Как работает гидротрансформатор в акпп – Признаки неисправности гидротрансформатора АКПП. Основные симптомы и как проверить

Содержание

Гидротрансформатор АКПП «Бублик»- Устройство. Принцип работы. Основные проблемы

Гидротрансформатор выполняет важную роль в автоматической коробке передач, он занимает пространство между корпусом силового агрегата и трансмиссией авто. Гидротрансформатор в АКПП работает, как муфта сцепления – передает вращение от работающего мотора непосредственно на автомат. Внешнее сходство гидротрансформатора АКПП с характерной формой тора позволяет называть данное устройство бубликом. Гидротрансформатор автоматической коробки передач – составная часть гидросистемы трансмиссии. Управление его работой осуществляется при помощи специального гидроблока.

Устройство гидротрансформатора коробки-автомат

Основное предназначение гидротрансформатора АКПП – это обеспечение плавного и своевременного перехода автоматической трансмиссии с одной передачи на другую. Первые образцы гидротрансформаторов для КПП были созданы в ХХ веке. С целью модернизации устройства ГТР, применялись новые технологии. Гидротрансформаторы АКПП становились более сложными по конструкции.

Помимо обеспечения плавности перехода на различные передачи, новые гидротрансформаторынаделены дополнительной функцией сцепления. При этом в момент переключения скоростей (понижающей либо повышающей) гидротрансформатор размыкает непосредственную связь двигателя внутреннего сгорания с коробкой передач. Гидротрансформатор АКПП частично принимает на себя силу крутящего момента. Именно это обеспечивает уникальную плавность при переключении скоростей.

В отличие от механической КПП, в автомате передача крутящего момента осуществляется не под воздействием механического трения между фрикционными дисками гидротрансформатора АКПП. Соединение двигателя и автоматической коробки передач происходит, благодаря давлению трансмиссионной жидкости. Срабатывает эффект вращения мельницы от ветра.Устройство гидротрансформатора обеспечивает сохранение целостности автоматической коробки и защиту от механических повреждений за счет важной функции – амортизации.

Фрикционные диски гидротрансформатора АКПП образуют сборный пакет, состоящий из деталей мобильного и неподвижного типов. При включении передачи в магистралях создается необходимое давление. При помощи специального устройства – гидравлического толкателяфрикционы гидротрансформатора АКПП взаимно сжимаются, включается заданная скорость.

Как действует гидротрансформатор АКПП

Современный гидротрансформатор блокируется при сравнивании скоростей оборотов валов – входного и выходного. На практике это случается после развития скорости транспортного средства, равной более 70 км/час. Тормозная накладка поршня гидротрансформатора замедляет вращение масляной жидкости. Валы двигателя внутреннего сгорания и коробки передач взаимно фиксируются. Силовой агрегат и трансмиссия образуют единое целое, происходит синхронное вращение валов.

Гидромуфта

Когда гидротрансформатор полностью передает вращение на АКПП от силового агрегата, потери мощности равны нулю. Данная функция гидротрансформатора напоминает действие педали механизма сцепления на коробке перемены передач механического типа.

Во время работы гидротрансформатора кинетическая энергия двигателя расходуется на движение масла, которое разогревается от трения. При взаимном касании фрикциона со стальным диском происходит интенсивное истирание накладки, фрагменты износа в виде пыли попадают в масляный состав гидротрансформатора. Стабильность работы автоматической трансмиссии и ходовой части находится в прямой зависимости от степени износа фрикционных накладок и смазочного материала.

Описание конструкции гидротрансформатора АКПП

Гидротрансформатор АКПП передает мощность от двигателя внутреннего сгорания непосредственно на узлы и детали автоматической трансмиссии. Принцип работы АКПП –гидротрансформатор не только передает вращение на коробку передач, он эффективно погашает амплитуду вибраций и сводит к минимуму силы механических ударов со стороны маховика.

Составные части гидротрансформатора:

  • Насосное и турбинное колеса.
  • Блокировочная муфта.
  • Насос.
  • Реакторное колесо.
  • Муфта свободного хода.

Все рабочие механизмы размещены в корпусе устройства гидротрансформатора:

  • насос напрямую работает от коленвала движка;
  • турбина сопряжена с шестеренками АКПП;
  • реакторное турбинное колесо – с турбиной и насосом;
  • в гидротрансформатор вставлены уникальные лопасти оригинальной конфигурации;
  • масло движется по внутреннему пространству коробки, благодаря гидротрансформатору;
  • назначение блокировочной муфты – блокировать гидротрансформатор в заданных режимах;
  • муфта свободного хода вращает реакторное колесо в противоположном направлении.

Принцип работы гидротрансформатора

Работа «бублика» осуществляется по замкнутому циклу. Смазочное вещество является главным рабочим материалом гидротрансформатора. Его вязкостные характеристики существенно отличаются от свойств масла, используемого в МКПП. При работе гидротрансформатора АКПП смазочное вещество под воздействием насосного колеса принудительно подается на лопатки реактора и турбины. Лопатки создают дополнительные завихрения и ускоряют движение масла,скорость вращения рабочих колес гидротрансформатора существенно падает, момент соответственно возрастает.

Ускорение вращения коленвала способствует выравниванию скоростей колеса насоса и турбины гидротрансформатора. При большой скорости автомобиля гидротрансформатор только передает крутящий момент по аналогии с работой гидромуфты. При блокировке ГТР вращение передается напрямую от силового агрегата на АКПП.

При переходе на другую передачу элементы гидротрансформатора разъединяются. Процесс сглаживания угловых скоростей возобновляется до окончательного выравнивания вращенияработающих турбин.

Функционирование гидротрансформатора происходит под постоянным контролем электронного блока управления ЭБУ. Датчики, установленные на гидротрансформаторе, подают сигналы на ЭБУ. Исходя из поступающих данных, формируются выходные управляющие команды. Если электронные приборы сообщают об ошибке, это означает, что возникли какие-то проблемы с ГТР.

Важно: Признаки неисправностей гидротрансформатора АКПП могут проявляться как в механической, так и электронной частях механизма. При экстренной остановке коробки-автомата необходимо провести тщательную диагностику с последующим ремонтом элементов гидротрансформатора.

На представленной схеме показано в разрезе, из чего состоит гидротрансформатор автоматической коробки перемены передач.

009

Спираль справа – схематическое изображение траектории движения масла внутри корпуса гидротрансформатора.

0087

Здесь изображен принцип работы гидротрансформатора в различных режимах.

Признаки неисправности гидротрансформаторов АКПП

Гидротрансформатор занимает лидирующие позиции по надежности среди различных узлов и деталей АКПП. Он полностью вырабатывает заявленный эксплуатационный срок. Однако, это не означает, что ГТР вечен. С помощью характерных симптомов опытные водители могут определить место возможных поломок в гидротрансформаторе и автоматической коробке передач.

Признаки неисправности гидротрансформатора:

  1. Возникновение характерного звука (шуршащего, механического) при переключении скоростей. Этот малозаметный звук уходит, когда увеличиваются обороты, и машина ускоряется. Данный симптом указывает на деформации опорных игольчатых подшипников гидротрансформатора.
  2. При громком стуке металла нужно проверить состояние лопастей и колеса гидротрансформатора в сборе.
  3. Вибрации коробки передач на скорости 60 – 90 км/час (причина – неравномерное истирание фрикционов системы блокировки).
  4. Загрязнение масла (запах гари, темный оттенок, густая консистенция).
  5. Перегрев гидротрансформатора.
  6. Засорение клапана гидроблока.
  7. Снижение уровня трансмиссионного масла.
  8. Проблемы с динамикой машины (обгонная муфта нуждается в замене).
  9. Неожиданная остановка транспортного средства означает, что повреждены шлицы на турбинном колесе гидротрансформатора. При этом требуется установить новые шлицы или полностью менять деформированное колесо на новый механизм.
  10. Глохнет двигатель при переходе на другую передачу. Здесь виновата управляющая автоматика.

Появившиеся признаки и неполадки в гидротрансформаторе АКПП игнорировать не рекомендуется. Если вовремя не заменить изношенный фрикцион блокировки, гидротрансформатор начнет чрезмерно перегреваться, выходной вал коробки передач – вибрировать, масляный насос преждевременно выйдет из строя. Соответственно, прекратится подача масла в гидроблок и к пакетам сцепления АКПП.

