Как работает синхронный генератор – Синхронный генератор переменного тока: устройство, принцип работы, применение

описание, устройство агрегата, принцип работы

Генератор синхронный трехфазныйУниверсальный синхронный трёхфазный генератор представлен в виде специфического механизма переменного тока, который призван преобразовывать определённый тип энергии в электричество. Именно этот агрегат отвечает за работоспособность солнечных батарей, электростатических машин, а также гальванических элементов. На практике использование этих устройств определяется исключительно техническими характеристиками.

Краткое описание

Каждый специалист знает, что синхронный трёхфазный генератор зарекомендовал себя как высококачественный, мощный агрегат, который отличается специфической структурой переменного тока, а это высоко ценится в различных отраслях. Вмонтированный крутящийся электромагнит способен создавать магнитный поток, перемещающийся через три фазы обмотки используемого статора. В результате можно добиться того, что в пазах будет происходить переменная ЭДС однотипной частоты. Стоит отметить, что любой сдвиг фаз осуществляется исключительно под определённым углом, который равен одной трети вращения магнитных полей.

Принцип действия синхронного трёхфазного генератораСами производители отмечают тот факт, что генератор оборудован таким образом, чтобы якорь выступал в качестве мощного электромагнита. Если вал вращается от турбины, тогда в систему поступает электроэнергия, а обмотка ротора питается именно этим током. Во время такого взаимодействия якорь становится своеобразным электрическим магнитом, который крутится вместе с валом. Именно синхронные трёхфазные турбо- и гидрогенераторы производят больше всего полезной энергии.

Помимо этого, такие агрегаты успешно используются многими специалистами в качестве электромоторов для установок, где уровень мощности превышает отметку 50 кВт. Когда синхронный аппарат работает, то в графике двигателя источник постоянного тока соединяют с ротором, а вот статор подсоединяют к трёхфазному кабелю.

Разнообразие модельного ряда

В продаже сегодня можно встретить несколько видов синхронных генераторов, все они прекрасно справляются с теми или иными задачами. Благодаря этому каждый потребитель может выбрать наиболее подходящую модель устройства, которая будет обладать необходимыми эксплуатационными характеристиками. Большим спросом сегодня пользуются следующие виды генераторов:

  • Асинхронное устройство двойного типаАсинхронное устройство двойного типа. В таком генераторе подключена как роторная, так и статорная обмотки. График работы носит асинхронный характер.
  • Турбо. Агрегат отличается неявнополюсным строением генератора, изготавливается из турбин разного вида. К основным положительным характеристикам можно отнести высокую скорость оборотов, которая варьируется в пределах 6 тыс. в минуту.
  • Синхронный компенсатор. Такой агрегат является поставщиком реактивной мощности, благодаря чему активно используется для повышения качества электроэнергии.
  • Гидро. Ротор имеет существенное отличие от всех аналогов, так как присутствуют специальные полюса. Используется для выработки электроэнергии, работает исключительно на малых оборотах.

Устройство синхронного генератора

Качественный статор имеет аналогичный принцип действия с асинхронником. Его корпус собирается из отдельных пластин электротехнической стали, все детали разделены специальными изолирующими слоями. Обмотка переменного тока располагается в специальных пазах. Многочисленные преимущества синхронных трёхфазных генераторов повлияли на то, что они активно эксплуатируются в различных отраслях. Вся проводка обмоток изолируется и фиксируется, что особенно важно для безопасной работы, ведь этот раздел отвечает за подключение нагрузки.

Для тихоходных машин с гидравлическими турбинами изготавливаются высококачественные генераторы выступающего типа. А вот для тех узлов, которые функционируют по принципу скоростного вращения с переменным током, больше всего подходят прочные неявно выраженные полюса. Чтобы агрегат служил как можно дольше, нужно использовать правильное охлаждение. Чаще всего на вал монтируются специальные крыльчатки, которые регулируют уровень температуры ротора с обеих сторон. Весь воздух обязательно подлежит предварительной фильтрации. Если система относится к замкнутому типу, то через теплообменники проходит один и тот же воздух.

Устройство синхронного генератора

Отдельно стоит учесть, что для быстрого и своевременного охлаждения системы желательно использовать водород, который в 14,5 раз легче, нежели воздух. А вот принцип его эксплуатации самый простой.

Современные технологии позволяют изготавливать различные модели индукционных приборов, но в каждом таком изделии присутствуют одинаковые части:

  • Прочная обмотка с переменной ЭДС.
  • Мощный постоянный магнит или же обычный электромагнит, который производит требуемое рабочее поле.

Для того чтобы получить наибольший магнитный поток, во всех агрегатах предусмотрено наличие специализированной структуры, которая включает в себя два стальных сердечника. Рабочие обмотки установлены в специальные пазы. Один вмонтированный сердечник — внутренний, он крутится вокруг вертикального или же горизонтального стержня, который принято называть ротором. А вот недвижимый сердечник именуется якорем (статором).

Функциональные отличия агрегата

Чтобы устройство слаженно работало в течение долгих лет, нужно заранее ознакомиться с принципом действия синхронного генератора. Для оценки функциональных возможностей агрегата используются те же характеристики, что и для аппаратов с постоянным током. Основные различия касаются только некоторых эксплуатационных условий.

К основным характеристикам синхронного агрегата относятся следующие факты:

  • Снижение показателей напряжения наблюдается на активном и индуктивном сопротивлении обмоток устройства. Этот показатель может возрастать по мере того, как возрастает нагрузка самого агрегата.
  • Функциональные отличия агрегатаХолостой ход. ЭДС прибора во многом зависит от токов возбуждения, что одновременно свидетельствует о намагничивании специальных цепей машины.
  • Регулировочные параметры трёхфазного генератора. Производители отмечают тот факт, что токи возбуждения зависят от нагрузки. В процессе активной эксплуатации синхронного генератора необходимо постоянно поддерживать оптимальное напряжение на зажимах. Соблюдать это требование достаточно просто, главное, регулировать ЭДС агрегата. Мастер может менять ток возбуждения в автоматическом режиме. При активно-емкостной нагрузке необходимо снижать ток возбуждения для непрерывного поддержания постоянного напряжения.

Комплектующие элементы

Принцип работы и устройство синхронного генератора отличаются тем, что этот агрегат может использоваться в качестве мотора и генератора. Его функциональные возможности позволяют быстро переходить от графика двигателя к графику работы генератора — это во многом зависит от действия тормозящей или вращающей силы оборудования. Такой принцип работы высоко ценится среди квалифицированных специалистов. Стоит отметить, что в графике двигателя в систему входит электрическая энергия, а выходит механическая.

Устройство синхронного генератора включает в себя следующие элементы:

  1. Комплектующие элементыВысококачественная обмотка устройства.
  2. Ротор либо индуктор (вращающегося или подвижного типа). В комплекте к этому элементу обязательно прилагается обмотка возбуждения.
  3. Несколько разновидностей мощных кабелей, способных выдержать большую нагрузку.
  4. Удобный переключатель статорной катушки.
  5. Специальный выпрямитель.
  6. Высококачественная роторная катушка.
  7. Специальный поставщик постоянного тока, работа которого может контролироваться самим пользователем.

Трёхфазный генератор входит в состав цепи переменного тока нелинейных сопротивлений.

Принцип работы

Неправильно настроенное оборудование не сможет слаженно работать в течение длительного промежутка времени, преждевременные поломки могут возникнуть на фоне появления всевозможных перегрузок, из-за некачественного возбуждения сети, а также частых переходов в асинхронные режимы. Последний фактор чаще всего возникает по причине каких-либо отклонений в сети: нагрузки переменного типа, короткие замыкания, неравномерная загрузка фаз.

Стоит отметить, что стабильная работа генератора зависит и от качества подключённой сети, где любое нарушение функционирования отдельно взятых потребителей чревато несимметричностью и искажением сигнала. В такой ситуации может перегреваться как сама конструкция агрегата, так и его обмотка. Наличие мощных преобразователей и выпрямителей чревато искажением синусоида.

Принцип работы генератораЧтобы устройство правильно функционировало, нужно обеспечить ему правильное охлаждение. Если затраты воды достигают отметки 75% от номинала, тогда срабатывает предупредительная сигнализация. Когда расход охладителя находится в пределах 50%, система разгружается за две минуты. Этот вид генератора работает по принципу электромагнитной индукции. Якорная катушка находится в разомкнутом положении только на холостом ходу, из-за чего необходимое магнитное поле формирует исключительно обмотка ротора. Когда этот элемент крутится от проводного мотора, то у него наблюдается постоянная частота.

Первоначальное магнитное поле формируется за счёт обмотки возбуждения, а в катушку якоря поступает электрическая движущая сила. Если же якорь начал двигаться только благодаря вращению с определённой скоростью, то весь поток возбуждения переходит через проводники статорных катушек. В итоге происходит индицирование переменных ЭДС.

Используемые структуры возбуждения

Все крупные производители изготавливают генераторы, моторы и синхронные компрессоры, которые оснащены инновационными полупроводниковыми структурами, такими как возбуждение трёхфазных агрегатов. В таких ситуациях используется беспроигрышный метод выпрямления переменных токов.

Используемые структуры возбуждения

Принцип устройства генератора отличается тем, что структуры возбуждения могут обеспечить следующие параметры функционирования:

  • Работа аппарата на холостом ходу.
  • Электроторможение устройства.
  • Функционирование в определённой энергетической структуре с имеющимися нагрузками либо перезагрузками.
  • Возбуждение синхронного генератора может быть немного форсировано в связи с такими критериями, как ток и напряжение, которые отвечают заданной кратности.
  • Подключение к электросети с помощью точной самосинхронизации.

Сферы применения

Многофункциональные трёхфазные двигатели используются в различной технике. Высокая популярность обусловлена тем, что такие агрегаты обладают необходимой простотой и надёжностью конструкции, а также доступной ценой. Генератор не нуждается в особом уходе, быстро приступает к работе и хорошо переносит длительные нагрузки. Качественное энергоснабжение осуществляется именно по трёхфазной системе переменного тока, так как любое использование двигателей с постоянным током требует установки дополнительных агрегатов.

Сферы применения генераторовТрёхфазные генераторы считаются незаменимыми в приводах сверлильных и токарных станков, пилорамах и циркуляционных пилах, лифтах, лебёдках и подъёмных кранах. Помимо этого, такой агрегат широко востребован и в сельскохозяйственной отрасли, где основную работу выполняют барабанные молотилки, веялки, зернопульты, погрузчики. Синхронные установки используются как основной источник электроэнергии переменного тока на крупнейших станциях, на передвижных агрегатах и транспортных машинах (тепловозы, машины, самолёты). Генератор может функционировать как автономно, так и параллельно с сетью.

Конструкторы утверждают, что без такого оборудования не могут обойтись те станции, где отсутствует центральная подача электроэнергии. Особенно это касается крупных фермерских хозяйств, которые возведены вдали от населённых пунктов.

Принцип работы и устройство синхронного генератора переменного тока

Генератор (альтернатор) переменного тока предназначен для того, чтобы преобразовывать механическую энергию в электрическую. Его ротор вращается от первичного двигателя, в качестве которого может служить турбина, ДВС, электродвигатель.

Генератор

Как выглядит синхронный генератор

К синхронным машинам относятся те, у которых ротор имеет одинаковую частоту вращения с магнитным полем:

n = 60∙f/p, где

f – частота сети;

p – количество пар полюсов статора.

Принцип работы

Статор и ротор – главные составные части синхронного генератора (СГ).

Статор

Принцип действия синхронного генератора

Как изображено на рисунке, синхронный генератор чаще всего вырабатывает энергию, когда ротор вращается вместе с магнитным полем, линии которого пересекают статорную обмотку, расположенную неподвижно. Поле создаётся от дополнительного возбудителя (дополнительного генератора, аккумулятора и др. источников).

Процесс может происходить наоборот – вращающийся проводник находится в неподвижном магнитном поле. Здесь появляется проблема токосъёма через коллекторный узел. Для генераторов переменного тока небольшой мощности эта схема вполне подходит. Обычно она применяется в передвижных установках.

В СГ вырабатывается ЭДС:

e = 2πBlwDn, где

B – магнитная индукция;

l – длина паза статора;

w – количество витков в статорной обмотке;

D – внутренний диаметр статора.

Основная электроэнергетика построена на напряжении 15-40 кВ. Передача энергии через коллектор СГ затруднительна. К тому же подвижная обмотка подвержена ударным нагрузкам и вращению с переменной скоростью, что создаёт проблемы с изоляцией. Из-за этого, обмотки якоря делают неподвижными, поскольку через них проходит основная энергия. Мощность возбудителя не превышает 5% от общей мощности СГ. Это позволяет проводить ток через подвижный узел.

В машинах переменного тока небольшой мощности (несколько киловатт) ротор изготавливают с постоянными магнитами (неодимовыми и др.). Здесь не требуется установка подвижных контактов, но тогда возникают сложности с регулированием напряжения на выходе.

Устройство генератора

Статор имеет общий принцип действия с асинхронником и мало отличается от него. Его железо собирается из пластин электротехнической стали, разделённых изолирующими слоями. В пазах размещается обмотка переменного тока. Наиболее распространён трёхфазный синхронный генератор. Провода обмоток надёжно крепятся и изолируются, поскольку через них подключается нагрузка.

Ротор выполняется с явно выраженными полюсами или без выступающих полюсов.

Полюс

Виды полюсов синхронного генератора: а) – выступающие; б – неявно выраженные

Первые делаются для тихоходных машин, например, с гидравлическими турбинами. Для вращающихся с большой скоростью генераторов переменного тока принцип действия заключается в применении более прочных неявно выраженных полюсов.

СГ может работать в режимах двигателя или генератора переменного тока. Важно, какой здесь применяется способ охлаждения. Обычно на валу устанавливаются крыльчатки, охлаждающие ротор с обеих сторон. Воздух перед вентиляцией проходит через фильтр. В замкнутой системе циркулирует один и тот же воздух, проходя через теплообменники.

Более эффективным охлаждающим агентом является водород, в 14,5 раз более лёгкий, чем воздух. Принцип охлаждения у него аналогичный.

Обмотки генератора переменного тока выводятся концами на его распределительную коробку. Для трёхфазных – соединение производится в звезду или в треугольник.

Синхронный генератор преимущественно обеспечивает поддерживание синусоидального переменного напряжения. Это достигается изменением формы полюсных наконечников, а неявнополюсный ротор имеет определённое расположение витков в его пазах.

Реакция якоря

При соединении выхода с внешней нагрузкой в обмотках статора протекает электрический ток. Образующееся магнитное поле накладывается на поле, которое создаёт ротор.

Якорь

Реакция якоря при разных видах нагрузки

При активной нагрузке ток и ЭДС совпадают по фазам (изображено на рисунке выше – а). Он становится максимальным, если полюса ротора располагаются напротив якорных обмоток. Основной магнитный поток и образующийся от реакции якоря перпендикулярны и при наложении образуют несколько больший результирующий поток, увеличивающий ЭДС.

Индуктивная нагрузка приводит к снижению ЭДС, поскольку потоки направлены встречно (изображено на рисунке выше – б).

Ёмкостная нагрузка вызывает совпадение направлений потоков, в результате чего ЭДС увеличивается.

Увеличение нагрузки приводит к большей реакции якоря, приводящей к изменению выходного напряжения, что нежелательно. На практике этот процесс управляется изменением возбуждения, что снижает степень воздействия реакции якоря на основное поле.

Режимы работы СГ

Нормальные режимы работы характеризуются сколько угодно длительными периодами времени. В их число входят отклонения коэффициентов мощности, выходного напряжения до 5% и частоты до 2,5% от номиналов и т. п. Допуски на отклонения определяются нагревом агрегатов и задаются стандартами или гарантируются производителями.

А нормальные режимы функционирования неприемлемы для продолжительной работы и связаны с появлением перегрузок, с недовозбуждением, переходами в асинхронные режимы. Этот режим работы связан с отклонениями в сети: короткими замыканиями, нагрузками переменного действия, неравномерностью загрузки фаз.

На нормально работающее устройство оказывает влияние подключённая сеть, где нарушения функционирования отдельных потребителей вызывают несимметрию и искажения формы сигнала. Из-за этого могут перегреваться обмотки или конструкция генератора.

Продолжительная работа генератора возможна при различии фазных токов на турбогенераторах до 10% и до 20% на синхронных компенсаторах и гидрогенераторах.

Искажение синусоиды на СГ происходит из-за мощных выпрямителей, преобразователей, электротранспорта и т. д.

Важно для синхронных машин, чтобы нормально работала система охлаждения. Если затраты охлаждающей воды достигают 70% от номинала, срабатывает сигнализация предупреждения. Если расход охладителя снижается наполовину, устройство должно разгружаться за 2 мин, а затем отключаться не более чем за 4 мин.

Характеристики генератора:

  1. при холостом ходе, когда обмотка якоря не замкнута, устанавливается зависимость ЭДС от токов возбуждения, а также определяется показатель намагничивания сердечников машины;
  2. внешняя характеристика – зависимость выходного напряжения от нагрузочных токов;
  3. регулировочные характеристики, проявляющиеся в зависимости токов возбуждения от нагрузочных при автоматическом поддерживании заданных выходных параметров.

Виды генераторов

Генераторы отличаются способами возбуждения. В автономных установках на транспорте, в авиации, на судах применяется самовозбуждение за счёт остаточного намагничивания. Способ отличается надёжностью и удобством применения. Распространённым вариантом здесь является отбор энергии от статорной обмотки, которая проходит через понижающий трансформатор и полупроводниковый преобразователь ПП, в результате чего на обмотку возбуждения через коллектор поступает постоянный ток (изображено на рисунке ниже – а).

Схема

Принцип самовозбуждения синхронного генератора

Другая схема реализует самовозбуждение также путём подачи переменного тока со статорной обмотки через выпрямительный трансформатор ВТ и тиристор ТП в обмотку возбуждения ОВ (изображено на рисунке выше – б). Тиристором автоматически управляет регулятор возбуждения АРВ по сигналам от входа генератора СГ через трансформаторы напряжения ТН и тока ТТ. Блок защиты БЗ не допускает образования на обмотке возбуждения повышенного напряжения и перегрузочного тока.

Другая конструкция содержит дополнительную синхронную или асинхронную машину с возбуждением от статорных обмоток. На рисунке ниже изображена такая система СГ с обмоткой возбуждения ОВ и трёхфазной обмоткой статора. При этом ротор основного генератора имеет общий вал с якорными обмотками возбуждения ОВ1 и ОВ2 дополнительного подвозбудителя ПВ. Ток возбуждения регулируется реостатами r1 и r2. Устройство не уступает по быстродействию установкам с самовозбуждением, но конструкция у него более сложная, а габариты больше.

Схема

Система возбуждения с дополнительным генератором

Применяется также бесконтактная система возбуждения, где у СГ нет подвижных контактов для передачи энергии. Щётки с коллектором имеют только подвозбудитель ПВ, который питает пост

Схема

Бесконтактная система возбуждения синхронного генератора

оянным током обмотку I возбудителя В.

 

Видео. Синхронные машины

Можно отметить следующие современные направления в развитии технологии производства синхронных машин:

  • улучшение конструкций;
  • использование новых материалов, позволяющих уменьшить толщину изоляции и повысить мощность до 10%;
  • применения микропроцессоров для контроля состояния машин;
  • совершенствование режимов воздушного охлаждения.
Оцените статью:

Синхронный генератор

Электротехническим устройством специального использования, работающим в автономном режиме от механического двигателя, является синхронный генератор. Прибор нашел применение в частном хозяйстве. Он используется для выработки электротока промышленной частоты. Кроме того, изобретение работает как генератор тока сварочного оборудования. Машина синхронного действия монтируется в дизельные и бензиновые электростанции.

Синхронный генератор. Устройство

Электрическая машина состоит из:

1.      Статора.

2.      Ротора.

3.      Обмоток генератора.

4.      Системы токового компаундирования.

5.      Переключателя обмотки статора.

6.      Выпрямителя сварочного тока.

7.      Кабелей.

8.      Сварочного устройства.

9.      Обмоток ротора.

10.  Регулируемого источника тока (постоянного).

Синхронный генератор используется в режимах: генератора тока 50 Гц., сварочного синхронного генератора, прибора с повышенной частотой. Изобретение дает возможность создавать малогабаритные электрические агрегаты универсального применения. Синхронный генератор приводит в действие оборудование в местах с отсутствием централизованных электросетей. Его можно использовать в фермерских хозяйствах вдали от населенных пунктов.

Характеристики синхронного генератора рассчитаны на создание электрогенератора с новыми потребительскими возможностями. Это значит, что при реализации данного изобретения, одно и то же устройство можно эксплуатировать как источник электропитания частотой 50 Гц и более, а также как поставщик тока, выпрямленного для дуговой сварки, он наделен круто подающей внешней характеристикой рабочей зоны. При этом обеспечиваются сварочные свойства, не уступающие трехобмоточным коллекторным сварочным генераторам постоянного тока.

Как работает синхронный генератор?

Принцип действия основан на электромагнитной индукции. Происходит преобразование энергии механической в электрическую. Электромашина работает как генератор (в его режиме). При этом частоты вращений магнитных полей статора и ротора одинаковые. На обмотки ротора подается напряжение, образуется магнитное поле. Вращаясь, оно проникает через обмотку статора и образует в ней ЭДС.

Ротор бывает фазного и короткозамкнутого типа, в зависимости от вида обмотки. Вспомогательная обмотка статора создает вращающееся магнитное поле. Оно индуцирует магнитное поле на роторе, которое наводит ЭДС. В момент запуска электрической станции ротор создает магнитное поле слабого напряжения. С усилением оборотов, ЭДС в обмотке возбуждения увеличивается. Обмоточное напряжение проникает на ротор через авторегулировочный блок. Контроль над выходящим напряжением осуществляется за счет изменения магнитного поля. Стабильность обеспечивается изменением магнитного поля ротора регулированием тока в его обмотке. Такой метод регулировки обеспечивает стабилизацию выходного напряжения прибора.

Преимущества и недостатки синхронного генератора

К первым относится постоянство исходящего напряжения. Минусом является возможность перегрузки при повышенной нагрузке. Регулятор может повысить силу тока в обмотке ротора. К недостаткам генератора синхронного типа можно также причислить наличие щеточного устройства. С течением времени оно будет нуждаться в обслуживании. В наше время этот недостаток удалось устранить.

Современные генераторы синхронного типа выпускают без щеточного узла. Оборудование нового поколения имеет длительный срок службы, надежность в работе в трудных условиях производства. Встроенные датчики и электроника обеспечивают функционирование в режиме реального времени. Новейшие технологические решения обеспечивают синхронному генератору высокую эффективность. Продукцию используют в промышленности и в оборудовании судов.

Синхронные машины

Синхронная машина — это электрическая машина переменного тока, частота вращения ротора которой равна частоте вращения магнитного поля в воздушном зазоре.

Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Устройство синхронной машины

Статоры синхронной и асинхронной машин полностью одинаковы.

Статор синхронного генератора состоит из чугунной станины — корпуса, внутри которого находится сердеч­ник статора, собранный из отдельных листов электротех­нической стали, изолированной между собой лаком или тонкой бумагой. В пазы сердечника укладывают обмотку статора из медного изолированного провода (рис. 164).

Роторы синхронных генераторов бывают двух типов — явнополюсными и неявнополюсными (балванка).

Явнополюсными выполняют роторы синхронных гене­раторов с небольшим числом оборотов (от 125 об/мин до 1500 об/мин), обычно соединяемых с тихоходными гидротурбинами, и генераторов не­большой и средней мощности.

Роторы неявнополюсные применяют в генераторах с большим числом оборотов (3000 об/мин) и большой мощности, обычно соединяемых на одном валу с паровыми турбинами, называют эти генераторы турбогенераторами.

Сердечники полюсов большей частью изготовляют из литой стали, а башмаки — иногда из отдельных листов электротехнической стали. Обмотку полюсов выполняют из медных изолированных проводов. Для получения синусоидально изменяющейся э.д.с. необходимо иметь синусоидальное распределение магнитной индукции в воз­душном зазоре. Это достигается неравномерностью воз­душного зазора между наконечником полюса и сталью статора: по краям полюсов воздушный зазор больше, чем под серединой полюса (рис. 167).

На вал генератора надевают два кольца, изолирован­ных от него, к которым присоединяют выводы обмотки возбуждения ротора, их называют контактными кольцами. На контактные кольца устанавливают щетки, а к щеткам подводят постоянный ток от воз­будителя.

Чаще всего в качестве возбуди­теля применяют машину постоян­ного тока, которую называют машинным возбудителем, а в по­следнее время используют для возбуждения твердые или механи­ческие выпрямители. У большего количества син­хронных машин возбудитель рас­положен на одном валу с гене­ратором, а в последних конструкциях возбудитель распо­лагают сверху статора синхронной машины.

Принцип действия синхронного генератора

Синхронный генератор состоит из неподвижной — статора, в пазах которого помещается трехфазная обмотка перемен­ного тока, и вращающейся части — ротора, который пред­ставляет собой электромагнит.

Обмотки возбуждения ротора питаются через щетки и кольца постоянным током от возбудителя — машины постоянного тока или какого-нибудь выпрямителя.

Если предположить, что магнитная индукция распределяется в воз­душном зазоре синусоидально — , то ЭДС, индуктируемая в якорной обмотке генератора, будет иметь вид:

Под действием этой ЭДС в цепи генератора, замкнутой на нагрузку Z, появится переменный ток . Частота переменной ЭДС рассматриваемого ге­нератора определяется частотой вращения ротора: при одной паре полюсов поля возбуждения () одному обороту ротора соответствует один период переменного тока. В общем случае частота ЭДС синхронного генератора(Гц) прямо пропорциональна частоте вращения ротора [об/мин], т.е.

Обмотка, в которой индуктируется ЭДС, расположена на неподвижной части генератора — на статоре. При этом обмотку возбуждения располагают на роторе. Такая конструктивная схема наиболее рациональна в синхронных машинах большой мощности, так как при расположении рабочей обмотки на ро­торе пришлось бы передавать в рабочую об­мотку через контактные кольца значительные мощности при напряжении до 20 кВ. В этих ус­ловиях работа контактных колец и щеток стала бы весьма ненадежной, а потери энергии в ще­точном контакте — значительны. При распо­ложении рабочей обмотки на статоре выводы этой обмотки присоединяют непосредственно к электрической сети. Конечно, и в этом случае машина не избавляется от контактных колец и щеток, необходимых для соединения обмотки возбуждения с возбудителем. Но так как вели­чина тока возбуждения в десятки раз меньше рабочего (переменного) тока, а напряжение не превышает 450 В, то щеточный контакт работает более на­дежно, а потери энергии в нем невелики.

Исходя из перечисленных соображений синхронные машины, как правило, выполняют с рабочей обмоткой, располагаемой на статоре.

Обмотка статора синхронных машин обычно представляет собой трехфазную обмот­ку, соединяемую в звезду или треугольник.

На роторе расположена обмотка возбуждения, при подключении которой к источнику постоянного тока (возбудителю) возникает магнитное поле возбуждения. По­средством первичного двигателя ротор ге­нератора приводят во вращение со скоростью . При этом магнитное поле ротора вращаясь индуктирует в трехфазной обмотке статора ЭДС ,,, которые, буду­чи одинаковыми по величине и сдвинутыми по фазе относительно друг друга на 120, образуют трехфазную симметричную систему ЭДС.

Большинство синхронных генераторов проектируют на промышленную частоту 50 Гц. Для получения ЭДС такой частоты необходимо, чтобы частота вращения ротора была равна

33. Способы включения синхронных генераторов на параллельную работу.

Включение генераторов переменного тока на параллельную ра­боту можно производить тремя способами:

1. точной синхронизацией,

2.грубой синхронизацией

3. самосинхронизацией

Точная синхронизация преследует цель получения иде­ального случая включения генераторов на параллельную работу. Этот метод считается основным, так как он предусматривает плав­ный ввод генераторов в работу.

На рис 102 представлена принципиальная однолинейная схема точной синхронизации генераторов трехфазного тока. Включение

генераторов производится в следующей последовательности (пред­положим, что генератор Г/ работает, Г2—подключается)

1. С помощью регулятора возбуждения РВ регулируют величи­ну постоянного тока возбуждения (пунктирной линией условно обозначена обмотка возбуждения) и по вольтметрам V уравнива­ют напряжения генераторов

  1. С помощью переключателя ПСД воздействуют на элекгро-серводвигатель СД, который механически связан с регулятором топливоподачи и изменяет подачу топлива (или пара) первичного двигателя ПД. Тем самым изменяют частоту вращения генератора, а значит, и ею электрическую частоту. Регулирование производят до тех пор, пока показания обоих частотомеров Иг не станут равными.

3.Выключателем В включают одну обмотку синхроноскопа на шины электростанции (на генератор ГУ), а другую переключате­лем П — на напряжение генератора Г2. Угол сдвига фаз.

1.разность напряжений генераторов — не более 10% ; 2.несовпадение по фазе — не более 8—12 эл. град., 3. расхождение частот — не бо­лее 1%.

Процесс включения генераторов способом точной синхрониза­ции в большинстве случаев автоматизирован, и тогда ошибки ис­ключаются

Схема грубой синхронизации генераторов представ­лена на рис. 104. Само название говорит о том, что данный способ не преследует обеспечения идеальных условий включения генера­торов на параллельную работу. Наоборот, в целях упрощения про­цесса включения генераторов преднамеренно идут на определенный бросок тока, величина которого ограничивается индуктивным со- противлением.

Следовательно, при грубой синхронизации, в отличие от точной, включение генераторов на параллельную работу обычно произво­дится при наличии угла сдвига фаз между напряжениями генера­торов.

Способ включения генераторов па параллельную работу грубой синхронизацией более прост, так как исключается процесс точной подгонки частоты вращения и выбора момента совпадения фаз на­пряжений генераторов На современных судах применяют оба спо­соба. В спокойной обстановке пользуются точной синхронизацией, так как она не вызывает бросков тока и механических деформации Автоматизируется обычно точная синхронизация, грубая— автома­тизируется реже

Схема самосинхронизации генераторов .

При этом провал напряжения практически до­стигает 30~-40% номинального, полное время восстановления на­пряжения равно нескольким секундам По этой причине способ са­мосинхронизации можно применять только на тех судах, где подоб­ные колебания напряжения в течение нескольких секунд не оказы­вают вредного воздействия на работу потребителей электроэнергии, установленных на судне. Весьма заманчиво то, что способ включе­ния генераторов на параллельную работу самосинхронизацией очень легко автоматизируется, но из-за возникновения больших уравнительных токов и колебаний напряжения его применяют редко.

После включения генераторов на параллельную работу одним из трех рассмотренных способов возникает необходимость равно­мерного распределения нагрузки между генераторами.

На ГРЩ, судовой электростанции среди прочих электроизмери­тельных приборов установлены амперметры и киловаттметры, по показаниям которых можно судить о величине нагрузки на данный генератор Однако качественно нагрузка генераторов переменного тока разделяется на активную и реактивную.

Активная нагрузка потребителями электроэнергии преобразу­ется в механическую, тепловую, световую.

, при перераспределении актив­ной нагрузки генераторов объектом регулирования является не сам генератор, а его приводной двигатель.

Амперметры генераторов показывают величину полного тока и дают представление об активной и реактивной нагрузках. Если по­казания ваттметров свидетельствуют о равномерном распределении активной нагрузки, а показания амперметров не одинаковы, зна­чит, не одинаково распределена реактивная нагрузка. В этом слу­чае достаточно соответствующим образом изменить э. д с ге­нераторов. Регулятором возбуждения можно, например, умень­шить ток возбуждения, а следовательно, и э. д. с генератора, что приведет к сбросу части реактивной нагрузки с него. Равномерное распределение реактивной нагрузки между параллельно работаю­щими генераторами обычно осуществляется автоматически, без участия обслуживающего персонала. При распределении реактив­ной нагрузки между генераторами объектом регулирования явля­ется сам генератор, регулируемой величиной его э. д. с

Отправить ответ

avatar
  Подписаться  
Уведомление о