений:

• Темновое сопротивление (сопротивление в полной темноте), варьируется в обычных приборах от 1000 до 100000000 Ом.

где Ai — фототок, равный разности токов в темноте и на свету; Ф — световой поток; U — приложенное напряжение.

• Предельное рабочее напряжение (как правило от 1 до 1000 В).

• Среднее относительное изменение сопротивления в процентах (обычно лежит в пределах 10…99,9%):

где RT и Rc — сопротивление в темноте и в освещенном состоянии соответственно.

• Средняя кратность изменения сопротивления (как правило от 1 до 1000). Определяется соотношением: RT/RC.

Схема включения фоторезисторов показана на рис. 2.5.

При определенном освещении сопротивление фотоэлемента уменьшается, а, следовательно, сила тока в цепи возрастает, достигая значения, достаточного для работы какого-либо

Как проверить фоторезистор мультимет

Фотодатчик. Часть 1 | Электроника для всех

Наверняка многим захочется присобачить к AVR фотодетектор, чтобы отслеживать хотя бы наличие или отсутствие света. Это полезно как для роботостроителей, так и для тех кто делает всякую автоматику. Итак, кратко опишу какие бывают фотодетекторы.

Фоторезистор
ИМХО вымирающий вид. Последний раз я его видел еще в детстве. Обычно представляет собой такой металический кругляк со стеклянным окошком, в котором видна этакая сероватая зигзагообразная дорожка. При освещении его сопротивление падает, правда незначительно, раза в три четыре.

Фототранзистор
Последнее время я на них натыкаюсь постоянно, неиссякаемый источник фототранзисторов — пятидюймовые дисководы. Последний раз я, по цене грязи, надыбал на радио барахолке штук 5 платок от дисковертов, там светотранзисторы стоят напротив дырок контроля записи и вращения дискеты. Еще сдвоенный фототранзистор (а может и фотодиод, как повезет) стоит в обычной шариковой мышке.

Выглядит как обычный светодиод, только корпус прозрачный. Впрочем, светодиоды тоже такие же бывают так что перепутать кто из них кто раз плюнуть. Но это не беда, партизан легко вычисляется обычным мультиметром. Достаточно включить омметр между его эмитером и коллектором (базы у него нет) и посветить на него, как его сопротивление рухнет просто катастрофически — с десятков килоом до считанных ом. Тот который у меня в детекторе вращения шестерен в роботе меняет свое сопротивление с 100кОм до 30 Ом. Работает фототранзистор подобно обычному — держит ток, но в качестве управляющего воздействия тут не ток базы, а световой поток.

Фотодиод
Внешне ничем не отличается от фототранзистора или обычного светодиода в прозрачном корпусе. Также порой встречаются древние фотодиоды в металлических корпусах. Обычно это совковые девайсы, марки ФД-чето там. Такой металлический цилиндрик с окошком в торце и торчащими из задницы проводками.

В отличии от фототранзистора, может работать в двух разных режимах. В фотогальваническом и фотодиодном.
В первом, фотогальваническом, варианте фотодиод ведет себя как солнечная батарейка, то есть посветил на него — на выводах возникло слабенькое напряжение. Его можно усилить и применить =). Но куда проще работать в фотодиодном режиме. Тут мы подаем на фотодиод обратное напряжение. Поскольку он хоть и фото, но диод, то в обратную сторону напряжение не пойдет, а значит его сопротивление будет близко к обрыву, а вот если его засветить, то диод начнет очень сильно подтравливать и сопротивление его будет резко падать. Причем резко, на пару порядков, как у фототранзистора.

Спектр
Кроме типа прибора у него еще есть рабочий спектр. Например, фотодетектор заточенный на инфракрасный спектр (а их большинство) практически не реагирует на свет зеленого или синего светодиода. Плохо реагирует на лампу дневного света, но хорошо реагирует на лампу накаливания и красный светодиод, а уж про инфракрасный и говорить нечего. Так что не удивляйся если у тебя фотодатчик плохо реагирует на свет, возможно ты со спектром ошибся.

Подключение
Теперь пора показать как это подключить к микроконтроллеру. С фоторезистором все понятно, тут заморочек нет никаких — берешь и подцепляешь как по схеме.
С фотодиодом и фототранзистором сложней. Надо определить где у него анод/катод или эмитер/коллектор. Делается это просто. Берешь мультиметр, ставишь его в режим прозвонки диодов и цепляешься на свой датчик. Мультиметр в этом режиме показывает падение напряжения на диоде/транзисторе, а падение напряжения тут в основном зависит от его сопротивления U=I*R. Берешь и засвечиваешь датчик, следя за показаниями. Если число резко уменьшилось, значит ты угадал и красный провод у тебя на катоде/коллекторе, а черный на аноде/эмитторе. Если не изменилось, поменяй выводы местами. Если не помогло, то либо детектор дохлый, либо ты пытаешься добиться реакции от светодиода (кстати, светодиоды тоже могут служить детекторами света, но там не все так просто. Впрочем, когда будет время я покажу вам это технологическое извращение).

Теперь о работе схемы, тут все элементарно. В затемненном состоянии фотодиод не пропускает ток в обратном направлении, фототранзистор тоже закрыт, а у фоторезистора сопротивление весьма высоко. Сопротивление входа близко к бесконечности, а значит на входе будет полное напряжение питания aka логическая единица. Стоит теперь засветить диод/транзистор/резистор как сопротивление резко падает, а вывод оказывается посажен наглухо на землю, ну или весьма близко к земле. Во всяком случае сопротивление будет куда ниже 10кОмного резистора, а значит напряжение резко пропадет и будет где то на уровне логического нуля. В AVR и PIC можно даже резистор не ставить, вполне хватит внутренней подтяжки. Так что DDRx=0 PORTx=1 и будет вам счастье. Ну а обратывать это как обычную кнопку. Единственная сложность может возникнуть с фоторезистором — у него не настолько резко падает сопротивление, поэтому до нуля может и не дотянуть. Но тут можно поиграть величиной подтягивающего резистора и сделать так, чтобы изменения сопротивления хватало на переход через логический уровень.

Если надо именно измерять освещенность, а не тупо ловить светло/темно, то тогда надо будет подцеплять все на АЦП и подтягивающий резистор делать переменным, для подстройки параметров.

Есть еще продвинутый тип фотодатчиков — TSOP там встроенный детектор частоты и усилитель, но о нем я напишу чуть попозже.

Фотодатчик. Часть 2. Модуляция

З.Ы.
У меня тут некоторые запарки, поэтому сайт будет сильно тупить с обновлением, думаю это до конца месяца. Дальше надеюсь вернуться в прежний ритм.

назначение и устройство. Принцип работы фотоэлектрических датчиков

Использование различных фотоэффектов

Во время своей работы фотоэлектрические датчики используют три возможных фотоэффекта, которые зависят от того, как изменяются свойства предмета при наличии изменений в уровне освещения.

  1. Эффекты бывают внешними, когда под воздействием получаемой световой энергии электроны вылетают из катода лампы.
  2. Внутренние эффекты отличаются тем, что сопротивление полупроводника зависит от уровня освещенности.
  3. Вентильный эффект появляется, когда возникает движущая сила, которая зависит от освещения.

Принцип работы фотоэлектрических датчиков.

Виды устройств

Можно встретить фотоэлектрические датчики аналогового или дискретного вида.