Совет: При смене масляного фильтра рекомендуется производить полную замену масла в автоматической коробке передач и двигателе внутреннего сгорания одновременно. В случае, когда на контрольном щупе замечены следы пыли алюминия, следует проверить муфту свободного хода, которая изготовлена из данного материала, а также степень выработки торцовой шайбы.

Если на остановке при работающем моторе остро ощущается запах оплавленного пластика, это свидетельствует о чрезмерном перегреве гидротрансформатора. Основная причина повышения температуры ГТР – снижение объема смазочного материала (эффект масляного голодания гидротрансформатора и автоматической коробки передач). Охлаждающая система автоматической коробки передач тоже часто отказывает в работе. Причина дефекта СО кроется в чрезмерной засоренности теплообменника гидротрансформатора. После замены масла и тщательного обследования системы охлаждения неприятный запах гидротрансформатора улетучится.

Ремонт ГТР

gidrotransformator

Для многих автовладельцев ремонт гидротрансформатора АКПП является сложной процедурой.Не все люди обладают необходимыми знаниями, свободным временем, желанием, чтобы качественно восстановить функции гидротрансформатора своими руками. Самая большая сложность в ремонте гидротрансформатора состоит в его демонтаже с автомобиля. Профессиональные механики обладают набором специальных инструментов и приспособлений, чтобы благополучно снять гидротрансформатор с коробки передач.

Непосредственный ремонт гидротрансформатора АКПП начинается с механического разрезания корпуса на токарном станке и внимательной диагностики состояния каждого механизма. В процессе ремонта гидротрансформатора необходимо заменить следующие элементы:

  • корпус бублика;
  • сальники;
  • уплотнительные кольца.

Перед разрезанием и диагностикой демонтированного гидротрансформатора рекомендуется слить масло в подготовленный тазик, а также тщательно промыть фрикционы и другие составляющие устройства.

Важно: Кольца и уплотнительные сальники гидротрансформатора необходимо менять на новые детали, даже при кажущемся удовлетворительном их состоянии. Во избежание протечек смазочного материала, устанавливать старые уплотнения категорически не рекомендуется.

Замена гидротрансформатора – лучшее решение. Однако, подавляющее большинство владельцев авто склоняются к тому, чтобы не покупать новый корпус или гидротрансформатор АКПП в сборе. В этом случае производится сваривание частей корпусной детали. При этом соблюдается главное условие: обеспечение абсолютной герметичности сварного шва корпуса гидротрансформатора. После установки отремонтированного устройства на автоматическую коробку передач производится балансировка этого бублика в сборе.

Мероприятие по замене гидротрансформатора АКПП сопровождается частичной или полнойзаменой трансмиссионного масла во всей системе.

Случаются поломки гидротрансформатора АКПП, которые не подлежат восстановлению. Автомеханики рекомендуют установить новый гидротрансформатор взамен поврежденного механизма.

Совет: Опытные мастера утверждают, ремонт гидротрансформатора автоматической коробки передач не отличается большой сложностью. Однако, перед самостоятельным проведением восстановительных работ в условиях гаража автовладельцам нужно внимательно ознакомиться с особенностями конструкции гидротрансформатора, методами диагностики, ремонта и пр. Для успешного проведения ремонта гидротрансформатора своими руками не помешает обзавестись специальными инструментами и необходимым оборудованием.

Чтобы увидеть, как производится ремонт гидротрансформатора АКПП на одном из специализированных предприятий, предлагается ознакомиться с материалами видео ролика, посвященного данной теме https://www.youtube.com/watch?v=hNXUsosCFh5.

Что в гидротрансформаторах ломается чаще и быстрее всего

Износ тормозной прокладки фрикциона – наиболее часто является причиной, приводящей к ремонту гидротрансформатора:

  1. Изношенная прокладка удаляется.
  2. Место ее расположения тщательно очищается от засохшего клеевого состава.
  3. Наносится новый клеевой состав.
  4. Устанавливается новая фрикционная прокладка.

Замена прокладки гидротрансформатора необходима для обеспечения герметичности системы и предотвращения утечек трансмиссионного масла. Если ее не заменить вовремя, возникают неприятные последствия:

  • элементы износа в виде мелких кусочков заполняют масляные каналы в гидроплите;
  • масляное голодание гидротрансформатора;
  • рост температуры;
  • повышенный износ сальников, втулок;
  • проскальзывание стертой муфты блокирования;
  • выход из строя электромагнитных соленоидов и электронных приборов;
  • деформации фрикционных накладок гидротрансформатора;
  • преждевременное разрушение сопряженных металлических узлов и деталей вследствие
  • вибрационных колебаний изношенных муфт (старение железа).

Прочие поломки гидротрансформаторов АКПП

Автомеханики сервисных компаний в процессе диагностики ГТР часто выявляют дополнительные дефекты в гидротрансформаторах автоматических коробок передач:

  1. Деформации и поломка лопастей гидротрансформатора.
  2. Износ ступицы вследствие работы при повышенных температурах.
  3. Нарушение блокировки, заклинивание муфты обгона.
  4. Разрушение подшипников.
  5. Прогорание корпуса гидротрансформатора АКПП.

Почти все перечисленные дефекты выявляются только при вскрытии корпусной детали гидротрансформатора. После определения поломок производится их замена на новые рабочие элементы.

Если ремонт гидротрансформатора производится в условиях специализированных мастерских, оснащенных современным оборудованием, технологическими приспособлениями, оригинальными запчастями, восстановленный гидротрансформатор будет служить в течение длительного срока. Время эксплуатации отремонтированного механизма составляет около 80% от первоначального ресурса. Частичная либо полная замена трансмиссионного масла также входит в перечень ремонтных услуг. Длительность ремонта гидротрансформатора автоматической коробки передач в среднем занимает три рабочих дня.

Рекомендации по обслуживанию и эксплуатации ГТР автоматических коробок передач

По мнению квалифицированных специалистов, поломанный гидротрансформатор невозможно полноценно восстановить без разрезания корпуса.

При самостоятельном обслуживании бублика в гаражных условиях нужно избегать применения концентрированных растворителей и прочих чистящих, моющих средств. Это вызвано тем, что структура резиновых уплотнителей гидротрансформатора быстро разрушается под воздействием агрессивных веществ.

Как устроена коробка-автомат с гидротрансформатором

Не падайте в обморок, ничего сложного здесь нет. Сейчас всё растолкуем. Но сначала давайте определимся с терминологией. Дело в том, что многие по ошибке автоматической коробкой передач называют два агрегата, соединённых воедино: собственно саму коробку и гидротрансформатор.


Достоинство гидротрансформаторной трансмиссии заключается, конечно же, в удобстве управления тягой автомобиля. В упрёк таким трансмиссиям можно поставить медлительность, невысокий КПД и относительно небольшой ресурс. Хотя надо отдать им должное — современные коробки отличаются завидной «скорострельностью».

Гидротрансформатор состоит из двух лопастных машин — центробежного насоса и центростремительной турбины. Между ними расположен направляющий аппарат — реактор. Насосное колесо жёстко связано с коленчатым валом двигателя, турбинное — с валом коробки передач. Реактор же, в зависимости от режима работы, может свободно вращаться, а может быть заблокирован при помощи обгонной муфты.


Полезная энергия в гидротрансформаторной трансмиссии расходуется на перелопачивание (и нагрев) масла гидротрансформатором. Также немало энергии «жрёт» насос, который создаёт рабочее давление в управляющих магистралях. Отсюда более низкий КПД. Именно по этой причине механические роботизированные коробки и вариаторы более предпочтительны.


Гидротрансформатор является идеальным демпфером крутильных колебаний и способен гасить сильные толчки, которые передаются от двигателя на трансмиссию и наоборот. Это, кстати, очень благоприятно сказывается на ресурсе двигателя, трансмиссии и ходовой части. Но хлопот гидротрансформатор тоже может принести массу. Например, он не позволяет завести автомобиль с «толкача».

Передача крутящего момента от двигателя к коробке передач осуществляется потоками рабочей жидкости (масла), которая отбрасывается лопатками насосного колеса на лопасти колеса турбинного. Между насосным колесом и турбиной обеспечены минимальные зазоры, а их лопастям придана специальная геометрия, которая формирует непрерывный круг циркуляции рабочей жидкости. Так что получается, что жёсткая связь между двигателем и трансмиссией отсутствует. Это обеспечивает работу двигателя и остановку автомобиля с включённой передачей, а также способствует плавности передачи тягового усилия.


Схема устройства гидротрансформатора


Масло в гидротрансформаторе двигается по такой вот замысловатой траектории. Чтобы увеличить скорость и повысить крутящий момент на турбинном колесе, реактор блокируется. Правда, при этом КПД передачи несколько снижается.

Надо сказать, что по описанной выше схеме работает гидромуфта, которая просто передаёт крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введён реактор. Это такое же колесо с лопатками, но оно, имея связь с картером (корпусом) коробки передач, не вращается (заметим, до определённого момента). Лопатки реактора расположены на пути, по которому масло возвращается из турбины в насос, и они имеют особый профиль. Когда реактор неподвижен (гидротрансформаторный режим), он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем выше его кинетическая энергия, тем она большее оказывает воздействие на турбинное колесо. Благодаря этому эффекту момент, развиваемый на валу турбинного колеса, удаётся значительно поднять.

Представьте себе стандартную ситуацию — передача в коробке уже включена, а мы стоим на месте и жмём себе на педаль тормоза! Что происходит в этом случае? Турбинное колесо находится в неподвижном состоянии, а момент на нём в полтора-два раза выше (в зависимости от конструкции) того, что развивает двигатель на этих оборотах. Кстати, момент на выходном валу гидротрансформатора будет тем больше, чем будут выше обороты двигателя. Стоит отпустить педаль тормоза, и автомобиль тронется. Разгон будет продолжаться до тех пор, пока момент на колёсах не сравняется с моментом сопротивления движению машины.


Алюминиевый селектор управления автоматической трансмиссией BMW X5.

Когда турбинное колесо приближается по оборотам к скорости вращения насосного колеса, реакторное колесо освобождается и начинает вращаться вместе с двумя «напарниками». В этом случае говорят, что гидротрансформатор перешёл в режим гидромуфты. Так снижаются потери, и увеличивается КПД гидротрансформатора.

А поскольку в некоторых случаях надобность в преобразовании крутящего момента и скорости отпадает, в определённые моменты гидротрансформатор и вовсе может быть заблокирован при помощи фрикционного сцепления. Этот режим помогает довести КПД передачи практически до единицы, проскальзывание между лопаточными колёсами в этом случае исключено по определению.

Но представьте себе такую ситуацию. Вы едете по прямой с постоянной скоростью и вдруг начинаете подниматься в горку. Скорость автомобиля начнёт падать, а нагрузка на ведущие колёса увеличится. На это изменение тут же отреагирует гидротрансформатор. Как только станет уменьшаться частота вращения турбины, реакторное колесо начнёт автоматически затормаживаться, в результате скорость циркуляции рабочей жидкости возрастёт, что автоматически приведёт к увеличению крутящего момента, который будет передаваться на вал от турбинного колеса (читай на колёса). В некоторых случаях увеличившегося момента хватит для того, чтобы преодолеть подъём без перехода на низшую передачу.

Поскольку гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в широких пределах, к нему присоединяют многоступенчатую коробку передач, которая, вдобавок ко всему, способна обеспечить и реверсивное вращение (иными словами — задний ход). Те коробки, которые работают в паре с гидротрансформаторами, обычно включают в себя ряд планетарных передач и имеют много общего с привычными нам «ручными» коробками.

В механической коробке шестерни находятся в постоянном зацеплении, при этом ведомые — свободно вращаются на вторичном валу. Включая какую-либо передачу, мы механически блокируем соответствующую шестерню на ведомом валу. Работа автоматической коробки передач построена на таком же принципе. Но планетарные передачи (или редукторы) имеют некоторые интересные особенности. Они включают в себя несколько элементов: водило, сателлиты, солнечную и кольцевую шестерни.

Приводя во вращение одни элементы и фиксируя другие, такие редукторы позволяют менять передаточные отношения, то есть скорость вращения и передаваемое через планетарную передачу усилие. Приводятся планетарные передачи от выходного вала гидротрансформатора, а их соответствующие элементы фиксируются при помощи фрикционных лент или фрикционных пакетов (в механической коробке эту роль играют синхронизаторы и блокирующие муфты).


Планетарные передачи. Водило (1), сателлиты (2), шлицы солнечной шестерни (3).

Включается передача следующим образом. На фрикцион давит гидравлический толкатель, который в свою очередь приводится в действие давлением рабочей жидкости, той самой, что используется в гидротрансформаторе. Давление это создаётся специальным насосом, а распределяется оно между соответствующими фрикционами передач под неусыпным контролем электроники при помощи специальной системы электромагнитных клапанов — соленоидов в соответствии с алгоритмом работы коробки.


Пакеты фрикционов состоят из нескольких колец — неподвижных и подвижных. Они свободно вращаются друг относительно друга до тех пор, пока не возникнет необходимость включить передачу. Гидравлический толкатель зажмёт фрикционы тогда, когда в соответствующей магистрали будет создано рабочее давление. Подвижные элементы фрикциона, жёстко связанные, например, с водилом планетарной передачи, будут застопорены, водило остановится, передача включится.

Существенное отличие АКПП от обычных механических коробок заключается в том, что передачи в них переключаются практически без разрыва потока мощности. Одна выключилась, другая почти в тот же момент включилась. Сильные рывки при переключениях практически исключены, поскольку их гасит уже упомянутый выше гидротрансформатор. Хотя, надо отметить, современные коробки со спортивной настройкой не могут похвастать плавной работой. Толчки при их работе обусловлены более быстрой сменой передач: такой расклад позволяет отыграть некоторое количество времени при разгоне, но приводит к ускоренному износу фрикционов. На трансмиссии и ходовой части в целом это тоже сказывается не лучшим образом.

В автоматических трансмиссиях первого поколения системы управления были целиком гидравлическими. В дальнейшем гидравлику оставили только в качестве исполнительной части системы управления, задавать же алгоритм работы стала электроника. Благодаря ей возможно реализовывать различные алгоритмы работы коробки — режим резкого ускорения, спортивный, экономичный, зимний…


Одна из последних разработок компании ZF — восьмиступенчатая гидромеханическая коробка передач. Как сообщают сами создатели, коробка позволяет экономить до 6% топлива по сравнению с аналогичными шестиступенчатым «автоматом» и 14% по сравнению с пятиступенчатым. Всё логично, большое количество передач позволяет увеличить время, при котором двигатель работает в наиболее «эффективном» режиме и удельный расход топлива минимален. Теряется время на лишние переключения? Совсем немного.

В спортивном режиме, например, тяга двигателя используется на все сто процентов. Включение каждой последующей передачи происходит при частотах коленчатого вала, близких к частотам, на которых развивается максимальный крутящий момент. При дальнейшем ускорении частота вращения коленчатого вала доводится до максимальных значений, при которых двигатель развивает максимальную мощность. И так далее. Автомобиль в этом случае развивает значительно большие ускорения по сравнению с теми, что осуществляются при работе «экономичной» или «нормальной» программ.


Управляющие клапаны гидравлического блока управления.

На большинстве современных автомобилей с автоматической трансмиссией те или иные алгоритмы управления активизируются в зависимости от манеры вождения. Электроника адаптирует работу тандема двигатель-трансмиссия самостоятельно. Компьютер, анализируя информацию от многочисленных датчиков, принимает решение о переключении передач в те или иные моменты, в зависимости от требуемого характера переключений. Если манера движения размеренная и плавная, контроллер делает соответствующие поправки, при которых двигатель не выводится на мощностные режимы работы, что положительно сказывается на расходе топлива. Как только водитель «занервничал» и начал чаще и резче нажимать на педаль газа, искусственный интеллект тут же понимает, что ускорения и разгоны нужно производить резвее, и силовой агрегат сразу же начнёт работать по «спортивной» программе. Если же водитель станет педалировать плавно, «умная» электроника переведёт коробку и двигатель в штатный режим работы.


