Крутящий момент механика – крутящий момент. объясните плиз простым русским языком, что такое крутящий момент в авто?

Содержание

Момент силы — Википедия

Момент силы, приложенный к гаечному ключу. Направлен от зрителя

Моме́нт си́лы (синонимы: кру́тящий момент, враща́тельный момент, вертя́щий момент, враща́ющий момент) — векторная физическая величина, равная векторному произведению радиус-вектора, проведённого от оси вращения к точке приложения силы и вектора этой силы. Характеризует вращательное действие силы на твёрдое тело.

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» — внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

В физике момент силы можно понимать как «вращающая сила». В Международной системе единиц (СИ) единицей измерения момента силы является ньютон-метр (Н·м). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. В простейшем случае, если сила приложена к рычагу перпендикулярно ему, момент силы определяется как произведение величины этой силы на расстояние до оси вращения рычага. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метра от его оси вращения, создаёт такой же момент, что и сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров от оси вращения. Более точно момент силы частицы определяется как векторное произведение:

M→=[r→×F→],{\displaystyle {\vec {M}}=\left[{\vec {r}}\times {\vec {F}}\right],}

где F→{\displaystyle {\vec {F}}} — сила, действующая на частицу, а r→{\displaystyle {\vec {r}}} — радиус-вектор частицы (в предположении, что ось вращения проходит через начало координат).

Для того чтобы понять, откуда появилось обозначение момента сил и как к нему пришли, стоит рассмотреть действие силы на рычаг, поворачивающийся относительно неподвижной оси. Работа, совершаемая при действии силы F→{\displaystyle {\vec {F}}} на рычаг r→{\displaystyle {\vec {r}}}, совершающий вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок dl{\displaystyle dl}, которому соответствует бесконечно малый угол dφ{\displaystyle d\varphi }. Обозначим через d→l{\displaystyle {\vec {d}}l} вектор, который направлен вдоль бесконечно малого отрезка dl{\displaystyle dl} и равен ему по модулю. Угол между вектором силы F→{\displaystyle {\vec {F}}} и вектором d→l{\displaystyle {\vec {d}}l} равен β{\displaystyle \beta }, а угол между векторами r→{\displaystyle {\vec {r}}} и F→{\displaystyle {\vec {F}}} — α{\displaystyle \alpha }.

Следовательно, бесконечно малая работа dA{\displaystyle dA}, совершаемая силой F→{\displaystyle {\vec {F}}} на бесконечно малом участке dl{\displaystyle dl}, равна скалярному произведению вектора d→l{\displaystyle {\vec {d}}l} и вектора силы, то есть dA=F→⋅d→l{\displaystyle dA={\vec {F}}\cdot {\vec {d}}l}.

Теперь попытаемся выразить модуль вектора d→l{\displaystyle {\vec {d}}l} через радиус-вектор r→{\displaystyle {\vec {r}}}, а проекцию вектора силы F→{\displaystyle {\vec {F}}} на вектор d→l{\displaystyle {\vec {d}}l} — через угол α{\displaystyle \alpha }.

Так как для бесконечно малого перемещения рычага dl{\displaystyle dl} можно считать, что траектория перемещения перпендикулярна рычагу r→{\displaystyle {\vec {r}}}, используя соотношения для прямоугольного треугольника, можно записать следующее равенство: dl=rtgdφ{\displaystyle dl=r\mathrm {tg} \,d\varphi }, где в случае малого угла справедливо tgdφ=dφ{\displaystyle \mathrm {tg} \,d\varphi =d\varphi } и, следовательно, |dl→|=|r→|dφ{\displaystyle \left|{\vec {dl}}\right|=\left|{\vec {r}}\right|d\varphi }.

Для проекции вектора силы F→{\displaystyle {\vec {F}}} на вектор d→l{\displaystyle {\vec {d}}l} видно, что угол β=π2−α{\displaystyle \beta ={\frac {\pi }{2}}-\alpha }, а так как cos⁡(π2−α)=sin⁡α{\displaystyle \cos {\left({\frac {\pi }{2}}-\alpha \right)}=\sin \alpha }, получаем, что |F→|cos⁡β=|F→|sin⁡α{\displaystyle \left|{\vec {F}}\right|\cos \beta =\left|{\vec {F}}\right|\sin \alpha }.

Теперь запишем бесконечно малую работу через новые равенства: dA=|r→|dφ|F→|sin⁡α{\displaystyle dA=\left|{\vec {r}}\right|d\varphi \left|{\vec {F}}\right|\sin \alpha }, или dA=|r→||F→|sin⁡(α)dφ{\displaystyle dA=\left|{\vec {r}}\right|\left|{\vec {F}}\right|\sin(\alpha )d\varphi }.

Теперь видно, что произведение |r→||F→|sin⁡α{\displaystyle \left|{\vec {r}}\right|\left|{\vec {F}}\right|\sin \alpha } есть не что иное, как модуль векторного произведения векторов r→{\displaystyle {\vec {r}}} и F→{\displaystyle {\vec {F}}}, то есть |r→×F→|{\displaystyle \left|{\vec {r}}\times {\vec {F}}\right|}, которое и было принято обозначить за момент силы M{\displaystyle M}, или модуль вектора момента силы |M→|{\displaystyle \left|{\vec {M}}\right|}.

Теперь полная работа записывается просто: A=∫0φ|r→×F→|dφ{\displaystyle A=\int \limits _{0}^{\varphi }\left|{\vec {r}}\times {\vec {F}}\right|d\varphi }, или A=∫0φ|M→|dφ{\displaystyle A=\int \limits _{0}^{\varphi }\left|{\vec {M}}\right|d\varphi }.

Момент силы имеет размерность «сила, умноженная на расстояние» и единицу измерения ньютон-метр в системе СИ. 1 Н·м — это момент, который производит сила 1 Н на рычаг длиной 1 м, приложенная к концу рычага и направленная перпендикулярно ему.

Энергия и механическая работа также имеют размерность «сила, умноженная на расстояние» и измеряются в системе СИ в джоулях. Следует заметить, что энергия — это скалярная величина, тогда как момент силы — величина псевдовекторная. Совпадение размерностей этих величин не случайность: момент силы 1 Н·м, при повороте рычага или вала на 1 радиан совершает работу в 1 Дж, а при повороте на один оборот совершает механическую работу и сообщает энергию 2π{\displaystyle 2\pi } джоуля. Математически:

E=Mθ,{\displaystyle E=M\theta ,}

где E{\displaystyle E} — энергия, M{\displaystyle M} — вращающий момент, θ{\displaystyle \theta } — угол в радианах.

Формула момента рычага[править | править код]

\theta Момент, действующий на рычаг

Очень интересен особый случай, представляемый как определение момента силы в поле:

|M→|=|M→1||F→|,{\displaystyle \left|{\vec {M}}\right|=\left|{\vec {M}}_{1}\right|\left|{\vec {F}}\right|,}

где: |M→1|{\displaystyle \left|{\vec {M}}_{1}\right|} — момент рычага, |F→|{\displaystyle \left|{\vec {F}}\right|} — величина действующей силы.

Недостаток такого представления в том, что оно не дает направления момента силы, а только его величину. Если сила перпендикулярна вектору r→{\displaystyle {\vec {r}}}, момент рычага будет равен расстоянию от центра до точки приложения силы и момент силы будет максимален:

|T→|=|r→||F→|.{\displaystyle \left|{\vec {T}}\right|=\left|{\vec {r}}\right|\left|{\vec {F}}\right|.}

Сила под углом[править | править код]

Если сила F→{\displaystyle {\vec {F}}} направлена под углом θ{\displaystyle \theta } к рычагу r, то M=rFsin⁡θ{\displaystyle M=rF\sin \theta }.

Статическое равновесие[править | править код]

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для двумерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0,ΣV=0{\displaystyle \Sigma H=0,\,\Sigma V=0} и момент силы в третьем измерении ΣM=0{\displaystyle \Sigma M=0}.

Момент силы как функция от времени[править | править код]

Момент силы — производная по времени от момента импульса,

Видеоурок: вращающий момент
M→=dL→dt,{\displaystyle {\vec {M}}={\frac {d{\vec {L}}}{dt}},}

где L→{\displaystyle {\vec {L}}} — момент импульса.

Возьмём твердое тело. Движение твёрдого тела можно представить как движение конкретной точки и вращения вокруг неё.

Момент импульса относительно точки O твёрдого тела может быть описан через произведение момента инерции и угловой скорости относительно центра масс и линейного движения центра масс.

Lo→=Icω→+[M(ro→−rc→),vc→].{\displaystyle {\vec {L_{o}}}=I_{c}\,{\vec {\omega }}+[M({\vec {r_{o}}}-{\vec {r_{c}}}),{\vec {v_{c}}}].}

Будем рассматривать вращающиеся движения в системе координат Кёнига, так как описывать движение твёрдого тела в мировой системе координат гораздо сложнее.

Продифференцируем это выражение по времени. И если I{\displaystyle I} — постоянная величина во времени, то

M→=Idω→dt=Iα→,{\displaystyle {\vec {M}}=I{\frac {d{\vec {\omega }}}{dt}}=I{\vec {\alpha }},}

где α→{\displaystyle {\vec {\alpha }}} — угловое ускорение, измеряемое в радианах в секунду за секунду (рад/с2). Пример: вращается однородный диск.

Если тензор инерции меняется со временем, то движение относительно центра масс описывается с помощью динамического уравнения Эйлера:

Mc→=Icdω→dt+[w→,Icw→].{\displaystyle {\vec {M_{c}}}=I_{c}{\frac {d{\vec {\omega }}}{dt}}+[{\vec {w}},I_{c}{\vec {w}}].}

Отношение между моментом силы и мощностью[править | править код]

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Так же и момент силы, если совершает действие через угловое расстояние, он совершает работу.

P=M→⋅ω→.{\displaystyle P={\vec {M}}\cdot {\vec {\omega }}.}

В системе СИ мощность P{\displaystyle P} измеряется в ваттах, момент силы — в ньютоно-метрах, а угловая скорость — в радианах в секунду.

Отношение между моментом силы и работой[править | править код]

A=∫θ1θ2|M→|dθ.{\displaystyle A=\int _{\theta _{1}}^{\theta _{2}}\left|{\vec {M}}\right|\mathrm {d} \theta .}

В случае постоянного момента получаем:

A=|M→|θ.{\displaystyle A=\left|{\vec {M}}\right|\theta .}

В системе СИ работа A{\displaystyle A} измеряется в джоулях, момент силы — в ньютоно-метрах, а угол — в радианах.

Обычно известна угловая скорость ω{\displaystyle \omega } в радианах в секунду и время действия момента t{\displaystyle t}.

Тогда совершённая моментом силы работа рассчитывается как:

A=|M→|ωt.{\displaystyle A=\left|{\vec {M}}\right|\omega t.}

Если имеется материальная точка OF{\displaystyle O_{F}}, к которой приложена сила F→{\displaystyle {\vec {F}}}, то момент силы относительно точки O{\displaystyle O} равен векторному произведению радиус-вектора r→{\displaystyle {\vec {r}}}, соединяющего точки O{\displaystyle O} и OF{\displaystyle O_{F}}, на вектор силы F→{\displaystyle {\vec {F}}}:

MO→=[r→×F→].{\displaystyle {\vec {M_{O}}}=\left[{\vec {r}}\times {\vec {F}}\right].}

Момент силы относительно оси равен алгебраическому значению проекции момента этой силы на плоскость, перпендикулярную этой оси относительно точки пересечения оси с плоскостью, то есть

Mz(F)=Mo(F′)=F′h′.{\displaystyle M_{z}(F)=M_{o}(F’)=F’h’.}

Измерение момента силы осуществляется с помощью специальных приборов — торсиометров. Принцип их действия обычно основан на измерении угла закручивания упругого вала, передающего крутящий момент, либо на измерении деформации некоторого упругого рычага. Измерения деформации и угла закручивания производится различными датчиками деформации — тензометрическими, магнитоупругими, а также измерителями малых перемещений — оптическими, ёмкостными,

7.2: Классическая механика

Область классической механики включает изучение тел в движении, особенно физические законы, касающиеся тел, находящихся под воздействием сил. Большинство механических аспектов проектирования роботов тесно связано с концепциями из этой области. В данном блоке описываются несколько ключевых применяемых концепций классической механики.

СКОРОСТЬ — это мера того, насколько быстро перемещается объект. Обозначает изменение положения во времени (проще говоря, какое расстояние способен преодолеть объект за заданный период времени). Данная мера представлена в единицах расстояния, взятых в единицу времени, например, в количестве миль в час или футов в секунду.

ЧАСТОТА ВРАЩЕНИЯ – Скорость может также выражаться во вращении, то есть насколько быстро объект движется по кругу. Измеряется в единицах углового перемещения во времени (то есть в градусах в секунду), или в циклах вращения в единицу времени (например, в оборотах в минуту). Когда измерения представлены в оборотах в минуту (RPM), речь идет о частоте вращения. Есть речь идет об об/мин автомобильного двигателя, это означает, что измеряется скорость вращения двигателя.

УСКОРЕНИЕ – Изменение скорости во времени представляет собой ускорение. Чем больше ускорение, тем быстрее изменяется скорость. Если автомобиль развивает скорость от 0 до 60 миль в час за две секунды, в этом случае ускорение больше, чем когда он развивает скорость от 0 до 40 миль в час за тот же период времени. Ускорение — это мера изменения скорости. Отсутствие изменения означает отсутствие ускорения. Если объект движется с постоянной скоростью — ускорение отсутствует.

СИЛА — Ускорение является следствием воздействия сил, которые провоцируют изменение в движении, направлении или форме. Если вы нажимаете на объект, это означает, что вы прикладываете к нему силу. Робот ускоряется под воздействием силы, которую его колеса прикладывают к полу. Сила измеряется в фунтах или ньютонах.

Например, масса объекта воздействует на объект как сила вследствие гравитации (ускорение объекта в направлении центра Земли).

КРУТЯЩИЙ МОМЕНТ – Сила, направленная по кругу (вращение объекта), называется крутящим моментом. Крутящий момент — это вращающая сила. Если к объекту приложен крутящий момент, на границе первого возникает линейная сила. В примере с колесом, катящемся по земле, крутящий момент, приложенный к оси колеса, создает линейную силу на границе покрышки в точке ее контакта с поверхностью земли. Так и определяется крутящий момент — как линейная сила на границе круга. Крутящий момент определяется величиной силы, умноженной на расстояние от центра вращения (Сила х Расстояние = Крутящий момент). Крутящий момент измеряется в единицах силы, умноженной на расстояние, например, фунто-дюймах или ньютон-метрах.

В примере с колесом, катящемся по земле, если известен крутящий момент, приложенный к оси с закрепленным на ней колесом, мы можем рассчитать количество силы, прикладываемой колесом к поверхности. В этом случае, радиус колеса является расстоянием силы от центра вращения.

Сила = Крутящий момент/Радиус колеса

В примере с рукой робота, удерживающей объект, мы можем рассчитать крутящий момент, требуемый для поднятия объекта. Если объект обладает массой, равной 1 ньютону, а рука имеет длину 0,25 метра (объект располагается на расстоянии 0,25 метра от центра вращения), тогда

Крутящий момент = Сила х Расстояние = 1 ньютон х 0,25 метра = 0,25 ньютон-метров.

Это означает, что для удержания объекта в неподвижном положении, необходимо применить крутящий момент, равный 0,25 ньютон-метров. Чтобы переместить объект вверх, роботу необходимо приложить к нему крутящий момент, значение которого будет превышать 0,25 ньютон-метров, так как необходимо преодолеть силу гравитации. Чем больше крутящий момент робота, тем больше силы он прикладывает к объекту, тем больше ускорение объекта, и тем быстрее рука поднимет объект.

Пример 7.2

Пример 7.3

Для данных примеров, мы можем рассчитать крутящий момент, необходимый для подъем этих объектов.

Пример 7.2 — Крутящий момент = Сила х Расстояние = 1 ньютон х 0,125 метра = 0,125 ньютон-метров.

Для данного примера, длина рука равна половине длины руки из Примера 1, поэтому значение требуемого крутящего момента также в два раза меньше. Значение длины руки пропорционально значению требуемого крутящего момента. При равных исходных характеристиках объекта, чем короче рука, тем меньший крутящий момент необходим для подъема.

Пример 7.3 — Крутящий момент = Сила * Расстояние = 1 ньютон х 0,5 метра = 0,5 ньютон-метров.

Для данного примера, длина рука равна удвоенной длине руки из Примера 1, поэтому значение требуемого крутящего момента также в два раза больше.

Еще одна точка зрения относительно ограниченного крутящего момента в соединении руки робота заключается в следующем: более короткая рука сможет поднять объект большей массы, чем более длинная рука; однако, для первой доступная высота подъема объекта будет меньше, чем для второй.

Пример 7.4

Пример 7.5

Эти примеры иллюстрируют руку робота, поднимающую объекты разной массы. Какова взаимосвязь с требуемым количеством крутящего момента?

Пример 4 — Крутящий момент = Сила х Расстояние = ½ ньютона х 0,25 метра = 0,125 ньютон-метров.

Пример 5 — Крутящий момент = Сила х Расстояние = 2 ньютона х 0,25 метра = 0,5 ньютон-метров.

Эти примеры иллюстрируют уменьшение значения требуемого крутящего момента по мере снижения массы объекта. Масса пропорциональна крутящему моменту, необходимому для ее подъема. Чем тяжелее объект, тем больше крутящий момент, требуемый для его подъема.

Проектировщики роботов должны обратить внимание на ключевые взаимосвязи между значениями крутящего момента, длины руки и массы объекта.

РАБОТА – Мера силы, приложенной на расстоянии, называется работой. Например, для удерживания объекта необходимо 10 фунтов силы. Далее, чтобы поднять этот объект на высоту 10 дюймов, требуется определенное количество работы. Количество работы, требуемое для подъема объекта на высоту 20 дюймов, удваивается. Работа также понимается как изменение энергии.

МОЩНОСТЬ — Большинство людей полагает, что мощность является термином из области электрики, но мощность также относится и к механике.

Мощность — это количество работы в единицу времени. Насколько быстро кто-то может выполнить работу?

В робототехнике принято понимать мощность как ограничение, так как соревновательные робототехнические системы имеют ограничения в части выходной мощности. Если роботу требуется поднять массу в 2 ньютона (прилагая 2 ньютона силы), скорость подъема будет ограничиваться количеством выходной мощности робота. Если робот способен произвести достаточное количество мощности, он сможет быстро поднять объект. Если он способен произвести лишь малое количество энергии, подъем объекта будет производиться медленно (либо не будет производиться вообще!).

Мощность определяется как Сила, умноженная на Скорость (насколько быстро выполняется толчок при постоянной скорости), и обычно выражается в Ваттах.

Мощность [Ватты] = Сила [Ньютоны] х Скорость [Метры в секунду]

1 Ватт = 1 (Ньютон х Метр) / Секунда

Как это применяется в соревновательной робототехнике? К проектам роботов применяются определенные ограничения. Проектировщики соревновательных роботов, использующие систему проектирования VEX Robotics Design, также должны учитывать физические ограничения, связанные с применением электромоторов. Электромотор обладает ограниченной мощностью, поэтому он может производить только определенное количество работы с заданной скоростью.

Примечание: все перспективные концепции имеют базовое описание. Более глубоко обсуждать эти физические свойства учащиеся будут в процессе обучения в ВУЗах, если выберут область STEM в качестве направления обучения.

 

определения, единица измерения, примеры, относительно оси и точки

В статье мы расскажем про момент силы относительно точки и оси, определения, рисунки и графики, какая единица измерения момента силы, работа и сила во вращательном движении, а также примеры и задачи.

Момент силы представляет собой вектор физической величины, равный произведению векторов плеча силы (радиус-вектор частицы) и силы, действующей на точку. Силовой рычаг представляет собой вектор, соединяющий точку, через которую проходит ось вращения твердого тела с точкой, к которой приложена сила.

где: r — плечо силы, F — сила приложенная на тело. 

Направление вектора силы момента всегда перпендикулярно плоскости, определяемой векторами r и F.

Главный момент — любая система сил на плоскости относительно принятого полюса называется алгебраическим моментом момента всех сил этой системы относительно этого полюса.

Во вращательных движениях важны не только сами физические величины, но и то, как они расположены относительно оси вращения, то есть их моменты. Мы уже знаем, что во вращательном движении важна не только масса, но и момент инерции. В случае силы, ее эффективность для запуска ускорения определяется способом приложения этой силы к оси вращения.

график момента силы на окружности

Взаимосвязь между силой и способом ее применения описывает МОМЕНТ СИЛЫ. Момент силы — это векторное произведение силового плеча R на вектор силы F:

Рисунок Уравнения Момента силы
Практическое использования момента силы на примере

Как в каждом векторном произведении, так и здесь

Практическое использования момента силы на примереПрактическое использования момента силы на примереПрактическое использования момента силы на примере

Следовательно, сила не будет влиять на вращение, когда угол между векторами силы F и рычагом R равен 0o или 180o. Каков эффект применения момента силы 

М?

Мы используем второй Закон движения Ньютона и связь между канатом и угловой скоростью v = Rω в скалярной форме, действительны, когда векторы R и ω перпендикулярны друг другу

Практическое использования момента силы на примере

Умножив обе части уравнения на R, получим

Практическое использования момента силы на примере

Поскольку mR 2 = I, мы заключаем, что

Практическое использования момента силы на примере

Вышеуказанная зависимость справедлива и для случая материального тела. Обратите внимание, что в то время как внешняя сила дает линейное ускорение 

a, момент внешней силы дает угловое ускорение ε.

Уравнение момента силы с вращательным движением

Единица измерения момента силы

Основной мерой измерения момента силы в системной координате СИ является: [M]=Н•м

В СГС: [M]=дин•см

Работа и сила во вращательном движении

Работа в линейном движении определяется общим выражением,

Уравнение момента силы с вращательным движением

но во вращательном движении,

Уравнение момента силы с вращательным движением

а следовательно

Уравнение момента силы с вращательным движением

Исходя из свойств смешанного произведения трех векторов, можно записать

Уравнение момента силы с вращательным движением

Поэтому мы получили выражение для работы во вращательном движении:

Уравнение момента силы с вращательным движением

Мощность во вращательном движении:

Уравнение мощности во вращательном движении

Момент силы пример и решение задач относительно точки

Найдите момент силы, действующей на тело в ситуациях, показанных на рисунках ниже. Предположим, что r = 1m и F = 2N.

Момент силы пример и решение задач относительно точки

а) поскольку угол между векторами r и F равен 90°, то sin(a)=1: 

M = r • F = 1м • 2N = 2Н • м 

б) потому что угол между векторами r и F равен 0°, поэтому sin(a)=0: 

M = 0 
да направленная сила не может дать точке вращательное движение

c)    поскольку угол между векторами r и F равен 30°, то sin(a)=0.5: 

M = 0,5 r • F = 1Н • м. 

Таким образом, направленная сила вызовет вращение тела, однако ее эффект будет меньше, чем в случае a).

Момент силы относительно оси

Предположим, что данные являются точкой O (полюс) и мощность P. В точке O мы принимаем начало прямоугольной системы координат. Момент силы Р по отношению к полюсным O представляет собой вектор М из (Р), (рисунок ниже).

Момент силы Р по отношению к полюсным O

Любая точка A на линии P имеет координаты (xo , yo , zo ). 
Вектор силы P имеет координаты Px , Py, PzКомбинируя точку A (xo, yo, zo ) с началом системы, мы получаем вектор p. Координаты вектора силы P относительно полюса O обозначены символами Mx, My, Mz. Эти координаты могут быть вычислены как минимумы данного определителя, где ( i, j, k) — единичные векторы на осях координат (варианты): i, j, k

Момент силы Р по отношению к полюсным O

После решения определителя координаты момента будут равны:

Момент силы Р по отношению к полюсным O

Координаты вектора моментов Mo (P) называются моментами силы относительно соответствующей оси. Например, момент силы P относительно оси Oz окружает шаблон:

Mz = Pyxo — Pxyo


Этот паттерн интерпретируется геометрически так, как показано на рисунке ниже. 

график Координаты вектора моментов геометрически

На основании этой интерпретации момент силы относительно оси Oz можно определить, как момент проекции силы P на перпендикуляр оси Oz относительно точки проникновения этой плоскости осью. Проекция силы P на перпендикуляр оси обозначена Pxy, а точка проникновения плоскости Oxy — осью   символом O.
Из приведенного выше определения момента силы относительно оси следует, что момент силы относительно оси равен нулю, когда сила и ось равны, в одной плоскости (когда сила параллельна оси или когда сила пересекает ось). 
Используя формулы на Mx, My, Mz, мы можем рассчитать значение момента силы P относительно точки O и определить углы, содержащиеся между вектором M и осями системы:

график Координаты вектора моментов геометрически

Если сила лежит в плоскости Oxy, то zo = 0 и Pz = 0 (см. Рисунок ниже).

график Координаты вектора моментов геометрически

Момент силы P по отношению к точке (полюсу) O составляет: 
Mx = 0, 
My = 0, 
Mo (P) = Mz = Pyxo — Pxyo.

график момент силы P по отношению к точке (полюсу) O

Метка крутящего момента: 
плюс (+) — вращение силы вокруг оси O по часовой стрелке, 
минус (-) — вращение силы вокруг оси O против часовой стрелки.

Момент силы. Формула, определение и примеры расчета

Моментом силы называют вращательное усилие создаваемое вектором силы относительно другого объекта (оси, точки).

Размерность — [Н∙м] (Ньютон на метр) либо кратные значения [кН∙м]

Аналогом момента силы является момент пары сил.

Обязательным условием возникновения момента является то, что точка, относительно которой создается момент не должна лежать на линии действия силы.

Определение

Момент определяется как произведение силы F на плечо h:

M(F)=F∙h

Плечо силы h, определяется как кратчайшее расстояние от точки до линии действия силы.

Наш короткий видеоурок про момент силы с примерами:
Момент силы (видео)

Например, сила величиной 7 кН приложенная на расстоянии 35см от рассматриваемой точки дает момент M=7×0,35=2,45 кНм.

Пример момента силы

Наиболее наглядным примером момента силы может служить поворачивание гайки гаечным ключом.

Гайки заворачиваются вращением, для этого к ним прикладывается момент, но сам момент возникает при воздействии нашей силы на гаечный ключ.

Вы конечно интуитивно понимаете — для того чтобы посильнее закрутить гайку надо взяться за ключ как можно дальше от нее.

В этом случае, прикладывая ту же силу, мы получаем большую величину момента за счет увеличения её плеча (h3>h2).

Плечом при этом служит расстояние от центра гайки до точки приложения силы.

Плечо момента силы

Рассмотрим порядок определения плеча h момента:

Пусть заданы точка A и некоторая произвольная сила F, линия действия которой не проходит через эту точку. Требуется определить момент силы.

Покажем линию действия силы F (штриховая линия)

Проведем из точки A перпендикуляр h к линии действия силы

Длина отрезка h есть плечо момента силы F относительно точки A.

Момент принимается положительным, если его вращение происходит против хода часовой стрелки (как на рисунке).

Так принято для того, чтобы совпадали знаки момента и создаваемого им углового перемещения.

Примеры расчета момента силы

Сила расположена перпендикулярно оси стержня

Расстояние между точками A и B — 3 метра.

Момент силы относительно точки A:

МA=F×AB=F×3м

Сила расположена под углом к оси стержня

Момент силы относительно точки B:

MB=F×cos300×AB=F×cos300×3м

Известно расстояние от точки до линии действия силы

Момент силы относительно точки B:

MB=F×3м


См. также:

15.Вращательное движение. Момент силы и момент импульса.

Враща́тельное движе́ние — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна.

Кинетические характеристики:

Вращение твердого тела, как целого характеризуется углом , измеряющегося в угловых градусах или радианах, угловой скоростью (измеряется в рад/с)и угловым ускорением(единица измерения — рад/с²).

При равномерном вращении (T оборотов в секунду):

Частота вращения — число оборотов тела в единицу времени.-

,

Период вращения — время одного полного оборота. Период вращения T и его частота связаны соотношением .

Линейная скорость точки, находящейся на расстоянии R от оси вращения

Угловая скорость вращения тела

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы — по определению), на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Момент силы измеряется в ньютон-метрах. 1 Н·м — момент силы, который производит сила 1 Н на рычаг длиной 1 м. Сила приложена к концу рычага и направлена перпендикулярно ему.

Моме́нт и́мпульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. Момент импульса замкнутой системы сохраняется

Зако́н сохране́ния моме́нта и́мпульса (закон сохранения углового момента) — один из фундаментальных законов сохранения. Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел и остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

16.Уравнение динамики вращательного движения. Момент инерции.

Основное уравнение динамики вращательного движения материальной точки — угловое ускорение точки при ее вращении вокруг неподвижной оси пропорционально вращающему моменту и обратно пропорционально моменту инерции.

М = E*J или E = M/J

Сравнивая полученное выражение со вторым законом Ньютона с поступательным законом, видим, что момент инерции J является мерой инертности тела во вращательном движении. Как и масса величина аддитивная.

Момент инерции — скалярная (в общем случае — тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения СИ: кг·м².Обозначение: I или J.

Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.

Свойства момента инерции:

1.Момент инерции системы равен сумме момента инерции её частей.

2.Момент инерции тела является величиной, иманентно присущей этому телу.

Момент инерции твердого тела — это велина, характеризующая распределение массы в теле и являющаяся мерой инертности тела при вращательном движении.

Формула момента инерции:

Теорема Штейнера:

Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R — расстояние между осями.

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

Центральный момент инерции (или момент инерции относительно точки O) — это величина

.

Крутящий момент — это… Что такое Крутящий момент?

Момент силы (синонимы: крутящий момент; вращательный момент; вращающий момент) — физическая величина, характеризующая вращательное действие силы на твёрдое тело.

Момент силы приложенный к гаечному ключу

Отношение между векторами силы, момента силы и импульса во вращающейся системе

Момент силы

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, хотя сантиньютон-метр (cN•m), футо-фунт (ft•lbf), дюйм-фунт (lbf•in) и дюйм-унция (ozf•in) также часто используются для выражения момента силы. Символ момента силы τ (тау). Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Вращающиеся аналоги силы, массы и ускорения есть момент силы, момент инерции и угловое ускорение соответственно. Сила, приложенная к рычагу, умноженная на расстояние до оси рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу, расстояние до оси которого 2 метра, это то же самое, что 1 ньютон, приложенный к рычагу, расстояние до оси которого 6 метров. Более точно, момент силы частицы определяется как векторное произведение:

\boldsymbol{\tau} = \mathbf{r} \times \mathbf{F},

где  \mathbf{F}  — сила, действующая на частицу, а  ~\mathbf{r}  — радиус-вектор частицы!

Предыстория

Строго говоря, вектор, обозначающий момент сил, введен искуственно, так как является удобным при вычислении работы по криволинейному участку относительно неподвижной оси и удобен при вычислении общего момента сил всей системы, так как может суммироваться. Для того, чтобы понять откуда появилось обозначение момента сил и как до него додумались, стоит рассмотреть действие силы на рычаг, относительно неподвижной оси.

Работа, совершаемая при действии силы \vec F на рычаг \vec r, совершающего вращательное движение вокруг неподвижной оси, может быть рассчитана исходя из следующих соображений.

Пусть под действием этой силы конец рычага смещается на бесконечно малый отрезок ~dl, которому соответствует бесконечно малый угол d\varphi. Обозначим через \vec dl вектор, который направлен вдоль бесконечно малого отрезка ~dl и равен ему по модулю. Угол между вектором силы \vec F и вектором \vec dl равен ~\beta , а угол ~\alpha\vec r и вектором силы \vec F.

Следовательно, бесконечно малая работа ~dA, совершаемая силой \vec F на бесконечно малом участке ~dl равна скалярному произведению вектора \vec dl и вектора силы, то есть  dA = \vec F \cdot \vec dl .

Теперь попытаемся выразить модуль вектора \vec dl через радиус вектор \vec r, а проекцию вектора силы \vec F на вектор \vec dl, через угол ~\alpha .

В первом случае, используя теорему Пифагора, можно записать следующее равенство  \sin \frac {d\varphi}{2} = \frac {~dl}{2}, где в случае малого угла справедливо   \frac {d\varphi}{2} = \frac {~dl}{2} и следовательно \left


Для проекции вектора силы \vec F на вектор \vec dl, видно, что угол  \beta = \frac{\pi}{2} - \alpha, так как для бесконечно малого перемещения рычага ~dl, можно считать, что траектория перемещения перпендикулярна рычагу \vec r, а так как  \cos{\left(\frac{\pi}{2} - \alpha \right )} = \sin{\alpha}, получаем, что  \left.

Теперь запишем бесконечно малую работу через новые равенства dA=\left или dA=\left.

Теперь видно, что произведение \left есть ни что иное как модуль векторного произведения векторов \vec F и \vec r, то есть  \left, которое и было принято обозначить за момент силы ~M или модуля вектора момента силы  \left.

И теперь полная работа записывается очень просто A = \int\limits_ 0^ \varphi \left или A = \int\limits_ 0^ \varphi\left.

Единицы

Момент силы имеет размерность сила на расстояние, и в системе СИ единицей момента силы является «ньютон-метр». Джоуль, единица СИ для энергии и работы, тоже определяется как 1Н*м, но эта единица не используется для момента силы. Когда энергия представляется как результат «сила на расстояние», энергия скалярная, тогда как момент силы — это «сила, векторно умноженная на расстояние» и таким образом она (псевдо) векторная величина. Конечно, совпадение размерности этих величин не простое совпадение; момент силы 1Н*м, приложенный через целый оборот, требует энергии как раз 2*π джоулей. Математически

E= \tau \theta\ ,

где Е — энергия, τ — вращающий момент, θ — угол в радианах.

Специальные случаи

Формула момента рычага

E= \tau \theta\

Момент рычага

Очень интересен особый случай, представляемый как определение момента силы в поле:

τ = МОМЕНТ РЫЧАГА * СИЛУ

Проблема такого представления в том, что оно не дает направления момента силы, а только его величину, поэтому трудно рассматривать в.м. в 3-хмерном случае. Если сила перпендикулярна вектору r, момент рычага будет равен расстоянию до центра и момент силы будет максимален

\boldsymbol{T} = РАССТОЯНИЕ ДО ЦЕНТРА * СИЛУ

Сила под углом

Если сила F направлена под углом θ к рычагу r, то τ = r*F*sinθ, где θ это угол между рычагом и приложенной силой

Статическое равновесие

Для того чтобы объект находился в равновесии, должна равняться нулю не только сумма всех сил, но и сумма всех моментов силы вокруг любой точки. Для 2-хмерного случая с горизонтальными и вертикальными силами: сумма сил в двух измерениях ΣH=0, ΣV=0 и момент силы в третьем измерении Στ=0.

Момент силы как функция от времени

Момент силы — производная по времени от момент импульса,

\boldsymbol{\tau} ={d\mathbf{L} \over dt} \,\! ,

где L — момент импульса. Момент импульса твердого тела может быть описан через произведение момента инерции и угловой скорости.

\mathbf{L}=I\,\boldsymbol{\omega} \,\! ,

То есть если I постоянная, то

\boldsymbol{\tau}=I{d\boldsymbol{\omega} \over dt}=I\boldsymbol{\alpha} \,\! ,

где α — угловое ускорение, измеряемое в радианах в секунду за секунду.

Отношение между моментом силы и мощностью

Если сила совершает действие на каком-либо расстоянии, то она совершает механическую работу. Также если момент силы совершает действие через угловое расстояние, он совершает работу.

\boldsymbol{P} = МОМЕНТ СИЛЫ * УГЛОВАЯ СКОРОСТЬ

В системе СИ мощность \boldsymbol{P} измеряется в Ваттах, момент силы в ньютон-метрах, а УГЛОВАЯ СКОРОСТЬ в радианах в секунду.

Отношение между моментом силы и работой

\boldsymbol{E} = МОМЕНТ СИЛЫ * УГОЛ

В системе СИ работа \boldsymbol{E} измеряется в Джоулях, момент силы в Ньютон * метр, а УГОЛ в в радианах.

Обычно известна угловая скорость \boldsymbol{w} в радианах в секунду и время действия МОМЕНТА \boldsymbol{t}.

Тогда совершенная МОМЕНТОМ силы РАБОТА рассчитывается как:

\boldsymbol{E} = МОМЕНТ СИЛЫ * \boldsymbol{w} * \boldsymbol{t}

Момент силы относительно точки

Если имеется материальная точка  O_F\,\! , к которой приложена сила \vec F , то момент силы относительно точки  O\,\! равен векторному произведению радиус-вектора \vec r, соединяющий точки O и OF, на вектор силы \vec F:

\vec M_O = \left[ \vec r \times \vec F \right].

Момент силы относительно оси

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси относительно точки пересечения оси с этой плоскостью.

Единицы измерения

Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.

Измерение момента

На сегодняшний день измерение момента силы осуществляется с помощью тензометрических, оптических и индуктивных датчиков нагрузки. В России при решении задач измерения момента в основном используется оборудование зарубежных производителей (HBM (Германия), Kyowa (Япония), Dacell (Корея) и ряда других).

См. также

Wikimedia Foundation. 2010.

Мощность и крутящий момент — что это?

RedBull Мощность и крутящий момент — что это? Автор:
14 апреля 2015 14:15

Как один и тот же двигатель может иметь разную отдачу? Чем отличается мощность от крутящего момента? Об этом — очередной ликбез.

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА?

ЧТО ТАКОЕ ЛОШАДИНАЯ СИЛА? — У тебя сколько сил? — такой вопрос слышал любой, кто хоть немного касался мира автомобилей. Никому даже пояснять не надо, какие силы на самом деле имеются в виду — лошадиные. Именно в них мы привыкли оценивать мощность мотора, одну из важнейших потребительских характеристик машины. Мощность и крутящий момент — что это? Уже и гужевого транспорта практически не осталось даже в деревнях, а эта единица измерения живёт и здравствует больше ста лет. А ведь лошадиная сила — величина, по сути, нелегальная. Она не входит в международную систему единиц (полагаю, многие со школы помнят, что называется она СИ) и потому не имеет официального статуса. Более того, Международная организация законодательной метрологии требует как можно скорее изъять лошадиную силу из обращения, а директива ЕС 80/181/EEC от 1 января 2010 прямо обязует автопроизводителей использовать традиционные «л.с.» только как вспомогательную величину для обозначения мощности.
Но не зря считается, что привычка — вторая натура. Ведь говорим же мы в обиходе «ксерокс» вместо копир и обзываем клейкую ленту «скотчем». Вот и непризнанные «л.с.» сейчас используют не только обыватели, но и едва ли не все автомобильные компании. Какое им дело до рекомендательных директив? Раз покупателю удобнее — пусть так и будет. Да что там производители — даже государство на поводу идёт. Если кто забыл, в России транспортный налог и тариф ОСАГО именно от лошадиных сил высчитываются, как и стоимость эвакуации неправильно припаркованного транспорта в Москве. Лошадиная сила родилась в эпоху промышленной революции, когда потребовалось оценить, насколько эффективно механизмы заменяют животную тягу. По наследству от стационарных двигателей эта условная единица измерения мощности со временем перешла и на автомобили
Мощность и крутящий момент — что это? И никто бы к этому не придирался, если не одно весомое «но». Задуманная, чтобы упростить нам жизнь, лошадиная сила на самом деле вносит путаницу. Ведь появилась она в эпоху промышленной революции как совершенно условная величина, которая не то что к автомобильному мотору, даже к лошади имеет достаточно опосредованное отношение. Смысл этой единицы в следующем — 1 л.с. достаточно, чтобы поднять груз массой 75 кг на высоту 1 метр за 1 секунду. Фактически, это сильно усреднённый показатель производительности одной кобылы. И не более того.
Иными словами, новая единица измерения очень пригодилась промышленникам, добывавшим, к примеру, уголь из шахт, и производителям соответствующего оборудования. С её помощью было проще оценить преимущество механизмов над животной силой. А поскольку приводились станки уже паровыми, а позднее и керосиновыми двигателями, то «л.с.» перешли по наследству и к самобеглым экипажам. Джеймс Уатт — шотландский инженер, изобретатель, учёный, живший в XVIII — начале XIX века. Именно он ввёл в обращение как «нелегальную» сейчас лошадиную силу, так и официальную единицу измерения мощности, которую назвали его именем
Мощность и крутящий момент — что это? По иронии судьбы изобрёл лошадиную силу человек, именем которого названа официальная единица измерения мощности — Джеймс Уатт. А поскольку ватт (а точнее, применительно к могучим машинам, киловатт — кВт) к началу XIX века тоже активно входил в оборот, пришлось две величины как-то приводить друг к другу. Вот здесь-то и возникли ключевые разногласия. Например, в России и большинстве других европейских стран приняли так называемую метрическую лошадиную силу, которая равна 735,49875 Вт или, что сейчас нам более привычно, 1 кВт = 1,36 л.с. Такие «л.с.» чаще всего обозначают PS (от немецкого Pferdestärke), но есть и другие варианты — cv, hk, pk, ks, ch… При этом в Великобритании и ряде её бывших колоний решили пойти своим путём, организовав «имперскую» систему измерений с её фунтами, футами и прочими прелестями, в которой механическая (или, по-другому, индикаторная) лошадиная сила составляла уже 745,69987158227022 Вт. А дальше — пошло-поехало. К примеру, в США придумали даже электрическую (746 Вт) и котловую (9809,5 Вт) лошадиные силы. Вот и получается, что один и тот же автомобиль с одним и тем же двигателем в разных странах на бумаге может иметь разную мощность. Возьмём, например, популярный у нас кроссовер Kia Sportage — в России или Германии по паспорту его двухлитровый турбодизель в двух вариантах развивает 136 или 184 л.с., а в Англии — 134 и 181 «лошадку». Хотя на самом деле отдача мотора в международных единицах составляет ровно 100 и 135 кВт — причём в любой точке земного шара. Но, согласитесь, звучит непривычно. Да и цифры уже не такие впечатляющие. Поэтому автопроизводители и не спешат переходить на официальную единицу измерения, объясняя это маркетингом и традициями. Это как же? У конкурентов будет 136 сил, а у нас всего 100 каких-то кВт? Нет, так не пойдёт…

КАК ИЗМЕРЯЮТ МОЩНОСТЬ?

КАК ИЗМЕРЯЮТ МОЩНОСТЬ? Впрочем, «мощностные» хитрости игрой с единицами измерения не ограничиваются. До последнего времени её не только обозначали, но даже измеряли по-разному. В частности, в Америке долгое время (до начала 1970-х годов) автопроизводители практиковали стендовые испытания двигателей, раздетых до гола — без навески вроде генератора, компрессора кондиционера, насоса системы охлаждения и с прямоточной трубой вместо многочисленных глушителей. Само собой, сбросивший оковы мотор легко выдавал процентов на 10-20 больше «л.с.», так необходимых менеджерам по продажам. Ведь в тонкости методики испытаний мало кто из покупателей вдавался.
Другая крайность (но гораздо более приближенная к реальности) — снятие показателей прямо с колёс автомобиля, на беговых барабанах. Так поступают гоночные команды, тюнинговые мастерские и прочие коллективы, которым важно знать отдачу мотора с учётом всех возможных потерь, и трансмиссионных в том числе. Мощность также зависит от того, как её измерять. Одно дело крутить на стенде «голый» мотор без навесного оборудования и совсем другое — снимать показания с колёс, на беговых барабанах, с учётом трансмиссионных потерь. Современные методики предлагают компромиссный вариант — стендовые испытания двигателя с необходимой для его автономной работы навеской
Но в итоге за образец в различных методиках вроде европейских ECE, DIN или американских SAE приняли компромиссный вариант. Когда двигатель устанавливают на стенде, но со всей необходимой для бесперебойного функционирования навеской, включая стандартный выпускной тракт. Снять можно только оборудование, относящееся к другим системам машины (к примеру, компрессор пневмоподвески или насос гидроусилителя руля). То есть тестируют мотор ровно в том виде, в котором он фактически стоит под капотом автомобиля. Это позволяет исключить из финального результата «качество» трансмиссии и определить мощность на коленвале с учётом потерь на привод основных навесных агрегатов. Так, если говорить о Европе, то эту процедуру регламентирует директива 80/1269/EEC, впервые принятая ещё в 1980 году и с тех пор регулярно обновляемая.

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ?

ЧТО ТАКОЕ КРУТЯЩИЙ МОМЕНТ? Но если мощность, как говорят в Америке, помогает автомобили продавать, то двигает их вперёд крутящий момент. Измеряют его в ньютон-метрах (Н∙м), однако у большинства водителей до сих пор нет чёткого представления об этой характеристике мотора. В лучшем случае обыватели знают одно — чем выше крутящий момент, тем лучше. Почти как с мощностью, не правда ли? Вот только чем тогда «Н∙м» отличаются от «л.с.».?
На самом деле, это связанные величины. Более того, мощность — производная от крутящего момента и оборотов мотора. И рассматривать их по отдельности просто нельзя. Знайте — чтобы получить мощность в ваттах необходимо крутящий момент в ньютон-метрах умножить на текущее число оборотов коленвала и коэффициент 0,1047. Хотите привычные лошадиные силы? Нет проблем! Делите результат на 1000 (таким образом получатся киловатты) и умножайте на коэффициент 1,36. Чтобы обеспечить дизелю (на фото слева) высокую степень сжатия, инженеры вынуждены делать его длинноходным (это когда ход поршня превышает диаметр цилиндра). Поэтому у таких моторов крутящий момент конструктивно получается большим, но предельное число оборотов приходится ограничивать ради повышения ресурса. Разработчикам бензиновых агрегатов, наоборот, проще получить высокую мощность — детали здесь не такие массивные, степень сжатия меньше, так что двигатель можно сделать короткоходным и высокооборотным. Впрочем, в последнее время различие между дизелями и бензиновыми агрегатами постепенно стирается — они становятся всё более похожими как по конструкции, так и по характеристикам
Мощность и крутящий момент — что это? Выражаясь техническим языком, мощность показывает, сколько работы способен выполнить мотор за единицу времени. А вот крутящий момент характеризует потенциал двигателя к совершению этой самой работы. Показывает сопротивление, которое он может преодолеть. Например, если машина упрётся колёсами в высокий бордюр и не сможет тронуться с места, мощность будет нулевой, так как никакой работы мотор не совершает — движения нет, но крутящий момент при этом развивается. Ведь за то мгновение, пока движок не заглохнет от натуги, в цилиндрах сгорает рабочая смесь, газы давят на поршни, а шатуны стараются привести во вращение коленвал. Иными словами, момент без мощности существовать может, а мощность без момента — нет. То есть именно «Н∙м» являются основной «продукцией» двигателя, которую он производит, превращая тепловую энергию в механическую.
Если проводить аналогии с человеком, «Н∙м» отражают его силу, а «л.с.» — выносливость. Именно поэтому тихоходные дизельные двигатели в силу своих конструктивных особенностей у нас, как правило, тяжелоатлеты — при прочих равных условиях они могут тащить на себе больше и легче преодолевают сопротивление на колёсах, пусть и не так проворно. А вот быстроходные бензиновые моторы скорее относятся к бегунам — нагрузку держат хуже, зато перемещаются быстрее. В общем, действует простое правило рычага — выигрываем в силе, проигрываем в расстоянии или скорости. И наоборот. Так называемая внешняя скоростная характеристика двигателя отражает зависимость мощности и крутящего момента от оборотов коленвала при полностью открытом дросселе. По идее, чем раньше наступает пик тяги и позже — мощности, тем проще мотору адаптироваться к нагрузкам, его рабочий диапазон увеличивается, что позволяет водителю или электронике реже переключать передачи и почём зря не жечь топливо. На этих графиках видно, что бензиновый двухлитровый турбомотор (справа) выигрывает по этому показателю у турбодизеля аналогичного объёма, но уступает ему в абсолютной величине крутящего момента
Мощность и крутящий момент — что это? Как это выражается на практике? В первую очередь, надо понять, что именно кривые крутящего момента и мощности (вместе, а не по отдельности!) на так называемой внешней скоростной характеристике двигателя будут раскрывать его истинные возможности. Чем раньше достигается пик тяги и позже пик мощности, тем лучше мотор приспособлен к своим задачам. Возьмём простой пример — автомобиль движется по ровной дороге и вдруг начинается подъём. Сопротивление на колёсах возрастает, так что при неизменной подаче топлива обороты станут падать. Но если характеристика двигателя грамотная, крутящий момент при этом наоборот начнёт расти. То есть мотор сам приспособится к увеличению нагрузки и не потребует от водителя или электроники перейти на передачу пониже. Перевал пройден, начинается спуск. Машина пошла на разгон — высокая тяга здесь уже не так важна, критичным становится другой фактор — мотор должен успевать её вырабатывать. То есть на первый план выходит мощность. Которую можно регулировать не только передаточными числами в трансмиссии, а повышением оборотов двигателя.
Здесь уместно вспомнить гоночные автомобильные или мотоциклетные моторы. В силу относительно небольших рабочих объёмов, они не могут развить рекордный крутящий момент, зато способность раскручиваться до 15 тысяч об/мин и выше позволяет им выдавать фантастическую мощность. К примеру, если условный двигатель при 4000 об/мин обеспечивает 250 Н∙м и, соответственно, примерно 143 л.с., то при 18000 об/мин он мог бы выдать уже 640,76 л.с. Впечатляет, не правда ли? Другое дело, что «гражданскими» технологиями это не всегда получается добиться.
И, кстати, в этом плане близкую к идеальной характеристику имеют электродвигатели. Они развивают максимальные «ньютон-метры» прямо со старта, а потом кривая крутящего момента плавно падает с ростом оборотов. График мощности при этом прогрессивно возрастает. Современные моторы «Формулы 1» имеют скромный объём 1,6 л и относительно невысокий крутящий момент. Но за счёт турбонаддува, а главное — способности раскручиваться до 15000 об/мин, выдают порядка 600 л.с. Кроме того, инженеры грамотно интегрировали в силовой агрегат электродвигатель, который в определённых режимах может добавлять ещё 160 «лошадок». Так что гибридные технологии могут работать не только на экономичность
Думаю, вы уже поняли — в характеристиках автомобиля важны не только максимальные значения мощности и крутящего момента, но и их зависимость от оборотов. Вот почему журналисты так любят повторять слово «полка» — когда, допустим, мотор выдаёт пик тяги не в одной точке, а в диапазоне от 1500 до 4500 об/мин. Ведь если есть запас крутящего момента, мощности тоже, скорее всего, будет хватать.
Но всё же лучший показатель «качества» (назовём его так) отдачи автомобильного двигателя — его эластичность, то есть способность набирать обороты под нагрузкой. Она выражается, например, в разгоне от 60 до 100 км/ч на четвёртой передаче или с 80 до 120 км/ч на пятой — это стандартные тесты в автомобильной индустрии. И может случиться так, что какой-нибудь современный турбомотор с высокой тягой на малых оборотах и широченной полкой момента даёт ощущение отличной динамики в городе, но на трассе при обгоне окажется хуже древнего атмосферника с более выгодной характеристикой не только момента, но и мощности…
Так что пусть в последнее время разница между дизельными и бензиновыми агрегатами становится всё более расплывчатой, пусть развиваются альтернативные моторы, но извечный союз мощности, крутящего момента и оборотов двигателя останется актуальным. Всегда.

Источник:

Ссылки по теме:

Отправить ответ

avatar
  Подписаться  
Уведомление о