  1. У аналоговых выходной сигнал может меняться пропорционально имеющемуся уровню освещения. Обычно такие устройства применяют при создании элементов освещения, управляемых автоматически.
  2. Дискретные устройства изменяют значение на диаметрально противоположный показатель при достижении определенного уровня освещенности. Они могут выполнять всевозможные задачи на действующей технологической линии и широко используются в промышленности.

Оптический бесконтактный прибор регулирует изменение поступающего светового потока в рабочей области и может срабатывать на большом расстоянии, реагируя на изменение объектов, их отсутствие или присутствие. Конструкция этого прибора имеет две части, которые отвечают за правильное функционирование — это приемник и излучатель. Они могут находиться как в одном подходящем корпусе, так и в разных.

Фотоэлектрические датчики: назначение и устройство. Принцип работы фотоэлектрических датчиков.

Группы устройств

В зависимости от используемого метода работы, фотоэлектрические датчики принято делить на четыре группы:

  1. Работающие по принципу пересечения луча. В этом случае излучатель и работающий с ним в паре приемник имеют два отдельных корпуса, поскольку этого требует технология работы. Два прибора устанавливаются друг напротив друга, а при взаимодействии излучатель посылает луч, который воспринимается приемником. Если какой-либо объект пересекает этот луч, то прибор тут же посылает соответствующий сигнал.
  2. Датчики с принципом отражения от рефлектора. Подобные приборы характеризуются тем, что у них излучатель и приемник располагаются в одном корпусе. Помимо этого агрегата, также используется специальный рефлектор, который устанавливается напротив прибора. Во время работы устройство посылает луч, он отражается от рефлектора и воспринимается приемником. Специальный поляризационный фильтр позволяет настроить работу оборудования так, чтобы устройство воспринимало только отражение от рефлектора и ничего лишнего. Рефлекторы бывают разными, поэтому их выбирают, исходя из имеющейся ситуации — дальности расстояния и особенностей монтажа. Если во время работы луч перестает отражаться и поступать к приемнику, значит, на линии появился какой-то объект, и сигнал об этом устройство передает дальше.
  3. Приборы с отражением света от объекта. У этих агрегатов приемник и сопутствующий ему излучатель также располагается в одном корпусе. В этом случае работа строится так, что рефлектор не нужен, поскольку его роль выполняют различные объекты — луч отражается от них, попадает в приемник, и датчик посылает нужный сигнал.
  4. Датчики с фиксированным отражением. По сути, это усовершенствованный вариант предыдущего варианта оборудования. Приборы работают по такому же принципу, но они более чутко улавливают и определяют состояние объекта. Например, при помощи подобных датчиков можно обнаружить вздувшуюся упаковку на линии или пакет, наполненный не до конца.

Фотоэлектрические датчики: назначение и устройство. Принцип работы фотоэлектрических датчиков.

Также датчики могут делиться не только по принципу работы, но и по своему назначению. Существуют приборы общего назначения и специализированные. Вторые предназначены для выполнения более узких задач и решения конкретных вопросов. Например, они могут распознавать наличие этикетки, контрастной границы и других подобных элементов. Все датчики выполняют задачу обнаружения каких-либо объектов на расстоянии, и в зависимости от особенностей элемента, это расстояние может значительно варьироваться.

Фотоэлектрические датчики: назначение и устройство. Принцип работы фотоэлектрических датчиков.

Как проверить светодиод мультиметром

Чтобы проверить светодиод и узнать его параметры, нужно иметь в своем арсенале мультиметр, «Цэшку» или универсальный тестер. Давайте научимся ими пользоваться.

Прозвонка отдельных светодиодов

Начнем с простого, как прозвонить светодиод мультиметром. Переведите тестер в режим проверки транзисторов – Hfe и вставьте светодиод в разъём, как на картинке ниже.

Прозвонка светодиода в режиме Hfe

Как проверить светодиод на работоспособность? Вставьте анод светодиода в разъём C зоны обозначенной PNP, а катод в E. В PNP разъёмах C – это плюс, а E в NPN – минусовой вывод. Вы видите свечение? Значит проверка светодиода выполнена, если нет – ошибись полярностью или диод не исправен.

Разъём для проверки транзисторов выглядит по-разному, часто это синий круг с отверстиями, так будет если проверить светодиод мультиметром DT830, как на фото ниже.

Мультиметр DT830

Теперь о том, как проверить светодиод мультиметром в режиме проверки диодов. Для начала взгляните на схему проверки.

Схема проверки диода мультиметром

Режим проверки диода так и обозначен – графическим изображением диода, подробнее об обозначениях в статье. Этот способ подойдёт не только для светодиодов с ножками, но и для проверки smd светодиода.

Проверка светодиодов тестером в режиме прозвонкипоказана на рисунке ниже, а еще можете увидеть один из видов разъёма для проверки транзисторов, описанного в предыдущем способе. Пишите в комментариях о том какой у вас тестер и задавайте вопросы!

Проверка светодиода в режиме прозвонки

Этот способ хуже, от тестера возникает яркое свечение диода, а в данном случае — едва заметно красное свечение.

Теперь обратите внимание как проверить светодиод тестером с функцией определения анода. Принцип тот же, при правильной полярности светодиод загорится.

Индикатор анода на тестере

Проверка инфракрасного диода

Действительно, почти в каждом доме есть такой LED. В пультах дистанционного управления они нашли широчайшее применение. Представим ситуацию, что пульт перестал переключать каналы, вы уже почистили все контакты клавиатуры и заменили батареи, но он все равно не работает. Значит нужно смотреть диод. Как проверить ИК-светодиод?

Человеческий глаз не видит инфракрасного излучения, в котором пульт передаёт информацию телевизору, но его видит камера вашего телефона. Такие светодиоды используются в ночной подсветке камер видео наблюдения. Включите камеру телефона и нажмите на любую кнопку пульта – если он исправен вы должны увидеть мерцания.

Проверка инфракрасного светодиода

Методы проверки мультиметром ИК светодиода и обычного — одинаковы. Еще один способ как проверить инфракрасный светодиод на исправность – подпаять параллельно ему LED красного свечения. Он будет служить наглядным показателем работы ИК диода. Если он мерцает, значит сигналы на диод поступают и нужно менять ИК диод. Если красный не мерцает, значит сигнал не поступает и дело в самом пульте, а не в диоде.

В схеме управления с пульта есть еще один важный элемент, принимающий излучение — фотоэлемент. Как проверить фотоэлемент мультиметром? Включите режим измерения сопротивления. Когда на фотоэлемент попадает свет – состояние его проводимости изменяется, тогда изменяется и его сопротивление в меньшую сторону. Понаблюдайте этот эффект и убедитесь в исправности или поломке.

Проверка диода на плате

Как проверить светодиод мультиметром не выпаивая? В принципах его проверки всё остаётся также, а способы изменяются. Удобно проверять светодиоды, не выпаивая с помощью щупов.

Стандартные щупы не влезут в разъём для транзисторов, режима Hfe. Но в него влезут швейные иглы, кусочек кабеля (витая пара) или отдельные жилки из многожильного кабеля. В общем любой тонкий проводник. Если его припаять к щупу или фольгированному текстолиту и присоединить щупы без штекеров, то получится такой переходник.

Проверка диода не выпаивая

Теперь вы можете прозвонить светодиоды мультиметром на плате.

Как проверить светодиоды в фонарике? Открутите блок линз или переднее стекло на фонаре, аккуратно отпаяйте плату от батарейного блока, если длина проводников не позволяет её свободно рассмотреть и изучить.

Проверка светодиодов в фонарике

В таком положении вы легко проверите исправность каждого светодиода на плате описанным выше методом. Подробнее о светодиодах в фонариках.

Как прозвонить светодиодную лампу?

Любой электрик много раз «звонил» лампу накаливания, но как проверить ЛЕД-лампу тестером?

Для этого нужно снять рассеиватель, обычно он приклеен. Чтобы отделить его от корпуса вам нужен медиатор, или пластиковая карта, её нужно засунуть между корпусом и рассеивателем.

Конструкция светодиодной лампы

Если не удаётся этого сделать попробуйте немного погреть феном место склейки.

Как теперь проверить светодиодную лампочку мультиметром? Перед вами окажется плата со светодиодами, нужно прикоснуться щупами тестера к их выводам. Такие SMD в режиме проверки диодов загораются тусклым светом (но не всегда). Еще один способ проверки исправности  — прозвонка от батареи типа «крона».

Крона выдает напряжение 9-12В, потому проверяйте диоды кратковременными скользящими прикосновениями к их полюсам. Если LED не загорается при правильно подобранной полярности — требуется его замена.

Проверка LED прожектора

Для начала взгляните какой светодиод установлен в прожекторе, если вы видите один желтый квадрат, как на фотографии ниже, то тестером его проверить не получится, напряжение таких источников света велико – 10-30 Вольт и более.

Мощный светодиод в прожекторе

Проверить работоспособность светодиода такого типа можно, используя заведомо исправный драйвер на соответствующий ток и напряжение.

Прожектор из множества светодиодов

Если установлено много мелких SMD – проверка такого прожектора мультиметром возможна. Для начала его нужно разобрать. В корпусе вы обнаружите драйвер, влагозащитные прокладки и плату с LED. Конструкция и процесс проверки аналогичен LED лампе, который описан выше.

Как проверить светодиодную ленту на работоспособность

На нашем сайте есть целая статья о том, как проверить светодиодную ленту, тут рассмотрим экспресс-методы проверки.

Сразу скажу, что засветить ее целиком мультиметром не удастся, в некоторых ситуациях возможно лишь лёгкое свечение в режиме Hfe. Во-первых можно проверять каждый диод по отдельности, в режиме проверки диодов.

Во-вторых иногда происходит перегорание не диодов, а токоведущих частей. Для проверки этого нужно перевести тестер в режим прозвонки и прикоснуться к каждому выводу питания на разных концах проверяемого участка. Так вы определите целую часть ленты и поврежденную.

Прозвонка токоведущих частей ленты

Красной и синей линией выделены полосы, которые должны звонится от самого начала до конца светодиодной ленты.

Как проверить светодиодную ленту батарейкой? Питание ленты – 12 Вольт. Можно использовать автомобильный аккумулятор, однако он большой и не всегда есть под рукой. Поэтому на помощь придет батарейка на 12В. Используется в дверных радиозвонках и пультах управления. Ее можно использовать как источник питания при прозвонке проблемных участков LED ленты.

12 вольтовая батарейка

Другие способы проверки

Разберем как проверить светодиод батарейкой. Нам понадобится батарейка от материнской платы — типоразмера CR2032. Напряжение на ней порядка 3-х вольт, достаточное для проверки большинства светодиодов.

Проверка батарейкой CR2032

Другой вариант — это использовать 4,5 или 9В батарейку, тогда нужно использовать сопротивление 75Ом в первом случае и 150-200Ом во втором. Хотя от 4,5 вольт проверка светодиода возможна без резистора кратковременным касанием. Запас прочности LED вам это простит.

Схема с использованием резистора

Определяем характеристики диодов

Соберите простейшую схему для снятия характеристик светодиода. Она на столько проста, что можно это сделать, не используя паяльник.

Схема пробника для определения параметров светодиода

Давайте сначала рассмотрим, как узнать мультиметром на сколько вольт наш светодиод, с помощью такого пробника. Для этого внимательно следуйте инструкции:

  1. Соберите схему. В разрыв цепи (на схеме «mA») установите мультиметр в режиме измерения тока.
  2. Переведите потенциометр в положение максимального сопротивления. Плавно убавляйте его, следите за свечением диода и ростом тока.
  3. Узнаём номинальный ток: как только увеличение яркости прекратится, обратите внимание на показания амперметра. Обычно это порядка 20мА для 3-х, 5-ти и 10-ти мм светодиодов. После выхода диода на номинальный ток яркость свечения почти не изменяется.
  4. Узнаём напряжение светодиода: подключите вольтметр к выводам LED. Если у вас один измерительный прибор, тогда исключите из неё амперметр и в цепь подключите тестер в режиме измерения напряжения параллельно диоду.
  5. Подключите питание, снимите показания напряжения (см. подключение «V» на схеме). Теперь вы знаете на сколько вольт ваш светодиод.
  6. Как узнать мощность светодиода мультиметром с помощью этой схемы? Вы уже сняли все показания для определения мощности, нужно всего лишь умножить миллиамперы на Вольты, и вы получите мощность, выраженную в милливаттах.

Однако на глаз определить изменение яркости и вывести светодиод на номинальный режим крайне сложно, нужно иметь большой опыт. Упростим процесс.

Таблицы в помощь

Чтобы уменьшить вероятность сжигания диода определите по внешнему виду на какой из типов светодиодов он похож. Для этого есть справочники и сравнительные таблицы, ориентируйтесь на справочный номинальный ток, когда проводите процесс снятия характеристик.

Если вы видите, что на номинальном значении он явно не выдает полного светового потока, попробуйте кратковременно превысить ток и посмотрите продолжает ли также быстро как ток нарастать и яркость. Следите за нагревом LED’а. Если вы подали слишком большую мощность – диод начнет усиленно греться. Условно нормальной будет температура при которой держать руку на диоде нельзя, но при касании ожога он не оставляет (70-75°C).

Чтобы понять причины и следствия проделывания данной процедуры ознакомьтесь со статьёй о ВАХ диода.

После всей проделанной работы проверьте себя еще раз – сравните показания приборов с табличными значениями светодиодов, подберите ближайшие подходящие по параметрам и откорректируйте сопротивление цепи. Так вы гарантированно определите напряжение, ток и мощность LED.

В качестве питания схемы подойдет батарейка крона 9В или аккумулятор 12В, кроме этого вы определите общее сопротивление для подключения светодиода к такому источнику питания – измерьте сопротивления резистора и потенциометра в этом положении.

Проверить диод очень просто, однако на практике бывают разные ситуации, поэтому возникает много вопросов, особенно у новичков. Опытный электронщик по внешнему виду определит параметры большинства светодиодов, а в ряде случае и их исправность.

Понравилась статья? Расскажите о ней! Вы нам очень поможете:)

Фотоэлементы. Виды и устройство. Работа и применение

Сегодня в промышленности работают десятки тысяч автоматов, оснащенных электронным зрением. Электронным глазом у них служат фотоэлементы. В основе работы этих приборов лежит фотоэффект. История открытия этого явления началась 100 лет назад.