Шестиступенчатая трансмиссия полноприводной Audi A8

Всё большее количество автомобилей оснащается коробками, в которых наряду с автоматическим предусмотрен и полуавтоматический режим управления. Здесь команды на переключение передач даёт водитель, а сами переключения обеспечивает система управления. Но это совсем не означает, что электроника позволит вам сильно разгуляться. Часто скорость перехода с одной передачи на другую в этом режиме увеличивают, но многие производители, заботясь о ресурсе силового агрегата, время переключений оставляют таким же, как в автоматическом режиме. Машиностроители называют эти системы по-разному — Autostick, Steptronic, Tiptronic.


Американцы любят устанавливать селектор автоматической трансмиссии на рулевую колонку. Европейцы и японцы ставят их на центральный тоннель.

Кстати, с недавних пор некоторые АКПП можно тюнинговать. А возможно это стало благодаря перепрограммированию блоков управления двигателем и коробки. В угоду скорости разгона в программе управления АКПП меняют моменты перехода с передачи на передачу и существенно сокращают время переключений.


На новом Mitsubishi Lancer управлять коробкой в ручном режиме можно и при помощи селектора, и посредством удобных магниевых подрулевых переключателей.

Электроника из года в год становится всё умнее. Компьютеры научили анализировать степень износа фрикционов и генерировать соответствующее давление, необходимое для включения каждой муфты. Регистрируя давление, можно прогнозировать степень износа фрикционных дисков, а следовательно, и коробки в целом. Блок управления постоянно контролирует исправность системы, записывая в свою память коды неисправностей тех элементов, в которых происходили сбои в процессе работы.


Четырёхступенчатая коробка и гидротрансформатор Hydra-Matic 2002 4T65-E (M76) концерна GM в составе силового агрегата устанавливаются на автомобиле поперечно.

В некоторых форс-мажорных случаях блок управления начинает работать по обходной программе. Обычно в аварийном режиме в коробке передач запрещаются все переключения, и включается какая-либо одна передача, как правило, — вторая или третья. Эксплуатировать, в этом случае автомобиль не рекомендуется (да и не получится), но доехать своим ходом до мастерской программа поможет. Все типы коробок способны доставлять радость владельцам автомобилей своей службой при пробеге в 200 тысяч километров с лишним. Но есть одно «но» — безотказная работа возможна при правильной эксплуатации и регулярном квалифицированном ТО.

Режимы автоматической трансмиссии

«P» — parking. В этом режиме все передачи выключены, выходной вал КПП и «ветка» трансмиссии, связанная с ведущими колёсами, заторможены блокирующим механизмом коробки. При работающем двигателе ограничитель частоты вращения коленчатого вала срабатывает гораздо раньше, чем при разгоне. Такая «защита от дурака» не позволяет «перекручивать» мотор и без толку перелопачивать трансмиссионную жидкость.

«R» — reverse, по-русски — задний ход.

«N» — нейтраль. В этом режиме двигатель и ведущие колёса не связаны. Автомобиль может двигаться накатом, его можно также буксировать без вывешивания ведущей оси.

Режим «D» или «Drive» разрешает движение. В этом режиме смена передач осуществляется автоматически.

«S», «Sport», «PWR», «Power» или «Shift» — спортивный режим. Самый динамичный и самый расточительный. При разгонах двигатель «загоняется» в режим максимальной мощности. Скорость перехода с одной передачи на другую (в зависимости от конструкции и программы) может быть увеличена. Двигатель в этом случае всегда находится в тонусе, как правило, работая на оборотах, которые не ниже тех, на которых развивается максимальный крутящий момент. Забудьте об экономичности.

«Kick-down» — режим, в котором осуществляется переход на пониженную передачу для осуществления интенсивного ускорения, например, при обгоне. Резкий подхват происходит за счёт того что двигатель выводится в режим максимальной отдачи, и за счёт большего передаточного отношения понижающей передачи. Чтобы трансмиссия перешла в этот режим, по педали газа нужно хорошенько топнуть. В трансмиссиях более старшего поколения для срабатывания «кикдауна» нужно было обязательно нажать педаль газа, что называется, «в пол» до характерного щелчка.

При работе в режиме «Overdrive» или «O/D» повышающая передача будет включаться чаще, переводя двигатель на пониженные обороты. «Овердрайв» обеспечивает экономичное передвижение, но его активация может привести к существенной потере в динамике.

«Norm» реализует наиболее сбалансированный режим движения. Переключения на повышающие передачи, как правило, происходят по достижении средних оборотов и на оборотах несколько выше средних.

Если поставить селектор напротив «1» (L, Low), «2» или «3», ваша коробка не будет переходить выше выбранной передачи. Режимы востребованы в тяжёлых дорожных условиях, например, при движении по горным дорогам, при буксировке прицепа или другого автомобиля. В этом случае двигатель может работать в области средних и высоких нагрузок без перехода на повышающую передачу.

«W», «Winter», «Snow» — так называемый «зимний» режим работы АКПП. В целях предотвращения пробуксовки ведущих колёс трогание с места осуществляется со второй передачи. Дабы не спровоцировать лишние проскальзывания, переход с одной передачи на другую в этом случае тоже может осуществляться более мягко и при более низких оборотах. Разгон при этом может быть не слишком динамичным.

Наличие значков «+» и «-» определяет совсем не полюсность, а возможность ручного переключения передач. Разные производители «перемешивать» передачи позволяют по-разному: селектором управления АКПП, кнопками на руле или подрулевыми переключателями… В этом режиме электроника не позволит перейти на те передачи, которые, по её мнению, неуместны в данный момент. При работе со знаками «сложения» и «вычитания» скорость смены ступеней не будет выше той, что определена программой в режиме «Sport». Достоинство ручного режима — возможность действовать на опережение.

Виталий Кабышев
www.drive.ru

 

фото, принцип работы, неисправности, замена гидротрансформатора АКПП

В последнее время большим спросом начали пользоваться автомобили с автоматическими коробками передач. И сколько бы ни говорили автомобилисты, что АКПП – это ненадежный механизм, который дорог в обслуживании, статистика утверждает обратное. С каждым годом машин с МКПП становится меньше. Удобство «автомата» оценили многие водители. Что касается дорогого обслуживания, самая ответственная деталь в этой коробке — гидротрансформатор АКПП. Фото механизма и его устройство – далее в нашей статье.

Характеристика

В конструкцию автоматической коробки передач помимо данного элемента входит множество других систем и механизмов. Но основную функцию (это передача крутящего момента) выполняет именно гидротрансформатор АКПП. В просторечии его называют «бубликом» за счет характерной формы конструкции.

гидротрансформатор акпп Стоит отметить, что на автоматических коробках для переднеприводных авто гидротрансформатор АКПП включает в себя дифференциал и главную передачу. Помимо функции передачи крутящего момента «бублик» принимает на себя все вибрации и удары от маховика двигателя, тем самым сглаживая их до минимума.

Конструкция

Давайте рассмотрим, как устроен гидротрансформатор АКПП. Данный элемент состоит из нескольких узлов:

  • Турбинного колеса.
  • Блокировочной муфты.
  • Насоса.
  • Реакторного колеса.
  • Муфты свободного хода.

Все эти механизмы помещены в единый корпус. Насос непосредственно связан с коленвалом двигателя. Турбина сопрягается с шестернями коробки передач. Реакторное колесо размещено между насосом и турбиной. Также в конструкции колеса «бублика» имеются лопасти особой формы. Работа гидротрансформатора АКПП основана на перемещении специальной жидкости внутри (трансмиссионного масла). Поэтому АКПП включает в себя также масляные каналы. Кроме этого, здесь есть свой радиатор. Для чего он нужен, рассмотрим немного позже.

неисправности гидротрансформатора акпп

Что касается муфт, блокировочная предназначена для фиксации положения гидротрансформатора в определенном режиме (например, «паркинг»). Муфта свободного хода служит для вращения реакторного колеса в обратной стороне.

Принцип работы гидротрансформатора АКПП

Как действует данный элемент в коробке? Все действия «бублика» осуществляются по замкнутому циклу. Так, главная рабочая жидкость здесь – это «трансмиссионка». Стоит отметить, что она отличается по вязкости и составу от тех, что используются в механических коробках. Во время работы гидротрансформатора смазка поступает от насоса на турбинное колесо, а затем – на реакторное.

работа гидротрансформатора акпп

Благодаря лопастям жидкость начинает быстрее вращаться внутри «бублика», тем самым увеличивая крутящий момент. Когда частота вращения коленвала увеличивается, угловая скорость турбины и насосного колеса выравнивается. Поток жидкости меняет свое направление. Когда автомобиль набрал уже достаточную скорость, «бублик» будет работать только в режиме гидромуфты, то есть передавать лишь крутящий момент. Когда скорость движения увеличивается, ГТФ блокируется. При этом замывается муфта, и передача момента от маховика на коробку производится напрямую, с одинаковой частотой. Элемент разъединяется снова при переключении на следующую передачу. Так заново происходит сглаживание угловых скоростей до того момента, как скорость вращения турбин не сравняется.

Радиатор

Теперь о радиаторе. Для чего в автоматических коробках он выведен отдельно, ведь на «механике» такой системы не применяют? Все очень просто. На механической коробке масло выполняет лишь смазывающую функцию.

замена гидротрансформатора акпп

При этом его заливают лишь наполовину. Жидкость содержится в поддоне КПП, и в ней смачиваются шестерни. В автоматической коробке масло выполняет функцию передачи крутящего момента (откуда пошло название «мокрое сцепление»). Здесь нет фрикционных дисков – вся энергия идет через турбины и масло. Последнее постоянно двигается в каналах под высоким давлением. Соответственно, маслу необходимо охлаждаться. Для этого и предусмотрен в такой трансмиссии собственный теплообменник.

Неисправности

Выделяют следующие поломки трансмиссии:

Как определить поломку?

Выяснить, какой именно элемент вышел из строя, без демонтажа коробки и ее разбора довольно трудно. Однако предугадать серьезный ремонт можно по нескольким признакам. Так, если наблюдаются неисправности гидротрансформатора АКПП или тормозной ленты, коробка будет «пинаться» при переключении режимов. Машина начинает дергаться, если вы ставите ручку с одного режима на другой (причем когда нога находится на педали тормоза). Также коробка входит сама в аварийный режим. Машина двигается только на трех передачах. Это говорит о том, что коробке нужна серьезная диагностика.

принцип работы гидротрансформатора акпп

Что касается замены гидротрансформатора, она выполняется при полном демонтаже коробки (отсоединяются приводные валы, «колокол» и прочие детали). Этот элемент – самая дорогая составляющая любой АКПП. Цена на новый ГДТ начинается от 600 долларов для бюджетных моделей авто. Поэтому важно знать, как правильно использовать коробку, чтобы максимально отсрочить ремонт.

Как сохранить КПП?

Считается, что ресурс у данной трансмиссии на порядок ниже, чем у механики. Однако специалисты отмечают, что при должном обслуживании узла вам не потребуется ремонт или замена гидротрансформатора АКПП. Так, первая рекомендация – это своевременная замена масла. Регламент – 60 тысяч километров. И если на МКПП масло залито на весь срок эксплуатации, то в «автомате» оно является рабочей жидкостью. Если смазка черная или имеет запах гари, ее нужно срочно заменить.

гидротрансформатор акпп фото

Вторая рекомендация касается соблюдения температурных режимов. Не стоит слишком рано начинать движение – температура масла коробки должна быть не ниже 40 градусов. Для этого переведите рычаг по всем режимам с задержкой в 5-10 секунд. Так вы прогреете коробку и подготовите ее к эксплуатации. На холодном масле ездить нежелательно, так же как и на сильно горячем. В последнем случае жидкость будет буквально гореть (при замене вы услышите запах гари). АКПП не подходит для дрифта и жесткой эксплуатации. Также не стоит на ходу включать нейтральную передачу, а затем снова включать «драйв». Так вы сломаете тормозную ленту и ряд других важных элементов в коробке.

Заключение

Итак, мы выяснили, что собой представляет гидротрансформатор АКПП. Как видите, это весьма ответственный узел в коробке. Именно через него передается крутящий момент на коробку, а затем на колеса. И поскольку масло здесь является рабочей жидкостью, нужно соблюдать регламенты его замены. Так коробка будет радовать вас долгим ресурсом и плавными переключениями.

почему проблемы с блокировкой «бублика» опасны для АКПП

Как известно, в устройстве АКПП и вариаторов CVT, а также изредка и некоторых преселективных роботов РКПП, привычное  «механическое» сцепление отсутствует. В данном случае связь двигателя и коробки передач, а также передачу крутящего момента от мотора на коробку осуществляет отдельное устройство под названием гидротрансформатор АКПП (бублик, гидромуфта).

Более того, ГДТ не просто передает, но и преобразует крутящий момент, позволяя машине с автоматом эффективно разгоняться, плавно трогаться и продолжать движение на небольшой скорости и т.д. При этом многие АКПП считаются менее эффективными (снижение КПД)  и экономичными именно благодаря наличию в устройстве гидротрансформатора.

По этой причине, в целях снижения расхода топлива и повышения КПД, на разных этапах развития автоматической трансмиссии инженеры увеличили количество передач самой коробки (сначала с 3 до 4, затем до 5 и далее до 8 и больше), а также оснастили гидротрансформатор блокировкой.

Далее мы рассмотрим устройство ГДТ, что такое блокировка гидротрансформатора и как она работает,  для чего нужна принудительная блокировка гидротрансформатора АКПП, а также что делать, если не блокируется гидротрансформатор АКПП и чем чревата езда без блокировки гидротрансформатора.

Читайте в этой статье

Устройство ГДТ и блокировка гидротрансформатора

Итак, «бублик» АКПП (название в обиходе пошло от формы данного устройства) представляет собой гидравлический узел. Казалось бы, сломаться в нем особо нечему, однако это мнение ошибочно. Прежде всего, эпоха «неубиваемых» двигателей и КПП с большим ресурсом давно закончилась.

Также гидротрансформатор на современных АКПП, в отличие от легендарных агрегатов 90-х годов, имеет более сложную конструкцию. Более того, все чаще и чаще специалисты относят данный элемент к «расходникам» с ограниченным сроком службы (не более 100-150 тыс. км). После этого ГДТ нуждается в ремонте или замене (подобно сцеплению на роботах или МКПП).

В противном случае «бублик» потянет за собой всю коробку, то есть нуждаться в ремонте будет не только сцепление в виде ГДТ, но и  сама АКПП. Давайте разбираться. Чтобы было понятно, начнем с устройства «бублика» АКПП.

  • Главная задача гидротрансформатора — преобразование крутящего момента. Фактически, ГДТ работает как гидравлический редуктор, имеющий возможность снизить обороты и повысить крутящий момент, причем коэффициент трансформации доходит до 2.4.

Идем далее. Если в обычном сцеплении момент передается через диски, которые «смыкаются» между собой, в ГДТ энергия передается через трансмиссионное масло ATF, которое заливается в автоматическую коробку передач. Если просто, внутри ГДТ установлены два колеса – насосное и турбинное.

Коленвал двигателя связан с насосным колесом. Это колесо направляет потоки жидкости на турбинное колесо, которое, в свою очередь, связано с валом коробки передач. Подаваемое насоcным колесом масло ATF крутит турбинное колесо, после чего возвращается обратно на насосное колесо.

При этом перед возвратом жидкость также попадает на лопатки специального направляющего аппарата, который выполнен в виде реакторного колеса. Колесо-реактор разгоняет поток жидкости, направляя его в сторону вращения.

В результате поток жидкости ускоряется до того момента, пока скорость вращения насосного колеса не будет равна скорости вращения турбинного колеса. Как только скорости уравняются, «бублик» перейдет в режим гидромуфты. В таком режиме не осуществляется преобразования крутящего момента, реакторное колесо вращается свободно, никак не влияя на поток жидкости.

Также, чем большей окажется разница скоростей вращения турбинного и насосного колеса, тем сильнее будет разгоняться поток жидкости. Также во время разгона неизбежно происходит нагрев масла ATF. Естественно, КПД гидротрансформатора будет снижаться, так как часть полезной энергии расходуется на нагрев.

Если же скорость вращения насосного и турбинного колеса выравнивается, передавать крутящий момент через масло, причем с потерями, нерационально. Именно по этой причине в гидротрансформаторы стали интегрировать элементы простого фрикционного сцепления (действие основывается на трении).

Данное решение называется блокировкой гидротрансформатора. Блокировка «бублика» позволяет напрямую соединить входной и выходной вал, чтобы передать крутящий момент напрямую, то есть без потерь. При этом старые АКПП имели такой ГДТ, где блокировка гидротрансформатора срабатывала в автоматическом режиме.

Срабатывание происходило благодаря давлению давления жидкости АТФ. При этом блокировался на таких АКПП гидротрансформатор зачастую на высоких скоростях, позволяя эффективно поддерживать автомобилю ранее набранную скорость и одновременно экономить горючее. 

  • Однако в дальнейшем в устройстве АКПП стало больше электроники, за блокировку гидротрансформатора стал отвечать отдельный клапан с электронным управлением. Способов реализации самой блокировки много, однако основная задача — соединить валы и передать момент, минуя масло.

Позже конструкторы пошли еще дальше, стремясь приблизить ГДТ по своей производительности к обычному сцеплению. В результате при разгоне автомобиля уже происходит частичная блокировка ГДТ (принудительная блокировка гидротрансформатора АКП), когда фрикционные накладки немного смыкаются, чтобы эффективно передать момент. Далее блокировка «бублика» срабатывает как можно раньше для уменьшения потерь в гидротрансформаторе.

Получается, сегодня ГДТ является гибридной конструкцией, которая сочетает в себе как гидравлику, так и элементы обычного механического сцепления. Если учесть, что современные моторы высокопроизводительные, неизбежно увеличивается крутящий момент и нагрев жидкости в ГДТ.

Также высоки требования к экономичности автомобилей, то есть любые потери нужно сводить к минимуму. По этой причине максимум нагрузки для передачи момента от ДВС на КПП переложено на блокировку гидротрансформатора.

Неисправности гидротрансформатора и его блокировки

Рассмотрев, на чем основана работа ГДТ и как блокируется гидротрансформатор, не  трудно догадаться, что наличие фрикционных накладок (трущихся пар) означает уменьшение срока службы. Более того, указанные фрикционные пары активно изнашиваются с учетом больших нагрузок и раннего срабатывания блокировки.

Также продукты их износа загрязняют сам ГДТ изнутри, еще сильному загрязнению подвержено трансмиссионное масло. Результат — активный износ всех без исключения деталей не только самого «бублика», но и АКПП. Первыми от наличия абразива в масле страдают лопатки колес ГДТ и подшипники, затем выходят из строя прокладки и уплотнители из резины, далее грязное масло повреждает каналы гидроблока АКПП, соленоиды и т.д.

Рекомендуем также почитать статью о том, почему буксует АКПП. Из этой статьи вы узнаете о причинах, по которым происходит пробуксовка коробки автомат.

Если просто, основным источником загрязнения жидкости ATF в современных автоматах является именно гидротрансформатор. Хуже всего, если конструктивно материал фрикционных накладок блокировки приклеен к основе. Это значит, в результате неизбежного износа в масло попадает не только абразив, но и частицы клея. Клейкая основа загрязняет масло еще быстрее.

Становится понятно, что «бублик» с изношенными элементами блокировки нужно менять или проводить его ремонт, причем во многих случаях уже к 100-150 тыс. км. Именно по причине того, что у старых АКПП блокировка срабатывала редко или ее не было изначально, интервалы замены масла были большими, также впечатляющим оказывался и ресурс самой АКПП и ГДТ. О современных аналогах, к сожалению, этого сказать нельзя. 

Чем чревата езда без блокировки гидротрансформатора

Итак, не трудно догадаться, что активная эксплуатация авто с неисправной блокировкой ГДТ может обернуться целым рядом более серьезных проблем или даже выходом всей АКПП из строя.

Как правило, в современных АКПП гидротрансформатор блокируется на всех передачах, за срабатывание отвечает электроника и отдельный клапан, который регулирует силу прижатия. Как уже говорилось выше, частичная блокировка включается даже при плавном разгоне.

Если машину разгонять резко, блокировка ГДТ сработает практически сразу. Пока автомобиль новый, такая работа «бублика» позволяет обеспечить хорошую разгонную динамику наряду с высокой топливной экономичностью.

Однако в дальнейшем неизбежен износ накладок блокировки, причем происходит это быстро. С одной стороны, можно часто менять масло в АКПП, чтобы свести к минимуму загрязнения самой коробки. Это эффективный способ, однако на интенсивность износа накладок он никак не влияет.

Фактически, к ста тысяч километров накладки изношены, блокировка перестает быть плавной, машина дергается при ее срабатывании, продукты износа выделяются все активнее и активнее, засоряется клапан (соленоид) блокировки гидротрансформатора, загрязнение масла и рывки еще больше усиливаются. В худших случаях автомат переключается с ударами, коробка толкается и сильно пинается. Результат — сильные повреждения самой АКПП.

Становится понятно, что кроме банального перегрева масла в АКПП по причине неработающей блокировки ГДТ, также износ накладок блокировки приведет к скорому выходу коробки-автомат из строя. В подобной ситуации дешевле и правильнее заменить или отремонтировать сам гидротрансформатор при появлении первых признаков неисправности, чем менять или капитально ремонтировать всю АКПП. 

С учетом того, что ремонт гидротрансформаторов доступнее по цене, чем замена «бублика», такой вариант намного более востребован и распространен. При этом ремонт нужно доверять опытным специалистам, так как корпус ГДТ для выполнения работ нужно резать, затем устройство разбирают, выполняется дефектовка, замена уплотнительных элементов, фрикционных накладок и других элементов.

По окончании корпус требуется правильно заварить, после чего выполняется балансировка гидротрансформатора. Сварка и балансировка предельно важны, так как от этого напрямую зависит герметичность корпуса и общее качество работы узла. Также ошибки во время ремонта могут привести к выходу не только ГДТ, но и самой коробки или даже ДВС.

Подведем итоги

С учетом вышесказанного становится понятно, что гидротрансформатор на современных АКПП является сложным устройством, которое конструктивно представляет собой гидромуфту с интегрированным фрикционным сцеплением.

При этом срок службы «бублика» зачастую в два раза меньше, чем самой АКПП.  Это значит, что если масло в АКПП быстро темнеет, автомобиль расходует больше горючего, появились рывки при разгоне и во время торможения двигателем, тогда высока вероятность поломок ГДТ (не блокируется гидротрансформатор АКПП).

В случае, когда водитель замечает первые признаки неисправностей гидротрансформатора, необходимо выполнять его ремонт или полную замену. В противном случае дальнейшая эксплуатация может привести к серьезным неисправностям самой АКПП.

Напоследок отметим, что увеличить срок службы «бублика» можно только путем щадящей эксплуатации автомобиля, отказа от нагрузок и езды на повышенных оборотах, а также при помощи регулярной и полной замены масла в автоматической коробке передач. Еще предельно важно следить за тем, чтобы коробка-автомат не перегревалась. При необходимости следует установить допрадиатор АКПП для лучшего охлаждения.

  

Читайте также

Диагностика и признаки неисправности гидротрансформатора АКПП :: SYL.ru

С каждым годом численность автомобилей с АКПП возрастает. На то есть свои причины. Автоматическая трансмиссия намного удобней в эксплуатации, нежели механика. С ней водитель не устает в пробках, да и со сцеплением при должной эксплуатации не бывает проблем. Но устройство автоматической коробки немного сложнее механики. Одна из основных составляющих любой АКПП – это гидротрансформатор (в простонародье «бублик»). Со временем он может выходить из строя. Почему это происходит и каковы признаки неисправности гидротрансформатора АКПП? Рассмотрим в нашей сегодняшней статье.

О конструкции

Гидротрансформатор служит для изменения и передачи крутящего момента, что идет от мотора на коробку передач. В конструкцию элемента входит:

  • Насосное колесо.
  • Турбина.
  • Реакторное колесо.
  • Муфта свободного хода.
  • Блокировочная муфта.

ГДТ размещается в отдельном корпусе, который заполнен АТФ-жидкостью. Последняя выполняет функцию не только смазки, но и «мокрого» сцепления (поскольку корзины и диска как такового в автоматической коробке нет).

признаки неисправности гидротрансформатора акпп Работает «бублик» по замкнутому циклу. Сперва АТФ-жидкость попадает на турбинное, а затем на реакторное колесо. Скорость лопастей последнего начинает усиливаться. Поток жидкости направляется на насосное колесо. В итоге увеличивается величина крутящего момента. С ростом частоты вращения коленвала, угловая скорость турбинного и насосного колеса выравнивается. Поток АТФ-жидкости начинает менять свое направление. В это же время срабатывает муфта свободного хода. Начинает вращаться реакторное колесо.

При дальнейшем росте скорости вращения гидротрансформатор блокируется (в работу включает специальная муфта). Так, передача крутящего момента от мотора на коробку производится напрямую. Это происходит до следующего включения или выключения передачи.

Работу гидротрансформатора контролирует электронный блок управления. Он воспринимает информацию со всех датчиков, что находятся в «бублике» и формирует выходной сигнал. При возникновении каких-либо проблем электроника тут же сообщит об ошибке. На практике происходит блокировка гидротрансформатора АКПП. Признаки неисправности могут быть разными. Это как электроника, так и механическая часть. Но если коробка встала в аварийный режим, однозначно ее следует продиагностировать.

Сколько служит?

Обычно гидротрансформатор рассчитан на весь срок службы автоматической коробки. Это 250-300 тысяч километров. Старые «мерседесовские» гидротрансформаторы (4АКПП) могут выхаживать и по 500 тысяч. Неисправности гидротрансформатора АКПП «Тойоты Марк-2» 80-х годов тоже возникают редко. Но как и любой другой механизм, он может выйти из строя раньше. Чтобы предотвратить серьезный ремонт, нужно вовремя выявлять поломку и знать признаки неисправности гидротрансформатора АКПП. Самые характерные из них мы перечислим ниже.

Звуки, вибрация

Как самостоятельно определить признаки неисправности гидротрансформатора АКПП? В первую очередь, нужно прислушаться к работе самой коробки. Так, при переключении передач может возникать механический звук (шуршание). Поначалу он едва заметен. А при увеличении оборотов двигателя и вовсе пропадает. О чем это говорит? Такие признаки неисправности гидротрансформатора АКПП свидетельствуют о проблеме с упорными подшипниками игольчатого типа. Элемент располагается между крышкой гидротрансформатора и турбинным (либо реакторным) колесом.

неисправности гидротрансформатора акпп Если при переключении передач возникает громкий металлический стук, это говорит о деформации лопаток турбинного колеса. Ремонту такой элемент уже не подлежит.

Если при скоростях 60-90 километров в час возникает легкая вибрация, это говорит о забитом масляном фильтре. Также подобные симптомы происходят из-за некачественной или старой АТФ-жидкости. Решение проблемы – замена фильтра и масла. В большинстве случаев ремонт на этом заканчивается.

Многие применяют частичную замену масла – сливают часть старого и доливают новое, повторяя этапы 2-3 раза. Но специалисты рекомендуют не экономить на полной замене АТФ-жидкости. Она производится на стенде под давлением. гидротрансформатор акпп признаки неисправности тойота В чем плюс такой процедуры? Замена масла будет произведена на 100 процентов, а грязь из коробки полностью вымоется. Повторить это в условиях гаража невозможно – только при наличии стенда.

Аварийный режим

Подразумевает работу трансмиссии только на первых трех скоростях. Как определить неисправность гидротрансформатора АКПП? На современных авто дополнительно высвечивается предупреждение на панели приборов. Коробка может вставать в аварийный режим по разным причинам:

  • Повреждение корпуса КПП.
  • Наличие стружки в АТФ-жидкости.
  • Наличие металлических обломков турбины.
  • Неисправности фрикционной группы и муфты.

Что примечательно, в аварийный режим коробка может входить лишь периодически. Например, после нагрева АТФ-жидкости до определенных температур. Причину нужно искать в датчиках (расхода воздуха, распредвала и даже системы АБС). Если коробка встает в аварию неожиданно, стоит осмотреть целостность электрической проводки.

При переходе с первой на вторую передачу может ощущаться глухой удар в режиме «Д». Эти признаки неисправности гидротрансформатора АКПП вибрацией тоже могут сопровождаться. В данном случае проблема решается сканированием входных и выходных датчиков. Существуют и другие симптомы неисправности гидротрансформатора АКПП. О них мы расскажем далее.

Проблемы с динамикой

Автомобиль может плохо набирать скорость. Причин тому множество, но если рассматривать признаки неисправности гидротрансформатора АКПП («БМВ» в том числе), то это обгонная муфта. Если она вышла из строя, ГДТ следует разобрать и заменить поломанную деталь.

блокировка гидротрансформатора акпп признаки неисправности Иногда случается, что после остановки автомобиль и вовсе не может тронуться. Это говорит о повреждении шлица на турбинном колесе. Выход из ситуации – установка новых шлицов. В запущенных случаях приходится менять полностью турбинное колесо.

Запах горелой пластмассы

Такое может возникать на стоящем автомобиле. Запах горелого пластика ощущается в районе коробки передач. О чем это говорит? Подобные признаки неисправности гидротрансформатора АКПП («Тойоты» в том числе) возникают из-за перегрева и плавления полимерных деталей «бублика». Это является следствием забитого масляного радиатора. Он может находиться как в самой коробке, так и отдельно от нее. Исправная система охлаждения АКПП – залог надежной работы гидротрансформатора.

Двигатель глохнет

При попытке трансмиссии перейти на повышенную или пониженную передачу, мотор начинает глохнуть. Это происходит из-за сбоев в электронике, которая блокирует работу гидротрансформатора. Зачастую виновником проблемы является электронный блок управления. Но о нем мы еще поговорим ниже.

Причины неправильной работы ГДТ

Специалисты выделяют несколько факторов, которые могут влиять на работу гидравлического трансформатора:

  • Кулиса рычага АКПП.
  • Масло (АТФ-жидкость).
  • Электронный блок управления АКПП.

Рассмотрим эти проблемы более подробно.

Кулиса

С годами в АКПП старого типа может выходить из строя кулиса. Такие агрегаты имеют механическую связь селектора с коробкой. Это приводит к затруднению включения нужно режима КПП. Селектор заедает в одном положении. Выход из ситуации – замена селектора и кулисы. В некоторых автомобилях данную операцию можно сделать без демонтажа самой КПП.

Масло

От состояния АТФ-жидкости во многом зависит ресурс и исправность АКПП. Специалисты рекомендуют производить ее замену раз в 40-50 тысяч километров. Однако своевременная замена еще не является залогом продолжительной работы гидротрансформатора. В случае потеков и низкого уровня АТФ-жидкости «бублик» выйдет из строя очень быстро.

гидротрансформатор акпп признаки неисправности вибрация Как произвести быструю диагностику? Нужно запустить двигатель, открыть капот и достать масляный щуп АКПП. На нем есть надпись «Cold» или «НОТ». В первом случае прогревать коробку не обязательно. Если уровень ниже нормы, его срочно нужно возобновить. Заливается жидкость через то же отверстие для щупа.

Обратите внимание и на состояние самого масла. Так можно вовремя определить и предотвратить неисправности, связанные с гидротрансформатором. Наличие стружки на щупе исключено. Если это так, значит, либо вышло из строя турбинное или реакторное колесо, либо износилась торцевая шайба.

Обратите внимание! При эксплуатации АКПП с низким уровнем АТФ-жидкости, возможен перегрев ГДТ.

Периодически осматривайте днище автомобиля, а именно крышку (поддон) автоматической коробки. Иногда уплотнительные прокладки могут давать течь. Эксплуатировать автомобиль с такой неисправностью нежелательно, поскольку уровень масла может упасть в любой момент.

Электронный блок управления

Это основной узел, управляющий работой автоматической коробки. Блок при неисправностях может неправильно выбирать обороты для переключения скоростей либо же полностью блокировать работу трансмиссии. ЭБУ – довольно надежный механизм, но при воздействии определённых факторов он выходит из строя. Это могут быть:

  • Резкие перепады напряжения бортовой сети.
  • Механические удары, вибрации.
  • Повышенная температура.
  • Высокая влажность.
  • Повреждение изоляции и окисление контактов.

Поломки, связанные с электронным блоком, решаются его полной заменой либо установкой новых отдельных управляющих шлейфов.

Неполадки с гидроблоком

Неисправности гидротрансформатора АКПП могут возникать и из-за гидроблока. Внешне он являет собой некую плиту и выглядит следующим образом:

признаки неисправности гидротрансформатора акпп бмвГидроблок служит для передачи АТФ-жидкости под давлением по определенным каналам с целью включить либо выключить конкретную передачу. При неисправностях данная плита может провоцировать вибрации и толчки при смене режима работы трансмиссии. Это основные признаки неисправности гидротрансформатора АКПП. На современных автомобилях неисправность гидроблока отображается на бортовом компьютере. Также плита не терпит высоких и продолжительных нагрузок. Это может быть буксировка тяжелого транспортного средства или старт с двух педалей. неисправность гидротрансформатора акпп симптомы Нередко неисправности гидротрансформатора АКПП возникают зимой. Это является следствием эксплуатации коробки с холодной АТФ-жидкостью. При температуре ниже -5 градусов, автоматическую трансмиссию нужно прогреть. Делается это просто. Нужно поочередно включать все режимы (Паркинг, Нейтраль и Драйв), не начиная движение, с интервалом в 5-10 секунд. Это позволит разогреть масло и не допустить поломок гидротрансформатора АКПП. Рабочая температура для АТФ-жидкости – 75-80 градусов по Цельсию.

Заключение

Итак, мы выяснили основные признаки и причины неисправностей гидротрансформатора АКПП. В большинстве случаев поломка сопровождается ошибками на приборной доске и характерным звуком работы самой коробки. При появлении пинков и вибраций, следует применять детальную диагностику. В зависимости от масштаба проблемы, решается это заменой масла или деталей самого гидротрансформатора (турбинное колесо, подшипники). Своевременное выявление неисправностей позволит вам избежать серьезного ремонта.

Как работает гидротрансформатор?

Многие из Вас наверняка знают элементарные вещи об устройстве механической коробки передач — Вы знаете, что двигатель подключен к передаче путём сцепления, ведь без этой связи автомобиль не сможет прийти к полной остановке, разумеется, не убив двигатель. Но автомобили с автоматической коробкой передач не имеют сцепления, которое отключало бы трансмиссию от двигателя. Вместо этого в них используется удивительное устройство под названием гидротрансформатор. Может быть, его устройство Вам покажется несколько сложным, но то, что он делает и какое удобство доставляет, просто очень интересно!

В этой статье мы узнаем, почему автоматическая коробка передач автомобиля так нуждается в гидротрансформаторе, как работает гидротрансформатор и его некоторые недостатки.

Основы гидротрансформатора

Так же, как и в случае с ручной трансмиссией, автомобилю с автоматической коробкой передач необходимо найти способ, чтобы одновременно держать двигатель работающим (крутящимся коленчатым валом), а колеса и шестерни в коробке передач остановленными.Автомобили с МКПП используют для этого сцепление, которое полностью отключает двигатель от коробки передач, а вот автоматическая коробка передач использует гидротрансформатор.

Гидротрансформатор является одним из видов гидромуфты, которая позволяет двигателю вращаться независимо от трансмиссии. Если двигатель вращается медленно, например, когда автомобиль работает на холостом ходу на красном сигнале светофора, количество крутящего момента, который передаётся через гидротрансформатор, очень мало, и его достаточно, чтобы удержать автомобиль на месте путём лишь лёгкого давления на тормозную педаль.

Если бы Вы надавили на педаль газа в то время как автомобиль остановился, Вам пришлось бы также нажать сильнее на тормоза, чтобы удержать машину от перемещения. Это происходит потому, что при нажатии на газ двигатель ускоряется, и насос из-за этого ускорения подаёт больше жидкости в гидротрансформатор, вызывая больший крутящий момент, который, в свою очередь передаётся на колеса.

Как работает гидротрансформатор?

Как показано на рисунке выше, существуют четыре компонента внутри очень крепкого корпуса гидротрансформатора:

  1. Насос
  2. Турбина
  3. Статор
  4. Трансмиссионное масло

Корпус гидротрансформатора крепится болтами к маховику двигателя, то есть корпус всегда крутится с той же скоростью, с какой крутится коленвал двигателя. Плавники, которые составляют насос гидротрансформатора, крепятся к корпусу, поэтому они также вращаются с одинаковой скоростью, что и двигатель. Гидротрансформатор в разрезе на рисунке ниже показывает, как всё это связано внутри гидротрансформатора.

Насос внутри гидротрансформатора является одним из видов центробежных насосов. В то время как он вращается, жидкость движется направленно от центра к краям, примерно как вращающийся барабан стиральной машины во время отжима бросает воду и одежду по своим стенкам. В то же время, так как жидкость устремляется от центра, в это центре создаётся вакуум, который привлекает ещё больше жидкости.

Затем жидкость поступает в лопасти турбины, которая связана с передачей. Именно турбина заставляет передачу крутиться, что в основном и приводит в движение Ваш автомобиль. Так как же жидкость (точнее, масло) поступает из насоса к турбине?! Дело в том, что в то время, как жидкость эта устремляется от центра к краям насоса, она встречает на своём пути лопасти насоса, которые направлены таким образом, что жидкость рикошетит о них и направляется уже вдоль оси вращения насоса прочь от него — к турбине, которая как раз и расположена напротив насоса.

Лопасти турбины также немного искривлены. Это означает, что жидкость, которая поступает в турбину снаружи, должна изменить своё направление, переместившись в центр турбины. Именно это направленное изменение вызывает вращение турбины.

Чтобы ещё проще представить принцип работы гидротрансформатора, представим ситуацию с расположенными друг напротив друга на небольшом расстоянии (допустим, около одного метра) комнатными вентиляторами и направленными друг напротив друга — если включить один из вентиляторов, то он за счёт своих искривлённых лопастей погонит воздух от себя к вентилятору, который стоит напротив него, а тот, в свою очередь, начнёт вращаться, потому как его лопасти также искривлены и поток воздуха толкает их все в какую-либо одну сторону (именно в ту сторону, в какую и начнёт вращаться вал вентилятора).

Но мы всё ещё двигаемся далее: жидкость выходит из турбины в её центре, двигаясь опять же в другом — противоположном направлении, чем то, в котором она когда-то вошла в турбину — то есть снова по направлению к насосу. И вот здесь заключается большая проблема — дело в том, что по своей конструкции (точнее, по конструкции своих лопастей, насос и турбина вращаются в противоположные стороны, и, если жидкости будет разрешено попасть обратно в насос, то это будет сильно замедлять двигатель. Вот почему гидротрансформатор имеет статор, который, благодаря своей конструкции, изменяет направление движения масла, и, таким образом, остаточная энергия, которая возвращается от турбины к насосу, идёт в дело — немного помогая двигателю раскручивать насос. 

Важно отметить, что скорость вращения турбины никогда не будет равной скорости вращения насоса, а КПД в гидротрансформаторе даже близко не будет стоять к механическим шестерёнчатым механизмам, передающим крутящий момент. Именно поэтому у автомобиля с АКПП значительно более высокий расход топлива. Для борьбы с этим эффектом, большинство автомобилей имеет гидротрансформатор, снабжённый блокировочной муфтой . Когда требуется, чтобы две половинки гидротрансформатора (насос и турбина) вращались с одинаковой скоростью (это происходит, например, когда автомобиль движется на высокой скорости), блокировочная муфта блокирует их вместе намертво, что исключает проскальзывание насоса относительно турбины и, таким образом, повышает эффективность расхода топлива.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *