Катализация это – ГЕТЕРОГЕННЫЙ КАТАЛИЗ — это… Что такое ГЕТЕРОГЕННЫЙ КАТАЛИЗ?

КАТАЛИЗ — это… Что такое КАТАЛИЗ?

(от греч. katalysis — разрушение), изменение скорости хим. р-ции при воздействии в-в ( катализаторов), к-рые участвуют в р-ции, но не входят в состав продуктов. Катализатор не находится в стехиометрич. отношениях с продуктами и регенерируется после каждого цикла превращ. реагентов в продукты. Различают положительный и отрицательный К., в зависимости от того, ускоряет катализатор р-цию или замедляет ее. Как правило, термин «К.» относят к ускорению р-ции; в-ва, замедляющие р-цию, наз. ингибиторами. Каталитич. действие на р-цию могут оказывать образующиеся в ходе р-ции промежут. в-ва или продукты (см. Автокатализ).Для К. характерно, что небольшие кол-ва катализатора ускоряют превращ. больших кол-в реагирующих в-в. Так, 1 мас. ч. Pt-катализатора вызывает превращ. 104 мас. ч. SO3 в SO2 или 106 мас. ч. NH3 в NO. Ускоряющее действие р-рителя на р-цию в р-рах обычно не относят к К. на том основании, что кол-во р-рителя, как правило, значительно превышает кол-во растворенных реагирующих в-в. Известны, однако, случаи ускорения р-ций в присут. очень малых добавок р-рителя, напр. воды. Неизменность хим. состава и структуры катализатора по окончании процесса вряд ли может служить обязательным признаком К. Известно, что хим. состав выгруженного из реактора катализатора существенно иной, чем у загруженного; на состав и структуру катализатора влияет состав реакц. смеси. Неизменность хим. состава и структуры катализатора имеет смысл рассматривать по отношению к той из элементарных стадий сложной каталитич. р-ции, в к-рой непосредственно участвует катализатор, однако для этого необходимо надежно установить механизм р-ции, что не всегда возможно. Термин «К.» введен И. Берцелиусом в 1835. При
гомогенном катализе
катализатор и реагирующие в-ва находятся в одной фазе в молекулярно-дисперсном состоянии. При гетерогенном катализе катализатор образует самостоят. фазу, отделенную границей раздела от фазы, в к-рой находятся реагирующие в-ва. Выделяют также гетерогенно-гомогенный К., при к-ром р-ция начинается на пов-сти твердого катализатора, а затем продолжается в объеме.
Межфазным катализом
принято называть К. на границе двух несмешивающихся жидкостей; при этом роль катализатора состоит в переносе реагентов между фазами. Промежут. положение между гомогенным и гетерогенным К. занимает микрогетерогенный К. коллоидными частицами в жидкой фазе. Ускорение р-ций в присут. мицелл ПАВ наз. мицеллярным катализом. Исключительную роль в процессах в живых организмах играет ферментативный катализ, обусловленный действием ферментов. Важным компонентом пром. катализаторов являются промоторы — в-ва, добавление к-рых к катализатору в малых кол-вах (проценты или доли процента) увеличивает его активность, селективность или устойчивость. Если промотор добавляется к катализатору в больших кол-вах или сам по себе каталитически активен, катализатор наз. смешанным. В-ва, воздействие к-рых на катализатор приводит к снижению его активности или полному прекращению каталитич. действия, наз.
ядами каталитическими.
Встречаются случаи, когда одна и та же добавка к катализатору при одних концентрациях и т-рах является промотором, при других — ядом. В гетерог. К. широко применяют носители — в-ва, сами по себе каталитически неактивные или малоактивные. Нанесение на них катализатора значительно повышает его активность, гл. обр. вследствие увеличения пов-сти катализатора или предохранения его частиц от спекания (см. Нанесенные катализаторы).
Общие закономерности катализа. Все каталитич. р-ции -самопроизвольные процессы, т. е. протекают в направлении убыли энергии Гиббса системы. Катализатор не смещает положения равновесия хим. р-ции, если не считать его влияния на коэф. активности реагирующих в-в в р-рах (или коэф. летучести, в случае р-ций в газовой фазе при высоких давлениях). Вблизи от равновесия один и тот же катализатор ускоряет прямую и обратную р-ции в равной степени, вдали от равновесия этого может и не быть. Из неск. возможных р-ций катализатор ускоряет не обязательно термодинамически наиб. выгодную, т. е. ту, для к-рой убыль энергии Гиббса максимальна. Напр., в присут. Bi
2
O3.MoO3 пропилен окисляется частично (до акролеина), в присут. Со 3 О 4 происходит полное окисление (до СО 2 и Н 2 О). Мерой селективности (избирательности действия) катализатора является отношение скорости i р-ции, ведущей к накоплению i-го продукта, к суммарной скорости превращ. исходных в-в во всех возможных р-циях, т. е. i/Si. Расчет скорости каталитич. р-ции возможен на основе ряда моделей и приближений относительно ее механизма и режима протекания; для простейших случаев гомогенного и гетерогенного К. подход к расчету скорости изложен в ст.
Каталитических реакций кинетика.
Энергия активации Екаталитич. р-ции значительно меньше, чем для той же р-ции в отсутствие катализатора. Напр., для некаталитич. разложения NH3 на N2 + Н 2 E ~ 320 кДж/моль, для того же разложения в присут. Pt Е ~ 150 кДж/моль. Благодаря снижению E обеспечивается ускорение каталитич. р-ций по сравнению с некаталитическими. Снижение E объясняется тем, что при К. р-ция протекает по новому механизму, складывающемуся из элементарных р-ций с меньшими энергиями активации, чем некаталитич. р-ция. При т. наз. стадийном механизме К. (кривая 1 на рис.) р-ция типа А : В (энергия активации E1) заменяется совокупностью стадий: 1) А + К : АК, 2) АК : В + К (энергии активации E2 и E3 соотв.), где К — катализатор, АК — устойчивое промежут. соед. реагента с катализатором. Для бимолекулярной р-ции А + В : С + D стадийный механизм может осуществляться по схеме: 1) А + К : АК, 2) АК + B : K + C + D. По такой схеме протекает, напр., окисление Н
2
на металлич. катализаторе М: 1) М + 1/2O2 : МО, 2) МО + Н 2 : М + Н 2 О. Одностадийные процессы К. (их наз. также ассоциативными или слитными) протекают по схеме: А + К : АК* : В + К. В этом случае (кривая 2 на рис.) катализатор не образует устойчивых промежут. соед. с реагентами, но входит в активир. комплекс АК*. Р-ция происходит с преодолением одного потенциального барьера, разделяющего начальное и конечное состояния системы, как и некаталитич. р-ция, но с пониженным значением энергии активации (E4 на рис.). Большая скорость каталитич. р-ции м. б. обусловлена не только снижением энергии активации вследствие протекания р-ции по новому механизму, но и осуществлением под действием катализатора цепного механизма р-ции. Напр., каталитич. действие паров воды на газофазное окисление СО объясняется образованием реакц. цепей с участием активных частиц Н и ОН. В гетерогенно-гомог. К. на пов-сти образуются активные частицы (напр., своб. радикалы НО
2
и RO2 при окислении углеводородов RH), к-рые затем вылетают в газовую фазу и продолжают там цепь.
322_339-44.jpg
Энергетическая диаграмма реакции типа А : В; а — без катализатора, б — с катализатором К; 1 — при сталийном механизме, 2 — при ассоциативном механизме катализа: E1, E2,E4, E4 потенциальные барьеры, разделяющие исходное и конечное состояния системы, Q — тепловой эффект р-ции.

Доказано образование цепей на пов-сти катализатора при полимеризации олефинов и синтезе углеводородов из СО и Н

2. Для мн. других гетерогенно-каталитич. р-ций обнаружены особенности, характерные для цепных р-ций: генерирование активных центров (чередование заполнения мест на пов-сти и их освобождение), образование активных промежут. частиц в сверхравновесных концентрациях (что способствует преодолению барьера энергетически невыгодных стадий), достижение макс. скорости р-ции спустя нек-рое время после ее начала. Каталитич. и цепные р-ции сближает также явление кинетич. сопряжения. Если превращ. катализатора при взаимод. с реагентами сопряжены с самой каталитич. р-цией (т. е. имеют общее промежут. в-во или активир. комплекс), становится возможным образование сверхравновесных концентраций активных центров на пов-сти катализатора и др. эффекты, типичные для цепных процессов.
Основные механизмы катализа.
Каталитич. процессы, обусловленные переносом электрона (окисление, восстановление, гидрирование, дегидрирование, разложение нестойких кислородсодержащих соединений), относят к окислительно-восстановительному катализу. Типичными катализаторами для них являются переходные металлы и их соед.: простые оксиды (V2O5, MnO2, МоО 3, Сr2 О 3), шпинели (Fe3O4, CuCr2O4), сульфиды (MoS2, WS2) и др.; для р-ций в р-рах — соли и комплексные соед. переходных металлов. Высокая каталитич. активность этих в-в объясняется тем, что атомы переходных металлов могут существовать в разл. степенях окисления, изменение к-рых не требует больших энергетич. затрат. В результате перенос электрона от реагента к катализатору осуществляется легче, чем в отсутствие катализатора от восстановителя к окислителю. При одноэлектронном переходе образуются своб. радикалы, далее участвующие в р-ции. Напр., при переходе одного электрона от активного центра молибденового катализатора к кислороду образуется ион-радикал О
2
, участвующий далее в каталитич. окислении (Мо 5+ + О 2 : Мо 6+ + О 2; О 2n Н m : продукт). Существует окислит.-восстановит. К. с многоэлектронным механизмом, при к-ром не образуются своб. радикалы в качестве промежут. частиц. Многоэлектронные переходы между катализатором и реагирующими молекулами возможны, если в активный центр катализатора входят неск. атомов переходного металла. Напр., в разложении Н 2 О 2 активны комплексные соед., содержащие 2 иона Fe3+; в восстановлении мол. азота до N2H4 — комплексные соед., содержащие 2 или более ионов V
2+
. К процессам кислотно-основного катализа относятся каталитич. крекинг, гидратация, дегидратация, мн. р-ции изомеризации, конденсации орг. в-в. Типичные катализаторы для этого класса процессов — в-ва, способные передавать или принимать протон от реагентов или же способные к гетеролитич. взаимод. с реагентами (без разделения пары электронов). Среди этих в-в — протонные (H2SO4, CH3COOH, HF) и апротонные (BF3, AlCl3) к-ты, аморфные и кристаллич. алюмосиликаты, Аl2 О 3, фосфаты, сульфаты. Активными центрами в них является протонный центр Н + (центр Брёнстеда) или акцептор электронной пары, напр., атом Аl (центр Льюиса). Реже применяются катализаторы основного характера (растворенные основания, твердые CaO, MgO и др.). В случае т. наз. полифункциональных катализаторов отдельные этапы сложных каталитич. процессов окислит.-восстановительные и кислотно-основные — протекают на разных составных частях многокомпонентной многофазной системы. Напр., при неполном окислении непредельных альдегидов в непредельные к-ты в присут. оксидов Мо и V в элементарном акте происходят окислит.-восстановит. превращения катализатора:

V2O5 + СН 2=СНСНО : СН 2=СНСООН +V2O4;

2МоО 3 + СН 2=СНСНО : СН 2=СНСООН + Мо 2 О 5;

V2O4 + 1/2 О 2 : V2O5, Mo2O5 + V2 O2 : 2МоО 3

Конечная стадия р-ций — десорбция к-ты — происходит на пов-стях V2O5 и МоО 3, обладающих слабокислотными св-вами. В водных р-рах каталитич. активность солей или комплексных соед. переходных металлов проявляется в определенном интервале рН. Это объясняется не только устойчивостью комплексных соед. при определенном рН, но и участием ионов Н

+ и ОН в элементарных стадиях К.
Катализ в промышленности. Несмотря на появление новых способов активации молекул (плазмохимия, радиац. химия, лазерная химия и др.), К. остается основой хим. произ-в. Относит. доля каталитич. процессов составляет 80-90% и продолжает возрастать; в общем объеме мирового пром. произ-ва каталитич. процессы дают ок. 18% стоимости всей продукции. В неорганическом синтезе важнейшими каталитич. процессами являются произ-во H2SO4, синтез NH3 из N2 и Н 2, произ-во HNO3. В старейшем газофазном (нитрозном) способе произ-ва H2SO4 окисление SO2 в SO3 осуществлялось в присут. оксидов азота. В кон. 19 в. возник контактный процесс, при к-ром окисление SO2 в SO3 протекало в присут. Pt, нанесенной на разл. носители. Впоследствии Pt была заменена V2O5 с добавкой К 2 О и др. оксидов. Контактным способом получают десятки млн. т H2SO4 ежегодно. Пром. синтез NH3 из N2 и Н 2 был осуществлен в результате работ Ф. Габера и К. Боша в нач. 20 в. на железных катализаторах при давлениях ок. 300 атм и т-ре 450-500 °С. В настоящее время используют более активные Fe-катализаторы, промотированные V2O5, CaO, Аl2 О 3 и др. оксидами, что позволяет вести процесс при более низких давлениях и т-рах. Водород для синтеза NH3 получают путем двух последоват. каталитич. процессов: конверсии СН 4 или др. углеводородов (СН 4 + Н 2 О : СО + 3Н 2) на Ni-катализаторах и конверсии образующегося оксида углерода (СО + Н 2 О : СО 2 + Н 2). Для достижения высоких степеней превращения последнюю р-цию осуществляют в две стадии: высокотемпературной (315-480°С) — на Fe-Cr-оксидных катализаторах и низкотемпературной (200-350°С) — на Cu-Zn-оксидных катализаторах. Hаиб. крупный потребитель NH3 — произ-во HNO3 окислением NH3 до NO на Pt и Pt-Rh сетках при 900-950 °С. В органическом синтезе широкое применение К. началось в 1-й трети 20 в. благодаря работам П. Сабатье, В. Н. Ипатьева, Н. Д. Зелинского и др. Многочисл. р-ции гидрирования С=С, 322_339-45.jpg , С=О, NO2 -групп протекают на Ni-катализаторах, в числе к-рых Ni на носителях (кизельзуре, Аl2 О 3) и скелетный Ni — высокопористый катализатор, получаемый выщелачиванием Ni-Al сплавов. Реже применяют Сu, Со, Pt, Pd. К крупным пром. процессам относится гидрогенизация жиров, превращ. бензола в циклогексан, нитробензола в анилин. В результате работ С. В. Лебедева и его учеников было создано произ-во синтетич. каучука. В его основе лежало получение мономера — бутадиена из этилового спирта по р-ции 2С 2 Н 5 ОН : С 4 Н б + 2Н 2 О + Н 2 на смешанном оксидном катализаторе, сочетающем дегидратирующую, дегидрирующую и конденсирующую ф-ции, необходимые для всех стадий р-ции. Впоследствии мономеры в произ-ве синтетич. каучука — бутадиен, изопрен, стирол -стали получать каталитич. дегидрированием соответствующих парафинов и олефинов на Al-Cr-оксидных катализаторах. Началось пром. применение экономически еще более выгодного процесса получения мономеров окислит. дегидрированием на разл. оксидах переходных металлов (RCH2CH3 + 1/2O2 : RCH=CH2 + Н 2 О). Широкое развитие в сер. 20 в. получили процессы каталитич. нефтепереработки; среди них — крекинг углеводородов нефти, для к-рого вначале основными катализаторами были аморфные алюмосиликаты, впоследствии цеолиты, отличающиеся более высокой активностью и большей селективностью по выходу парафиновых и ароматич. углеводородов. Для получения высококачеств. бензинов, дизельных и реактивных топлив применяют каталитич. риформинг, алкилирование, гидрокрекинг и гидроочистку. Катализаторы риформинга — Аl2 О 3, биметаллич. системы (Pt-Re на Аl2 О 3), реже оксиды Мо или Сr на Аl2 О 3; алкилирования — Н 24, HF, AlCl3, BF3; гидрокрекинга (переработки высококипящих фракций нефти под давлением Н 2 в низкокипящие) — Аl-Со-Мо- и Al-Ni-W-системы. Близкие по составу катализаторы применяют в процессах гидроочистки, в к-рых под давлением Н 2 тяжелые фракции нефти подвергаются обессериванию с выделением H2S; удаляются также азот- и кислородсодержащие соед. в результате гидрогенолиза соответствующих хим. связей. В условиях гидроочистки металлич. Ni-, Со-, Мо-, W-катализаторы превращаются в сульфиды (подробнее см. в статьях Каталитический крекинг, Каталитический риформинг). Каталитич. переработка угля в моторное топливо началась в 20-30-х гг. 20 в. в двух вариантах: прямая гидрогенизация угольной пасты и синтез углеводородов по Фишеру-Тропшу на Со- и Fe-содержащих катализаторах. После 2-й мировой войны в связи с быстрым развитием нефтепереработки эти процессы утратили свое значение, однако затем интерес к каталитич. переработке угля возобновился в связи с начавшимся истощением запасов нефти. Появились новые катализаторы, были созданы опытно-пром. и отдельные пром. установки. наиб. перспективен т. наз. Мобил-процесс, включающий газификацию угля, синтез метанола и послед. превращ. его в смесь углеводородов с большим выходом ароматич. углеводородов С 812 на высококремнистых цеолитах с сечением пор, приближающимся к поперечному размеру соответствующих ароматич. молекул. К наиб. крупнотоннажным процессам каталитич. окисления относятся: окисление этилена в этиленоксид на серебряных катализаторах, окисление метанола в формальдегид на серебре или молибдате Fe, окисление пропилена в акролеин и окислит. аммонолиз пропилена с получением акрилонитрила на молибдате Bi. Высокая селективность последних двух процессов достигается за счет введения в катализатор оксидных добавок; применяют шести- и даже восьмикомпонентные оксидные катализаторы. Из гомог. жидкофазных процессов в пром-сти применяют окисление этилена в ацеталъдегид в водном р-ре, содержащем соли Сu и Pd, получение винилацетата окислением смеси С 2 Н 4 и СН 3 СООН в присут. аналогичного катализатора и др. Каталитич. полимеризация получила развитие после открытия в 50-х гг. 20 в. К. Циглером и Дж. Наттой стереоспецифич. полимеризации олефинов на галогенидах, оксидах и др. соед. металлов IV-VIII групп (Ti, Zr, V, Сr, Мо и др.) с сокатализаторами — металлоорг. соед. Аl и нек-рых др. металлов I-III групп. В этих процессах получают кристаллич. полиолефины с регулярной структурой — полиэтилен, полипропилен, полибутадиен и др. (подробнее см. в статьях Катализаторы окисления, Катализаторы полимеризации, Катализаторы процессов нефтепереработки). Каталитич. синтезы на основе СО быстро развиваются в связи с возрастающим значением ненефтяного сырья. Разработан пром. процесс получения уксусной к-ты карбонилированием метанола в присут. очень малых кол-в солей Rh. Быстро возрастает применение К. для очистки отходящих пром. газов доокислением вредных орг. примесей в СО 2 на катализаторах глубокого окисления: металлах, простых оксидах (MnO2, Fe2O3), шпинелях (СuСr2 О 4, СоСr2 О 4) и др. Перспективна также разработка катализаторов, селективно удаляющих вредные серосодержащие примеси (H2S, SO2) из отходящих пром. газов и прир. газа. В 70-х гг. 20 в. возникло новое направление каталитич. очистки — удаление примесей из выхлопных газов автомобилей. Катализатор в дожигателях выхлопных газов должен доокислять примеси углеводородов и СО до СО 2, а также восстанавливать оксиды азота до N2. Используют в дожигателях Pt, Pd, Rh, нанесенные на носители. Лит.: Проблемы кинетики и катализа, т. 1-19, Л.-М., 1935-85; Боресков Г. К., Катализ, ч. 1-2, Новосиб., 1971; Томас Ч., Промышленные каталитические процессы и эффективные катализаторы, пер. с англ., М.. 1973; Гейтс Б., Кетцир Дж., Шуйт Г., Химия каталитических процессов, пер. с англ., М., 1981; Крылов О. В., «Кинетика и катализ», 1985, т. 26, № 2, с. 263-74; Advances in catalysis, v. 1-35, N.Y.-L, 1948-87. О. В. Крылов.

Химическая энциклопедия. — М.: Советская энциклопедия. Под ред. И. Л. Кнунянца. 1988.

КАТАЛИЗ — это… Что такое КАТАЛИЗ?

  • КАТАЛИЗ — КАТАЛИЗ, катализаторы. Катал и з ат о р название, введенное в науку Бер целиусом (Berzelius; 1835) для обозначения веществ, к рые вызывают или ускоряют хим. процессы, не принимая в них видимого участия.Позднее Оствальд(СЫ а1с1)и его школа… …   Большая медицинская энциклопедия

  • КАТАЛИЗ — (от греч. katalysis разрушение) ускорение химической реакции в присутствии веществ катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав продуктов. При гомогенном катализе исходные реагенты и… …   Большой Энциклопедический словарь

  • КАТАЛИЗ — КАТАЛИЗ, изменение скорости протекания химической реакции посредством добавки вещества КАТАЛИЗАТОРА, которое не участвует в реакции. Каталитическое воздействие позволяет прояснить механизм реакции; во многих промышленных процессах используют… …   Научно-технический энциклопедический словарь

  • КАТАЛИЗ — КАТАЛИЗ, катализа, муж. (от греч. katalysis роспуск) (хим.). Ускорение или замедление химической реакции под влиянием катализаторов. Толковый словарь Ушакова. Д.Н. Ушаков. 1935 1940 …   Толковый словарь Ушакова

  • катализ — сущ., кол во синонимов: 4 • автокатализ (2) • биокатализ (1) • фотокатализ (1) …   Словарь синонимов

  • КАТАЛИЗ — ускорение или замедление хим. реакции с помощью некоторых специфически действующих веществ (катализаторов), способных многократно вступать в кратковременное взаимодействие с реагирующими соединениями, облегчая течение реакции. Сущность действия… …   Геологическая энциклопедия

  • катализ — а, м. catalyse f. <гр. katalysis прекращение. Изменение скорости химической реакции под влиянием некоторых веществ (катализаторов). БАС 1. Заимствовано из фр. яз. в 1837 г. Впервые фиксируется в Горном журнале 1837 г. (2 5 380) в переведенной… …   Исторический словарь галлицизмов русского языка

  • катализ — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN catalysis …   Справочник технического переводчика

  • катализ — – изменение скорости или возбуждение химической реакции веществами катализаторами. Общая химия : учебник / А. В. Жолнин [1] …   Химические термины

  • Катализ — [гр. katalysis разрушение] явление увеличения скорости химических реакций в присутствии вещества, которое не претерпевает изменений в ходе реакции. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Катализаторы — это… Что такое Катализаторы?

    Катализа́тор — вещество, ускоряющее реакцию, но не входящее в состав продуктов реакции (Химическая энциклопедия). Количество катализатора, в отличие от других реагентов, при реакции не изменяется. Обеспечивая более быстрый путь для реакции, катализатор реагирует с исходным веществом, получившееся промежуточное соединение подвергается превращениям и в конце расщепляется на продукт и катализатор. Затем катализатор снова реагирует с исходным веществом, и этот каталитический цикл многократно (сотни, миллионы раз) повторяется.

    Катализаторы в химии

    Катализаторы подразделяются на гомогенные и гетерогенные. Гомогенный катализатор находится в одной фазе с реагирующими веществами, гетерогенный – образует самостоятельную фазу, отделённую границей раздела от фазы, в которой находятся реагирующие вещества (Химическая энциклопедия). Типичными гомогенными катализаторами являются кислоты и основания. В качестве гетерогенных катализаторов применяются металлы, их оксиды и сульфиды.

    Реакции одного и того же типа могут протекать как с гомогенными, так и с гетерогенными катализаторами. Так, наряду с растворами кислот применяются имеющие кислотные свойства твёрдые Al2O3, TiO2, ThO2, алюмосиликаты, цеолиты. Гетерогенные катализаторы с основными свойствами: CaO, BaO, MgO (Химическая энциклопедия).

    Гетерогенные катализаторы имеют, как правило, сильно развитую поверхность, для чего их распределяют на инертном носителе (силикагель, оксид алюминия, активированный уголь и др.).

    Для каждого типа реакций эффективны только определённые катализаторы. Кроме уже упомянутых кислотно-основных, существуют катализаторы окисления-востановления; для них характерно присутствие переходного металла или его соединения (Со+3, V2O5+MoO3). В этом случае катализ осуществляется путём изменения степени окисления переходного металла.

    Много реакций осуществлено при помощи катализаторов, которые действуют через координацию реагентов у атома или иона переходного металла (Ti, Rh, Ni). Такой катализ называется координационным.

    Если катализатор обладает хиральными свойствами, то из оптически неактивного субстрата получается оптически активный продукт.

    В современной науке и технике часто применяют системы из нескольких катализаторов, каждый из которых ускоряет разные стадии реакции (Имянитов, Temkin). Катализатор также может увеличивать скорость одной из стадий каталитического цикла, осуществляемого другим катализатором. Здесь имеет место «катализ катализа», или катализ второго уровня (Имянитов).

    В биохимических реакциях роль катализаторов играют ферменты.

    Катализаторы следует отличать от инициаторов. Например, перекиси распадаются на свободные радикалы, которые могут инициировать радикальные цепные реакции. Инициаторы расходуются в процессе реакции, поэтому их нельзя считать катализаторами.

    Ингибиторы иногда ошибочно считают отрицательными катализаторами. Но ингибиторы, например, цепных радикальных реакций, реагируют со свободными радикалами и, в отличие от катализаторов, не сохраняются. Другие ингибиторы (каталитические яды) связываются с катализатором и его дезактивируют, здесь имеет место подавление катализа, а не отрицательный катализ. Отрицательный катализ в принципе невозможен: он обеспечивал бы для реакции более медленный путь, но реакция, естественно, пойдёт по более быстрому, в данном случае, не катализированному, пути.

    Катализаторы в автомобилях

    На дороги ежедневно выезжают миллионы автомобилей, и каждый из них — источник загрязнения воздуха. Особенно это чувствуется в крупных городах, где выхлопные газы автомобилей могут создавать большие проблемы.

    В современных автомашинах присутствует каталитический преобразователь или автомобильный катализатор. Задачей автомобильного катализатора является снижение количества вредных веществ в выхлопных газах. Среди них:

    • окись углерода (СО) — ядовитый газ без цвета и запаха
    • углеводороды, также известные как летучие органические соединения — один из главных компонентов смога, образуется за счет неполного сгорания топлива
    • оксиды азота (NO и NO2, которые часто объединяют под обозначением NOx) — также являются компонентом смога, а также кислотных дождей, оказывают влияние на слизистую человека.[1]

    Источники

    1. Автомобильный катализатор и его роль в выхлопной системе. AutoRelease.ru.

    Литература

    1. Химическая энциклопедия. — М.: Советская энциклопедия, 1990. — Т. 2. — С. 335, 337. — ISBN 5-85270-035-5.
    2. Имянитов Н. С. Системы из нескольких катализаторов в металлокомплексном катализе. // Координационная химия. 1984. — Т. 10. — № 11 — С. 1443 — 1454. — 0132-344X.
    3. Temkin O.N., Braylovskiy S. M. / The mechanism of catalysis in homogeneous polyfunctional catalytic systems. // Fundamental Research in Homogeneous Catalysis. — Ed. by A.E. Shilov. — New York etc: Gordon and Breach Science Publishers, 1986. — Vol. Two. — P.621- 633.

    Ссылки

    См. также

    Wikimedia Foundation. 2010.

    КАТАЛИЗ — это… Что такое КАТАЛИЗ?

  • КАТАЛИЗ — КАТАЛИЗ, катализаторы. Катал и з ат о р название, введенное в науку Бер целиусом (Berzelius; 1835) для обозначения веществ, к рые вызывают или ускоряют хим. процессы, не принимая в них видимого участия.Позднее Оствальд(СЫ а1с1)и его школа… …   Большая медицинская энциклопедия

  • КАТАЛИЗ — (от греч. katalysis разрушение) ускорение химической реакции в присутствии веществ катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав продуктов. При гомогенном катализе исходные реагенты и… …   Большой Энциклопедический словарь

  • КАТАЛИЗ — КАТАЛИЗ, изменение скорости протекания химической реакции посредством добавки вещества КАТАЛИЗАТОРА, которое не участвует в реакции. Каталитическое воздействие позволяет прояснить механизм реакции; во многих промышленных процессах используют… …   Научно-технический энциклопедический словарь

  • КАТАЛИЗ — (от греческого katalysis разрушение), ускорение химической реакции в присутствии вещества катализатора, который взаимодействует с реагентами, но в реакции не расходуется и не входит в состав конечных продуктов. Использование катализаторов… …   Современная энциклопедия

  • катализ — сущ., кол во синонимов: 4 • автокатализ (2) • биокатализ (1) • фотокатализ (1) …   Словарь синонимов

  • КАТАЛИЗ — ускорение или замедление хим. реакции с помощью некоторых специфически действующих веществ (катализаторов), способных многократно вступать в кратковременное взаимодействие с реагирующими соединениями, облегчая течение реакции. Сущность действия… …   Геологическая энциклопедия

  • катализ — а, м. catalyse f. <гр. katalysis прекращение. Изменение скорости химической реакции под влиянием некоторых веществ (катализаторов). БАС 1. Заимствовано из фр. яз. в 1837 г. Впервые фиксируется в Горном журнале 1837 г. (2 5 380) в переведенной… …   Исторический словарь галлицизмов русского языка

  • катализ — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN catalysis …   Справочник технического переводчика

  • катализ — – изменение скорости или возбуждение химической реакции веществами катализаторами. Общая химия : учебник / А. В. Жолнин [1] …   Химические термины

  • Катализ — [гр. katalysis разрушение] явление увеличения скорости химических реакций в присутствии вещества, которое не претерпевает изменений в ходе реакции. [Ушеров Маршак А. В. Бетоноведение: лексикон. М.: РИФ Стройматериалы. 2009. – 112 с.]… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Фотокатализ — Википедия

    Материал из Википедии — свободной энциклопедии

    Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 апреля 2014; проверки требуют 26 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 апреля 2014; проверки требуют 26 правок.

    Фотокатализ — ускорение химической реакции, обусловленное совместным действием катализатора и облучения светом. При фотогенерируемом катализе фотокаталитическая активность зависит от способности катализатора создавать пары электрон-дырка, которые генерируют свободные радикалы, способные вступать во вторичные реакции.

    Термин Фотокатализ образован из двух греческих слов — «катализ» (разрушение) и «фотос» (свет). Использование катализа людьми известно с древних времен, например, для изготовления вина и уксуса. Процесс фотокатализа представляет собой ускорение химических реакций под действием света в присутствии (обычно — на поверхности) фотокатализаторов — веществ, поглощающих кванты света и многократно вступая с участниками химической реакции в промежуточные взаимодействия, восстанавливая cвой химический состав после каждого цикла таких взаимодействий[1].

    • Процесс природного фотосинтеза h3O+CO2+hν=(Ch3O)+O2{\displaystyle H_{2}O+CO_{2}+h\nu =(CH_{2}O)+O_{2}}. Хлорофилл выступает в роли фотокатализатора[1].
    • Российская технология применения фотокатализа — очистка и обеззараживание воздуха, впервые была применена по заказу Министерства обороны для обезвреживания воздуха камер, в которых деактивируются боевые отравляющие вещества.[2]
    • Очистка и обеззараживание воздуха методом фотокатализа[3]. Фотокатализатор из диоксида титана нанесен на поверхность воздухопропускающего носителя катализатора посредством нанонапыления (обычно используется химическое волокно), либо термической обработки, ставшей доступной при использовании в качестве носителя катализатора пористое стекло. Под действием фотокатализа органические соединения, летучие химические вещества, запахи, вирусы и бактерии, формальдегид, ацетальдегид и другие могут разлагаться до безопасных молекул воды (H2O) и углекислого газа (CO2)[4].
    • Исследования воздействия фотокатализа на организм человека. Решение проблем традиционных бактерицидных «кварцевых» ламп путем замены на необслуживаемые фотокаталитические. Ртутные ультрафиолетовые облучатели могут использоваться только при условии отсутствия людей в помещениях — жесткое УФ-излучение (диапазонов B и C, губительных для бактерий) является опасным для организма человека, кроме того при работе таких ламп происходит неконтролируемое выделение озона, а сам фотокатализ при таком диапазоне ультрафиолета может вызывать появление генотоксических хинонов при разложении бисфенола А, в больших количествах содержащегося в пластиковой посуде. Кроме того, в помещении при работе УФ-B и УФ-C не могут находиться люди. Однако, при изменении диапазона излучения на УФ-А, данное вещество (бюсфенол А) не изменяет своей физической структуры, оставаясь твердым телом.[5] Промышленное производство приборов очистки воздуха для безопасной эксплуатации в присутствии людей с использованием безопасного УФ-диапазона А в России началось в 2000 году.
    • Фотокаталитическое преобразование солнечной энергии. Гетерогенные, гомогенные и молекулярные структурно-организованные системы : сборник научных трудов [6][7].
    • Расщепление воды на кислород и водород. Интерес к дешевым способам получения свободного водорода растет с ростом экономики и заботой об экологии — новые экологически-чистые виды транспорта в числе прочих, имеют и водородный двигатель.[8]. Эффективный фотокатализатор в ультрафиолетовом диапазоне на основе оксида тантала — NaTaO3 с сокатализатором из оксида никеля. Поверхность кристаллов оксида тантала покрыта бороздами с шагом 3—15 нм методами нанотехнологии. Частицы NiO, на которых выделяется газообразный водород, размещены на краях борозд, газообразный кислород выделяется из борозд.[9]
    • Японская технология применения фотокатализа — самоочищающиеся стены, крыши, зеркала[10].
    • Titanium dioxide photocatalisys. Akira Fujishima, Tata N. Rao, Donald Tryk. Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. Accepted 10 March 2000. // Journal of Photochemistry and Photobiology C: Photochemistry Reviews 1 (2000) 1–21.
    • Окисление органических загрязнителей с использованием магнитных частиц, покрытых наночастицами диоксида титана и активированных магнитным полем под воздействием ультрафиолета[11].
    • Использование оксида тантала в самоочищающихся покрытиях. Свободные радикалы[12],генерируемые на Ta5Oх окисляют органические соединения.[13]
    1. ↑ Балашев К.П. Фотокаталитическое преобразование солнечной энергии, Соросовский образовательный журнал, 1998, №8
    2. ↑ О применимости фотокатализа для разрушения боевых отравляющих веществ (неопр.).
    3. ↑ Фотокаталитическая очистка воздуха. Евгений Николаевич Савинов, доктор химических наук, профессор кафедры физической химии Новосибирского государственного университета, зав. группой фотокатализа на полупроводниках. Институт катализа СО РАН, 1997.
    4. ↑ Carp, O.; Huisman, C.L.; Reller, A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry 2004, 32(2004), 33-177.
    5. ↑ Образование генотоксических хинонов при облучении бисфенола-А УФ-излучением диапазона «С» 254нм. (неопр.).
    6. ↑ Акад. наук СССР, Сиб. отд-ние, Ин-т катализа ; отв. ред. К. И. Замараев, В. Н. Пармон
    7. ↑ Детали экземпляра | Электронный каталог
    8. ↑ Стратегия развития фотокатализаторов в диапазоне видимого света для разложения воды — Akihiko Kudo, Hideki Kato1 and Issei Tsuji Chemistry Letters Vol. 33 (2004) , No. 12 p.1534
    9. ↑ Расщепление воды методом фотокатализа. Получение свободного водорода (неопр.).
    10. ↑ Photocatalysis Applications of Titanium Dioxide Ti02 — TitaniumArt.com
    11. ↑ Kostedt, W. L., IV.; Drwiega, J; Mazyck, D. W.; Lee, S.-W.; Sigmund, W.; Wu, C.-Y.; Chadik, P. Магнитно-активированный фотокаталитический реактор для фотокаталитического окисления водных фаз органических загрязнителей. Environmental Science & Technology 2005, 39(20), 8052-8056.
    12. ↑ Snapcat фотокаталитическое окисление с диоксидом титана (2005) (неопр.). CaluTech UV Air. Дата обращения 5 декабря 2006. Архивировано 21 февраля 2012 года.
    13. ↑ Исследования по очистке поверхностей с помощью фотокатализа (неопр.).
    • Артемьев Ю.М., Рябчук В.К. Введение в гетерогенный фотокатализ. – 1999., СПб.:Изд. С.-Петерб. ун-та. – 304 с.

    КАТАЛИТИЧЕСКИЙ — это… Что такое КАТАЛИТИЧЕСКИЙ?

    
    КАТАЛИТИЧЕСКИЙ
    КАТАЛИТИЧЕСКИЙ
    КАТАЛИТИ́ЧЕСКИЙ, каталитическая, каталитическое (хим.). прил., по знач. связанное с катализом. Каталитическое удобрение. Каталитическое явление.

    Толковый словарь Ушакова. Д.Н. Ушаков. 1935-1940.

    .

    Синонимы:
    • КАТАЛИЗАТОР
    • КАТАЛОГ

    Смотреть что такое «КАТАЛИТИЧЕСКИЙ» в других словарях:

    • каталитический — ая, ое. catalytique adj. Связанный с катализом, относящийся к действию катализа. БАС 1. Заимствовано в 1837 г.ЭС. Увеличить выход нефтепродуктов из нефти путем сокращения потерь и широгого внедрения каталитических процессов и других новейших… …   Исторический словарь галлицизмов русского языка

    • каталитический — относящийся к катализу, каталитические реакции – химические процессы, происходящие при участии катализаторов Большой словарь иностранных слов. Издательство «ИДДК», 2007 …   Словарь иностранных слов русского языка

    • каталитический — прил., кол во синонимов: 2 • автокаталитический (1) • бедственный (21) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

    • каталитический — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN catalyticcat …   Справочник технического переводчика

    • каталитический яд — контактный яд — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы контактный яд EN catalyst poisoncontact poison …   Справочник технического переводчика

    • Каталитический — прил. 1. соотн. с сущ. катализ, связанный с ним 2. Свойственный катализу, характерный для него. Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 …   Современный толковый словарь русского языка Ефремовой

    • каталитический — каталитический, каталитическая, каталитическое, каталитические, каталитического, каталитической, каталитического, каталитических, каталитическому, каталитической, каталитическому, каталитическим, каталитический, каталитическую, каталитическое,… …   Формы слов

    • каталитический — каталит ический …   Русский орфографический словарь

    • каталитический — …   Орфографический словарь русского языка

    • каталитический — см. Катализ …   Энциклопедический словарь


    Каталитические яды — Википедия

    Материал из Википедии — свободной энциклопедии

    Каталитические яды, или контактные яды — вещества, вызывающие «отравление» катализатора, то есть снижающие его каталитическую активность или полностью прекращающие каталитическое действие.

    Причина отравления заключается в адсорбции каталитического яда на поверхности катализатора. Различают следующие виды каталитического отравления:

    — Каталитический яд может адсорбироваться на активном центре катализатора, препятствуя взаимодействию реагентов с этим активным центром. В данном случае наблюдается линейная зависимость снижения каталитической активности от количества введенного в систему яда.

    Пример: действие хинолина на алюмосиликатные катализаторы при крекинге.

    — Экранирование — яд может сильно отравить поверхность катализатора, что приведет к резкому снижению каталитической активности. В этом случае введение дополнительных доз яда будет снижать активность медленно.

    Пример: разложение пероксида водорода на платиновом катализаторе при адсорбции яда — дихлорида ртути.

    Случается, что в микродозах некоторый каталитический яд может служить и промотором, когда в больших количествах начинает действовать как яд. Данный вид действия принято называть модифицированием катализатора. В случае сложных каталитических реакций каталитические яды могут действовать избирательно — подавлять каталитическую активность в одних катализаторах и не влиять на другие. В некоторых случаях одни и те же вещества могут быть каталитическими ядами по отношению к одним реакциям и не влиять на другие.

    К числу наиболее распространенных каталитических ядов принадлежат Н2О, СО, СО2, H2S, N, P, As, Sb и др.

    Каталитические яды // Краткая химическая энциклопедия / Кнунянц И. Л.(гл. редактор) — М: Советская Энциклопедия, 1961—1967 гг. Т.2, С.488

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о