Классификация фотоэлементов
Эффекты фотоэлементов можно разделить на несколько видов, которые зависят от свойств и производимых функций:
  • Внешний фотоэффект. Его другое название – фотоэлектронная эмиссия. Электроны, вылетающие за границы вещества при возникновении внешнего фотоэффекта, называются фотоэлектронами. Образующийся фотоэлектронами при этом электрический ток, при упорядоченном движении по внешнему электрическому полю, называется фототоком.
  • Внутренний фотоэффект. Он влияет на фотопроводимость материала. Этот эффект появляется при перераспределении электронов по диэлектрикам и полупроводникам, в зависимости от их агрегатного (жидкого или твердого) и энергетического состояния. Перераспределяющее явление возникает под действием светового потока. Только при таком действии повышается электропроводимость вещества, то есть, возникает эффект фотопроводности.
  • Вентильный фотоэффект. Таким эффектом называется переход фотоэлектронов из собственных тел в другие тела (твердые полупроводники) или электролиты (жидкие).

На основе внешнего фотоэффекта работают вакуумные элементы. Они производятся в виде колб из стекла. Часть их внутренней поверхности покрывается тончайшим слоем напыления металла. Такая малая толщина позволяет получить незначительный рабочий ток.  Окошко в колбе имеет прозрачность, и пропускает свет вовнутрь.

Расположенный внутри колбы анод из диска, либо проволочной петли, улавливает фотоэлектроны. При соединении анода с положительным выводом питания, цепь замкнется, и по ней будет протекать электрический ток. То есть, вакуумные элементы могут коммутировать реле.

Путем комбинации реле и фотоэлементов можно образовать разные автоматы с электронным зрением, например, на входе в метро. Внешний фотоэффект заложен во многих технологических процессах в промышленности, и является важным физическим открытием, залогом успешного развития автоматики на производстве.

Устройство и принцип действия

Хорошо очищенная цинковая пластина, медная сетка, чувствительный гальванометр включены в электрическую цепь батареи.

При освещении пластины ультрафиолетовыми лучами в цепи возникает электрический ток. Значит, свет выбивает электроны из металла. Это явление и называют фотоэффектом.

Поставим на пути лучей стекло, задерживающее ультрафиолетовые лучи. Ток в цепи прекращается.

Вакуумный баллон. Часть его внутренней поверхности покрыта тонким слоем щелочного металла. Это катод. Анодом служит металлическое кольцо.

Подадим напряжение. Тока в цепи нет. Теперь осветим элемент, появляется ток. После снятия напряжения ток уменьшается, но не до нуля. По мере увеличения напряжения, фототок возрастает и достигает насыщения.

При отсутствии напряжения ток в цепи есть. Для прекращения фототока необходимо подать на анод отрицательный задерживающий потенциал.

Электрическое поле тормозит фотоэлектроны и возвращает их на катод. По мере приближения источника света величина светового потока увеличивается. Возрастает и фототок насыщения. Величина фототока насыщения прямо пропорциональна световому потоку. Это первый закон фотоэффекта.

Выясним, какую роль в фотоэффекте играет длина волны света. Установим синий светофильтр. При этом ток есть. С зеленым светофильтром ток уменьшается. С желтым светофильтром тока нет. Для каждого вещества есть определенная пороговая частота, ниже которой фотоэффекта нет. Это длинноволновая граница фотоэффекта.

Если увеличивать световой поток на более низких частотах, фотоэффекта не произойдет. Как объяснить это явление? Ученые изучили распределение энергии в спектре излучения нагретых тел.

Ученые также пришли к выводу, что свет излучается, распространяется и поглощается порциями – квантами энергии, фотонами. Валентные электроны в металле свободны. При поглощении фотона энергия идет на работу выхода электрона и его кинетическую энергию. Уравнение Эйнштейна раскрывает смысл 2-го закона фотоэффекта.

Кинетическая энергия фотоэлектрона определяется частотой света. При взаимодействии света с металлом мы наблюдали внешний фотоэффект. Схема опыта ученых послужила прототипом приборов на внешнем фотоэффекте.

Светочувствительный слой вещества и кольцевой анод находятся в вакуумной или газонаполненной колбе. По этому принципу устроены фотоэлементы, выпускаемые промышленностью.

Существует большая группа элементов, свойства которых меняются под воздействием света. Это полупроводники. На их основе созданы фоточувствительные приборы с так называемым внутренним фотоэффектом.

Фоторезистор

Возьмем проволочный резистор из полупроводника. Включим его в электрическую цепь. Под действием света происходят очень сильные изменения электрического сопротивления, и ток возрастает. Изменение проводимости не зависит от направления тока в фоторезисторе. Как возникает внутренний фотоэффект?

Рассмотрим элемент германий. Он четырехвалентный. На схеме изображена устойчивая структура полупроводника. Атомы прочно связаны ковалентной связью. Если энергия кванта света достаточна, чтобы разорвать связь электрона с атомом, он становится свободным, и блуждает по кристаллу. На его месте возникает так называемая дырка. Это положительный заряд, равный заряду электрона. Дырка может быть снова занята электроном.

Приложим разность потенциалов. Возникнет направленное движение электронов и дырок – электрический ток. Так устроен фоторезистор.

При воздействии света появляются носители, резко увеличивается проводимость, и возрастает ток в цепи.

Проводимость очень чистых полупроводников мала. Ее можно увеличить, если добавить примесь другого элемента. Добавим, например, атомы мышьяка. Они имеют большую валентность. При этом часть электронов оказывается свободной. Благодаря ним и увеличивается проводимость. Эта примесь дает материал n-типа. У индия валентность меньше. Он захватывает электроны кремния, увеличивая число дырок. Проводимость становится дырочной. Эта примесь дает материал р-типа.

Соединим два полупроводника n-типа и р-типа. На границе произойдет перераспределение зарядов. Дырки входят в р-область, а электроны в n-область до тех пор, пока на границе не возникнет электрическое поле, которое препятствует дальнейшему перераспределению. Так возникает двойной слой заряда, который называют р-n переходом.

Благодаря фотоэффекту при воздействии света появляются электроны и дырки. Возникает разность потенциалов.

Если цепь замкнуть, появится электрический ток. Этот эффект можно использовать для прямого преобразования световой энергии в электрическую. По этому принципу работают преобразователи световой энергии в электрическую, в экспонометрах, люксметрах, солнечных батареях.

Фотодиод

Простой фотодиод – это обычный полупроводниковый диод с переходом р-n, на который может воздействовать световой поток. В итоге материал меняет свои свойства, и дает возможность исполнять разные функции в цепи электрического тока. При отсутствии света диод имеет обычные свойства.

Комбинируя структуры, можно получить фототранзистор. Световой луч управляет его работой.

Применение

Фотоэлементы на практике применяются по общей схеме. На входе может быть любой элемент: фоторезистор, фотодиод, фототранзистор. Они реагируют на световой поток. Сигнал усиливается и подается в исполнительную цепь.

Вот некоторые области использования фотоэлементов в нашей жизни:
  • По этой схеме фотоэлементы могут управлять работой двигателей, станков, целых систем. Они прочно вошли в нашу жизнь.
  • Фотореле пропускает нас в метро. Электронный глаз следит за движением нити в текстильном производстве. Миниатюрные фотоэлементы зарегистрируют ее обрыв и остановят станок.
  • Их используют для измерения площади заготовок сложной формы. В считанные секунды определяется площадь лекала. Фотореле строго следит за раскроем кожи, ткани, и обеспечивает безопасность работы на прессе.
  • На станке для плазменной резки металла фотоэлементы также управляют его работой. Они считывают информацию с перфоленты, и задают режимы работы станка.
  • В типографии они считают бумажные листы, следят за их правильной укладкой и резкой. Ведут постоянный контроль за циклом работы станка, обеспечивая безопасность работы резчика бумаги.
  • На почтамте фотоэлементы позволили автоматизировать трудоемкие операции по обработке писем и сортировки их по адресам. Электронный глаз внимательно следит за тем, чтобы штемпель точно попал на марку. Фотоэлектронная система считывает индекс, обозначенный на конверте, и направляет письмо в нужную ячейку.
  • В ювелирном производстве фотоэлементы стали контролерами качества обработки драгоценных камней. Фотоэлектронный глаз представляет собой матрицу, состоящую из нескольких тысяч отдельных фотоэлементов.
  • Звук в кино записывается на звуковую дорожку. Фотоэлемент его расшифровывает, и управляет работой звуковых динамиков. Изображение на фотопленке и в глазу человека возникает благодаря фотоэффекту.
  • Роботы-автоматы выполняют технологические операции, за которыми не может следить человек. В промышленности робот движется, ориентируясь по белой линии на полу, благодаря системе, оснащенной фотоэлементами.
  • Прогресс науки и техники в самых разных областях народного хозяйства во многом стал возможен благодаря широкому использованию фотоэлементов.
Похожие темы:

Датчик света автомобиля: устройство и принцип работы

Дополнительные функции в современных автомобилях делают вождение удобнее и безопаснее. Одной из таких опций является датчик света автомобиля. В статье расскажем о его устройстве и принципе работы.

Что такое датчик света в автомобиле

Другое название этой опции – датчик освещенности. Его устройство довольно простое. Представляет собой фотоэлемент, блок управления и небольшое реле. Сам элемент устанавливается в наиболее освещенном месте автомобиля, не подверженном загрязнению. Обычно над или под лобовым стеклом. Косвенно датчик освещенности можно отнести к системам безопасности. Водитель может просто забыть или проигнорировать необходимость включения фар при въезде в тоннель или другой затемненный участок. Система это сделает сама.

Датчик светаДатчик светаДатчик света в салоне

Фотоэлемент фиксирует изменение освещенности в пространстве. Если света недостаточно, то передается сигнал в блок управления, а затем реле включает ближний свет и габаритные огни. Если система фиксирует достаточную освещенность – то светотехника выключается.

Устройство датчика света

Конструкция компонента и всей системы довольно простое. Если такая опция присутствует в базовой комплектации автомобиля, то он располагается в специальной выемке перед лобовым стеклом. В корпусе датчика находится светодиод и светочувствительные элементы. Датчик соединен с блоком управления, реле и контактами включения габаритов и ближнего света.

Переключатель управления освещением нужно выставить положение AUTO, чтобы система работала в автоматическом режиме.

Тумблер включения/выключения датчика. Положение AUTOТумблер включения/выключения датчика. Положение AUTOПереключатель системы освещения. Положение AUTO

Специальные фотодиодные фильтры распознают дневной и электрический свет. Очень удобно, например, при въезде в тоннель или крытую парковку. Также можно настроить время затухания фар после выключения зажигания или при нормальном освещении.

Виды датчиков света

Обычный сенсор освещенности

Если автомобиль не оснащен таким устройством, то его без труда можно установить самому. Стоит система недорого. Достаточно закрепить датчик, подключить реле и правильно соединить провода с электропроводкой автомобиля. Система будет исправно работать.

Встроенный датчик освещенности

Встроенные компоненты контроля освещенности идут в более дорогих комплектациях автомобилей. Как правило, набор их функций более широкий. Можно настроить систему на включение света в салоне, включение и выключение подсветки приборной панели.

Комбинированный датчик освещенности

Часто датчик света может быть объединен в одном устройстве с датчиком дождя. В этом случае он крепится в верхней части лобового стекла. Если с датчиком света все понятно, то в основе работы датчика дождя также лежат фотодиоды и фотоэлементы. Если на лобовое стекло попадают капли дождя, то проходящий свет преломляется по-другому и рассеивается на обратном пути. Фотоэлементы это улавливают и включают стеклоочистители. При сильном дожде автоматически включаются и фары. Водители отмечают, что система работает корректно и правильно. Водителю не нужно включать стеклоочистители всякий раз, когда намокнет стекло. Фотоэлемент определяет уровень воды на стекле и интенсивность дождя и корректирует частоту взмахов стеклоочистителей самостоятельно. В некоторых моделях при дожде включается подогрев стекла, чтобы предотвратить его запотевание.

Как проверить работоспособность устройства

Данная опция очень удобна и водители к ней быстро привыкают. Не нужно беспокоиться о включении или выключении фар – система делает это сама. Но если система выйдет из строя, то автолюбитель может вовремя и не заметить поломки.

Проверить датчик освещенности очень просто. Достаточно накрыть его темным материалом или ветошью. Если все в порядке, то система воспримет это как ночь и включит свет и габаритные огни.

Как заменить фотоэлемент фонарного столба | Руководства по дому

Когда наступает темнота и не загорается фонарный столб от заката до рассвета, первое, что вы должны сделать, это проверить лампочку. Но если новая лампа не решает проблему или лампа продолжает показывать странное поведение, например мерцание или включение в течение дня, скорее всего, это неисправный фотоэлемент. Чтобы заменить фотоэлемент фонарного столба, вам придется выполнить некоторые электромонтажные работы, но с надлежащими мерами предосторожности это безопасная и простая процедура.

Отключите питание фонарного столба автоматическим выключателем сервисной панели. Если возможно, заблокируйте сервисную панель или обмотайте прерыватель лентой лентой и предупредительный знак на крышке панели, чтобы цепь случайно не включилась во время работы.

Определите расположение фотоэлемента. Ищите круглый выступ со стеклянной или пластиковой линзой, расположенный в верхней части столба или на головке лампы. Чтобы получить доступ к фотоэлементу, установленному на стойке, снимите головку лампы со стойки.В противном случае разберите лампу в соответствии с инструкциями производителя, чтобы получить доступ к фотоэлементу. Обычно секции лампы скрепляются винтами или декоративными гайками.

Освободите проводку фотоэлемента. Большинство фотоэлементов имеют три провода с цветовой кодировкой — черный, белый и красный — и подключаются между патроном лампы и проводкой дома, идущей от фонарного столба. Проверьте все провода с помощью исправного бесконтактного тестера цепей.

Снимите фотоэлемент, отвинтив стопорную гайку, удерживающую его на блоке лампы или стойке.Вытяните фотоэлемент и соответствующую проводку из монтажного положения достаточно далеко, чтобы с ним было легче работать. Не подвергайте проводку чрезмерной нагрузке и не позволяйте ей тереться об острую поверхность, например, верхний край фонарного столба.

Снимите проволочные гайки, соединяющие фотоэлемент с патроном лампы и домашней электропроводкой. Раскрутите провода и снимите старый фотоэлемент.

Соедините черный провод нового фотоэлемента с проводом черного дома, идущим от столба, с помощью гайки.Скрутите красный провод фотоэлемента и черный провод, идущий от патрона лампочки, и соедините их проволочной гайкой. Скрутите белый провод фотоэлемента вместе с белым проводом, идущим от патрона лампочки, затем соедините их с проводом белого дома с помощью гайки. Прикрепите каждую гайку к проводам, которые она соединяет, обернув ее двумя или тремя витками изоленты.

Вставьте корпус фотоэлемента в монтажное отверстие в блоке лампы или стойке.Накрутите стопорную гайку фотоэлемента и надежно затяните ее плоскогубцами.

Аккуратно уложите проводку, затем соберите лампу или наденьте головку лампы обратно на стойку и установите винты или декоративные гайки.

Подайте питание на фонарный столб. Закройте глазок фотоэлемента куском ленты, чтобы заблокировать свет, и проверьте правильность работы. Большинство фотоэлементов имеют временную задержку для предотвращения мерцания, поэтому включение лампы может занять пять минут или больше после восстановления питания.

.Принципиальная схема

, работа, типы и их применение

По сути, фотоэлемент — это один из видов резистора, который можно использовать для изменения его значения сопротивления в зависимости от интенсивности света. Они недороги, их легко получить, разных размеров и различных спецификаций. Каждый датчик с фотоэлементом будет работать по-разному по сравнению с другими модулями, даже если они из того же семейства. На самом деле, изменения могут быть более высокими, значительными и т. Д. По этим причинам они не могут использоваться для определения точных уровней освещенности в пределах мельничных кандел, иначе люкс.В этой статье обсуждается обзор фотоэлемента, который включает в себя работу, принципиальную схему, типы и их применение.

Что такое фотоэлемент?

Фотоэлемент можно определить как; это светочувствительный модуль. Это можно использовать, подключив к электрической или электронной схеме в широком спектре приложений, таких как освещение от заката до восхода солнца, которое автоматически включается при низкой интенсивности света. Они также используются в других приложениях, таких как охранная сигнализация и автоматические двери.

Фотоэлемент — это один из видов датчиков, которые можно использовать для определения света. К основным характеристикам фотоэлементов можно отнести то, что они очень маленькие, маломощные, экономичные и очень простые в использовании. По этим причинам они часто используются в гаджетах, игрушках и бытовой технике. Эти датчики часто называют ячейками на основе сульфида кадмия (CdS). Они состоят из фоторезисторов и LDR.

photocell photocell фотоэлемент

Эти датчики подходят для светочувствительных приложений, таких как свет, в противном случае затемнение.Если перед датчиком находится блокирующий свет, если что-то мешает лучу лазера, датчики, на которые попадает большая часть света.

Конструкция фотоэлемента

Конструкция фотоэлемента может быть выполнена с помощью вакуумированной стеклянной трубки, которая включает в себя два электрода, такие как коллектор и эмиттер. По форме вывод эмиттера может иметь форму полого цилиндра. Он всегда имеет отрицательный потенциал. Форма вывода коллектора может иметь форму металла, который может быть расположен на оси частично цилиндрического эмиттера.Его можно постоянно поддерживать на положительной клемме. Вакуумированная стеклянная трубка может быть закреплена на неметаллическом основании, а на основании предлагаются штифты для внешнего соединения.

Работа фотоэлемента

Принцип работы фотоэлемента может зависеть от наличия электрического сопротивления и эффекта фотоэлемента. Это можно использовать для преобразования световой энергии в электрическую.

PCBWay PCBWay

Когда вывод эмиттера соединен с отрицательным (-ve) выводом, а вывод коллектора соединен с положительным (+ ve) выводом батареи.Частота излучения будет больше, чем пороговая частота материала в эмиттере, и тогда произойдет эмиссия фотон. Электроны фотонов участвуют в направлении коллектора. Здесь вывод коллектора — это положительный вывод относительно вывода эмиттера. Следовательно, в цепи будет течь ток. Если интенсивность излучения увеличивается, то фотоэлектрический ток будет увеличиваться.

Схема цепи фотоэлемента

Фотоэлемент, используемый в схеме, называется схемой определения темноты, в противном случае схема переключения транзисторов.Компоненты, необходимые для построения схемы, в основном включают макетную плату, перемычки, аккумулятор 9 В, транзистор 2N222A, фотоэлемент, резисторы на 22 кОм, 47 Ом и светодиод.

Вышеупомянутая схема фотоэлемента работает в двух условиях, например, когда есть свет и когда темно.

В первом случае сопротивление фотоэлемента меньше, и тогда будет протекать ток через второй резистор, например, 22 кОм и фотоэлемент. Здесь транзистор 2N222A работает как изолятор.Таким образом, полоса, которая включает LED1, R1 и транзистор, будет отключена.

dark-sensing-circuit-using-photocell dark-sensing-circuit-using-photocell Схема обнаружения темноты с использованием фотоэлемента

Во втором случае сопротивление фотоэлемента высокое, тогда полоса схемы изменится. Таким образом, низкое сопротивление будет по направлению к базе транзистора или через фотоэлемент.

Всякий раз, когда на клемму базы транзистора подается питание, транзистор 2N222A работает как проводник. Полоса, включающая светодиод, R1 и транзистор 2N222A, будет включена, а светодиод будет мигать.Итак, если на клемму базы транзистора подается питание, тогда транзистор будет работать как проводник, тогда светодиод загорится.

Типы фотоэлементов

Доступны разные типы фотоэлементов

  • Фотоэлектрические
  • Устройства с зарядовой связью
  • Фоторезистор
  • Элемент Голея
  • Фотоумножитель
1). Фотоэлектрический элемент

Основная функция фотоэлектрического элемента — преобразование энергии с солнечной на электрическую.Полезный ток может возникать всякий раз, когда фотоны бьют электроны над ячейкой в ​​состояние высокой энергии.

2). Устройства с зарядовой связью

Устройства с зарядовой связью могут использоваться научным сообществом, потому что они являются очень последовательными и точными фотодатчиками. Когда заряд, генерируемый фоточувствительными датчиками, можно использовать для изучения множества вещей, от галактик до молекул.

3). Фоторезистор

LDR — это один из видов сенсорных устройств, удельное сопротивление которых может быть уменьшено суммой экспонированного света.В экспонометрах камеры и некоторых сигнализаторах используются недорогие фоторезисторы.

4). Ячейка Голея

Ячейка Голея в основном используется для восприятия ИК-излучения. Почерневший металлический пластинчатый цилиндр с одного конца заполнен ксеноном. Энергия ИК-излучения, падающая на почерневшую пластину, нагревает газ внутри цилиндра и скручивает эластичную диафрагму на другом конце. Здесь движение используется для определения мощности источника энергии.

5). Фотоумножитель

Фотоумножитель — очень чувствительный датчик.Нечеткий свет можно умножить в 100 миллионов раз.

Применение фотоэлементов

Применение фотоэлементов включает следующее.

  • Фотоэлементы используются в автоматическом освещении для активации, когда становится темно, а включение / выключение уличных фонарей в основном зависит от дня, будь то день или ночь.
  • Они используются в качестве таймеров во время бега для расчета скорости бегуна.
  • Фотоэлементы используются для подсчета транспортных средств на дороге.
  • Они используются вместо фотоэлементов и переменных резисторов.
  • Они используются в люксметрах для определения интенсивности света.
  • Используются как выключатели, так и датчики.
  • Используются в охранной сигнализации для защиты от вора.
  • Они используются в робототехнике, где бы они ни направляли роботов, чтобы они скрывались от глаз в темноте, иначе они следовали за маяком или линией.
  • Они используются в экспонометрах, которые можно использовать с камерой для определения правильного времени выдержки для получения хорошей фотографии.
  • Фотоэлементы используются при воспроизведении звука, который может быть записан на кинофильм.
  • Они используются в огнях от заката до рассвета.

Итак, это все о фотоэлементе. Основная функция этого устройства — обнаруживать свет, когда свет включен, и когда солнце не светит. Вот вам вопрос, какой металл используется в фотоэлементе?

.

Как работают фотоэлементы?

Криса Вудфорда. Последнее изменение: 11 февраля 2020 г.

Вы когда-нибудь были в одном из тех туалетов, где смесители открываются автоматически, когда вы машете под ними руками? Или гулял через электрическую дверь, открывшуюся при вашем приближении? Может быть ваш дом оснащен невидимыми лучами «волшебного глаза», которые «злоумышленников, подняв тревогу? Или, возможно, у вас есть калькулятор, который производит энергию с маленькой встроенной солнечной панелью? Все это примеры фотоэлементов (иногда фотоэлементы) — электронные устройства, вырабатывающие электричество, когда на них падает свет.Что они собой представляют и как работают? Возьмем пристальный взгляд!

Фото: миниатюрная солнечная панель на этом карманном калькуляторе использует тип фотоэлементов, известных как фотоэлектрические: когда на них падает свет, он вырабатывает достаточно напряжения для питания дисплея и электроники внутри.

Что такое фотоэлектричество?

«Фото» означает свет, поэтому фотоэлектричество означает просто электричество. производится световым лучом. Эта идея совсем не кажется необычной для 21-го века, когда большинство людей слышали о солнечных батареях (глыбы материал, такой как кремний, который генерирует электрический ток при на них светит солнечный свет).Но представьте, как удивительно фотоэлектрический . эффект должен был казаться чуть более века назад, в 1887 году, когда его впервые открыл немецкий физик Генрих Герц (1857–1894), один из пионеров радио. Это оставалось чем-то вроде тайна в течение почти 20 лет, пока Альберт Эйнштейн не взвесил почти полное объяснение явления 1905 г.

Что такое фотоэлектрический эффект?

Фото: Альберт Эйнштейн получил Нобелевскую премию не по теории относительности — его самый известный вклад в физику — за исключением его более ранних работ по фотоэлектрическому эффекту.Фото любезно предоставлено Библиотека Конгресса США.

Кванты энергии проникают через поверхность материала и их соответствующие энергии, по крайней мере, частично превращаются в кинетическую энергию электронов ».

Альберт Эйнштейн, Annalen der Physik, Vol 17, 1905.

Как свет может волшебным образом превратиться в электричество? Это не так как ни странно это звучит. Мы знаем, например, что свет — это своего рода электромагнитная энергия: она движется таким же образом (и в то же время скорость) как рентгеновские лучи, микроволны, радиоволны и другие виды электромагнетизм.Мы также знаем, что энергия легко может быть трансформируется из одного вида в другой: потенциальная энергия может быть превращается в кинетическую энергию и может быть преобразован в тепло или звук. Так что идея о том, что свет можно превратить в электричество, неверна. все это удивительно.

Тем не менее, когда фотоэлектричество было впервые объяснено в 1905 году, оно обозначило начало научной революции. Человек, который сделал объясняя, Альберт Эйнштейн (1879–1955) показал, что луч света, падающий на что-то вроде куска металла, можно представить себе поезд энергичные частицы называются фотонами .Фотоны прошли свои энергия в фиксированных количествах к атомам внутри металла, выбивая некоторые своих электронов из них, таким образом производя электрический ток.

Иллюстрация: Фотоэлектрический эффект: когда фотоны света (слева) попадают на лист металла, они передают свою энергию электронам (оранжевым) в металле, выбивая некоторые из них, чтобы произвести электрический ток. Вы могли подумать, что более яркий или близкий (более интенсивный) свет выбивает электроны с большей энергией, но это не так.Энергия испускаемых электронов зависит не от интенсивности света, а от его цвета (частоты): чем выше частота, тем больше энергии у фотонов и тем больше они могут передать электронам в металле. Фотоны более высокочастотного фиолетового света обладают большей энергией, чем фотоны низкочастотного красного света, поэтому они с большей вероятностью выбивают электроны (и высвобождают их с более высокой энергией). Фотонам требуется минимальная пороговая частота (минимальное количество энергии), чтобы освободить электроны и произвести фотоэлектрический эффект, известный как работа выхода .В показанном здесь примере у фиолетовых фотонов достаточно энергии, чтобы выбить электроны, а у красных фотонов — нет.

Как математически показал Эйнштейн, энергия падающих фотонов была точно равна связаны с частотой или длиной волны сияющего света и равны к энергии выброшенных ими электронов. Объяснение Эйнштейна фотоэлектрического эффекта было убедительным доказательством того, что энергия может существуют только в фиксированных количествах, называемых квантами . (Другими словами, вы можете получить энергию в пакеты семейного размера, но вы не можете разделить пакеты на меньшие!) Это стало центральным элемент квантовой теории : сложный, математический объяснение загадочного мира атомов и частиц скрывается внутри них.И именно за эту работу по фотоэлектричеству Эйнштейн выиграл Нобелевская премия по физике 1921 г.

Три типа фотоэлектричества

Фотоэлектричество — это преобразование световой энергии в электрическую, и происходит в трех разных (хотя, на первый взгляд, очень похожих) пути. Они известны как фотопроводящие, фотоэмиссионные и фотоэлектрические эффекты — и мы рассмотрим каждый из них по очереди.

Между прочим, когда я говорю о свете в этой статье, я имею в виду не только «видимый» свет мы можем видеть: фотоэлементы также работают с невидимые формы света, такие как инфракрасный и ультрафиолетовый: светочувствительные материалы могут «видеть» и реагировать на частоты свет за пределами диапазона, к которому наши глаза чувствительны.

Фотопроводящий

Фото: Типичный светозависимый резистор (LDR).

Это самый простой для понимания из трех эффектов. Когда я был подростком, я помню, как ненадолго играл с электронным Компонент называется светозависимым резистором (LDR) . Это было похоже на маленькая кнопка с двумя выводами, выходящими сзади, и вы можете впаять его в схему, как и любой другой резистор. Поверхность на «кнопке» была линза сверху (чтобы сконцентрировать падающий свет) и под линзой был кусок светочувствительного материала, сделанный из чего-то вроде сульфид кальция со змеиным рисунком электрических соединений, пересекающих Это.В темноте или обычном свете LDR имел довольно высокое сопротивление но если направить на него свет, сопротивление уменьшится довольно драматично: LDR преобразовывал падающий свет в электрическая энергия и добавление ее к уже проходящему току через. Это пример эффекта фотопроводимости, где свет снижает сопротивление материала (или увеличивает его проводимости, если хотите), сделав электроны внутри него более мобильный.

Фотоэлектрические

Фото: установленная на крыше солнечная панель из фотоэлементов.

Маленькие солнечные панели для таких вещей, как калькуляторы и цифровые часы иногда их называют фотоэлектрическими элементами. Они немного похожи диоды, сделанные из двух слоев полупроводникового материала, помещенных сверху друг друга. Верхний слой богат электронами, нижний слой электрон бедный. Когда вы светите на верхний слой, электроны прыгают вверх от нижнего слоя к верхнему, создавая напряжение, которое может управлять ток через внешнюю цепь, обеспечивая то, что мы думаем как солнечная энергия.Узнайте больше о фотовольтаике в нашей основной статье на солнечные батареи.

Фотоэмиссионный

Фото: Обычный фотоэлемент.

Фотоэмиссионные ячейки — это самый старый и самый сложный способ превращения света в электричество. Это герметичные стеклянные вакуумные трубки (из которых воздух полностью снят), внутри которого большой металлический пластина, которая служит отрицательной клеммой (или катодом) с меньшим, положительно заряженный стержневой вывод (или анод) внутри него.Отрицательная клемма сделана из светочувствительного материала. когда световые фотоны падают на него, они заставляют электроны выскакивать из него и они быстро притягиваются к положительному выводу, который собирает их и направляет их в цепь, производя электроэнергию. это Базовая конструкция называется фотоэмиссионным элементом или фотоэлементом . В немного другой конструкции, называемой фотоумножителем , есть целый ряд тарелок, расположенных так, чтобы одна входящий фотон выпускает несколько электронов, эффективно усиливая входящий световой сигнал, поэтому он производит больший электрический отклик.


Изображение: краткое изложение трех типов фотоэлементов.
1) Фотопроводящий — свет увеличивает поток электронов и снижает сопротивление.
2) Фотоэлектрические — свет заставляет электроны перемещаться между слоями, создавая напряжение и ток во внешней цепи.
3) Фотоэмиссионный — свет сбивает электроны с катода на анод, заставляя ток течь по внешней цепи.

Для чего используются фотоэлементы?

Фото: Фотоэлектрический фонарь безопасности, установленный снаружи здания, в котором я живу: когда фотоэлектрический датчик (внизу) определяет движение, свет (вверху) автоматически включается на несколько минут.

Все три типа фотоэлементов могут обнаруживать свет или преобразовывать его в электричество, но на практике они используются по-разному.

Производители электроэнергии

Как миниатюрные электростанции, фотоэлектрические элементы предназначены для производства стабильные поставки полезной, электрической энергии. От маленьких солнечных батарей до электронные калькуляторы для полностью фотоэлектрических крыш, их работа по сути для производства постоянного электричества, которое мы можем использовать для питания электроприборов или хранить в батареях на будущее.

Фото: Как отличить самцов мух от самок? Куколки дынной мухи бывают либо коричневые (если они мужчины), либо белые (если они женщины). Их можно разделить, вставив в фотоэлектрический сортировщик, который освещает каждую куколку, определяет, сколько света отражается обратно с помощью фотоэлемента, а затем просеивает куколку в ту или иную коробку в зависимости от ее цвета. Этот же аппарат можно использовать для сортировки семян. Фото Стивена Осмуса любезно предоставлено Службой сельскохозяйственных исследований Министерства сельского хозяйства США.

Световые извещатели

Фотопроводящие элементы, такие как светозависимые резисторы, с большей вероятностью будут использоваться в качестве датчики света в таких вещах, как автоматические смесители для туалетных комнат, сигнализация, дверные проемы, которые открываются автоматически, датчики дыма, детекторы угарного газа и так далее. Обычно они имеют луч инфракрасный свет постоянно светит на светозависимый резистор и производящий постоянный электрический ток. Когда вы двигаетесь перед детектор, вы прерываете луч и останавливаете свет, достигающий резистора, поэтому его сопротивление изменяется, и он внезапно производит намного меньше тока.Электронная схема обнаруживает изменение тока и запускает любое действие в цепи предназначен для того, чтобы взять — включить кран, открыть дверь, подать сигнал будильник, или что бы там ни было. Также используются фотопроводящие ячейки. как детекторы света в камерах, а также для считывания и декодирования саундтреки к барабанам старых фильмов. Датчик изображения CCD или CMOS, который захватывает фотография в вашем цифровом фотоаппарате или смартфоне — более сложная версия той же идеи.

Усилители света

Фототрубки изначально также использовались в качестве детекторов света, но они относительно громоздкие, сложные и дорогие; меньше и дешевле электронное такие компоненты, как LDR, теперь более широко используются в качестве световых детекторов.Фотоумножители до сих пор используются в научных приложениях, таких как обнаружение излучения разных видов, а также в гаджетах, подобных очки ночного видения, которые усиливают тусклый ночной свет сцену, чтобы ее можно было увидеть более четко.

,

Как проверить разрешение фото? — Как мы можем помочь?

Пиксельные или размытые фотографии — определенно большое разочарование, когда вы видите свой печатный ежегодник. Убедитесь, что ваши фотографии в высоком разрешении — один из первых шагов к тому, чтобы ваш ежегодник получился отличным. Вот как:

01. Проверка разрешения на ПК

Чтобы проверить разрешение фотографии на ПК с Windows, выберите файл, который вы хотите использовать. Щелкните правой кнопкой мыши на изображении и выберите « Properties

Появится окно с деталями изображения. Перейдите на вкладку « Details », чтобы увидеть размеры и разрешение изображения.

02. Проверка разрешения на Mac

Проверка разрешения фотографии на Mac похожа на ПК. Выберите изображение, которое хотите использовать, и « Щелкните правой кнопкой мыши » на нем. Нажмите « Получить информацию »

Откроется окно с информацией об изображении.Вы можете найти размер изображения и разрешение на вкладке « Дополнительная информация ».

03. О разрешении фото

Убедитесь, что вы используете изображения с высоким разрешением

Перед съемкой убедитесь, что в вашей камере установлено самое высокое разрешение. Вы можете подумать, что использование более низкого разрешения позволит вам делать больше фотографий, и это правильно. Но это определенно плохая идея, если вы хотите, чтобы ваши изображения были распечатаны.Ваши фотографии низкого качества будут пиксельными, и вы ничего не сможете сделать, чтобы их сохранить.


Полезно знать …
Разрешение 300 DPI (точек на дюйм) дает максимальный размер, который можно использовать для печати фотографий.

Если вы хотите использовать фотографию в качестве фона, убедитесь, что размер вашей фотографии не менее 21×29,7 см при разрешении 300 точек на дюйм. Если все ваши фотографии имеют разрешение 75 точек на дюйм, вам следует попытаться вычислить их реальный размер при разрешении 300 точек на дюйм, прежде чем использовать их.

Примеры:

— фотография 800×600 пикселей, сделанная с разрешением 75 DPI, даст вам 2.Изображение для печати 67 x 2 дюйма (= 6,78 x 5,08 см) с разрешением 300 dpi. Это нормально, например, для фотографий профиля.

— фотография 5184×3546 пикселей, сделанная с разрешением 75 точек на дюйм, даст вам изображение для печати 17,28×11,82 дюйма (= 49,89×30,02 см) с разрешением 300 точек на дюйм. Который можно использовать для всего распространения.

Чтобы узнать больше об этой теме, прочтите наш специальный пост в блоге.

Обращайте особое внимание при проверке финального изображения в высоком разрешении PDF

Прежде чем ваш ежегодник будет напечатан, вам нужно будет создать окончательный PDF-файл.100% -ный просмотр на экране поможет вам увидеть точное качество ваших фотографий при их печати. Если они пикселированы на вашем экране, они обязательно будут в печатной версии.

Что я могу с этим сделать?
К сожалению, не много … Плохие фотографии можно заменить новыми или попытаться уменьшить их размер на странице.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *