Механизм изменения фаз газораспределения – Отключить иммобилайзер, привязать ключ, компьютерная диагностика, автоэлектрик, помощь на расстоянии +375-292-000-959 (МТС, Вайбер, Ватсап)

Содержание

Системы изменения фаз ГРМ

Общественная организация НАПА предоставляет техническую информацию по современным системам и узлам автомобиля.

 

Приведенная ниже информация носит исключительно ознакомительный характер и будет актуальной для всех работников автомобильной отрасли.

Для удобного использования материалы структурированы по категориям на сайте НАПА. Список тем будет постепенно пополняться.


 

Постоянно растущие требования к современному автомобилю заставляют производителей авто разрабатывать и улучшать различные конструктивные элементы, повышать качество узлов и компонентов, создавать более современные узлы.

Двигатели современных автомобилей также претерпели изменения. Современные двигатели должны быть достаточно мощными с высоким крутящим моментом, экономичным расходом топлива и низким уровнем выбросов вредных веществ в отработавших газах.

Наибольшее распространение получили два типа ГРМ двигателей. Первый – это двигатель, у которого газораспределительный механизм (ГРМ) имеет один распределительный вал и

клапана, расположенные в головке блока цилиндров (ГБЦ). Он обозначается SOHC (Single OverHead Camshaft). И второй – это двигатель c двумя распределительными валами, также расположенными в ГБЦ (DOHCDouble OverHead Camshaft).

При этом существуют две серьёзно различающиеся разновидности этих механизмов, основное отличие заключается в количестве клапанов. DOHC с четырьмя клапанами на цилиндр, т.е. два впускных клапана и два выпускных. Такое количество клапанов повышает качество и скорость наполнения цилиндров воздушно-топливной смесью. Особенно это актуально, когда двигатель работает под нагрузкой или на повышенных оборотах.

SOHC

DOHC

Если при неизменном составе топливно-воздушной смеси повышать частоту оборотов коленвала ДВС (двигатель внутреннего сгорания), сохраняя постоянный угол опережения искрообразования, то будет наблюдаться все более позднее развитие процесса сгорания. И как следствие: повышение расхода топлива, снижение мощности двигателя и увеличение выброса в атмосферу с отработавшими газами окиси углерода (СО) и не полностью сгоревших углеводородов СхНу.

Одним из способов сохранения технических показателей двигателей является применение газораспределительной системы с изменяемыми фазами. Наиболее важным для высокоскоростных бензиновых двигателей серийного производства считается момент закрытия впускного клапана. Поэтому постоянно ведутся работы, направленные на усовершенствование конструкций системы газораспределения с изменяемыми фазами и увеличение диапазона их применения на различных двигателях.

В данном пособии мы хотели бы достаточно подробно описать конструкции и принцип действия новых систем изменения фаз газораспределения.

Каждый производитель разработал свою конструкцию системы, и назвал по-своему.

Механизм газораспределения с изменяемыми фазами – это система, которая изменяет время открытия впускных клапанов, чтобы достичь оптимального момента их открытия.

Некоторые производители применили конструкцию, которая меняет время открытия и закрытия впускных клапанов, путем изменения положение кулачков распредвала относительно шкива. Такая система изменения фаз газораспределения применяется на автомобилях марки Volkswagen, Alfa Romeo, Peugeot Citroën и др. В частности на двигателях

V6 рабочим объемом 2,8 л и V5 рабочим объемом 2,3 л. В дальнейшем ее предполагается использовать на других двигателях, в частности на двигателях W8 и W12.

Непосредственно на распределительный вал устанавливается или интегрируется в шкив гидроуправляемая муфта, которая по сигналу электронного блока управления двигателем через систему масляных каналов проворачивает распределительный вал.

Некоторые производители аналогичную муфту устанавливают на выпускном распределительном вале. Обе муфты являются гидравлическими устройствами и подключены через корпус механизма газораспределения к системе смазки двигателя.

Технология VVT-i

Технология VTEC

 

VVT-i (Variable Valve Timing with intelligence) — система газораспределения с изменяемыми фазами от Toyota. Является разновидностью технологии

VVT и CVVT. Включает в себя, по мере развития, технологии VVT-i, VVTL-i, Dual VVT-i, VVT-iE и Valvematic.

Технология VVT-i была впервые выпущена на рынок в 1996 году и заменила собой первое поколение VVT (1991 год, двигатель 4A-GE).

Принцип VVT-i

В зависимости от условия работы двигателя, система VVT-i плавно изменять фазы газораспределения. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 20-30° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени «перекрытия» (то есть времени, когда выпускной клапан еще не закрыт, а впускной — уже открыт).

Основным элементом устройства является муфта VVT-i интегрированная в шкив, который выполняет роль корпуса муфты. Ротор муфты находится внутри и непосредственно соединен с распределительным валом.

Изначально фазы впускных клапанов установлены таким образом, чтобы добиться максимального крутящего момента при низкой частоте вращения коленвала. После того, как обороты значительно увеличиваются в корпусе муфты сделано несколько полостей, к которым по каналам подводится моторное масло из системы смазки.

Возросшее давление масла открывает клапан VVT-i, заполняя ту или иную полость, обеспечивает поворот ротора относительно корпуса и, соответственно, смещение распределительного вала на определенный угол.

Кулачки имеют определенную форму и при повороте коленчатого вала открывают впускные клапана немного раньше, а закрывают позже, что благоприятно сказывается на увеличении мощности и крутящего момента на высоких оборотах.

 

 

VTEC (Variable valve Timing and lift Electronic Control) система динамического изменения фаз газораспределения, фирменная разработка компании Honda. Вначале система VTEC была успешно реализована в двигателях, применяемых в спортивных автомобилях, а затем, после признания и успеха данная система использована на двигателях гражданских автомобилей.

Особенность системы VTEC заключается в том, что возможно конструировать компактные, но очень мощные (в соотношении объем/л.с.) двигатели без применения дополнительных устройств (турбин, компрессоров), при этом технология производства подобных двигателей остается недорогой, а автомобиль с установленной на нем системой VTEC не испытывает проблем, характерных для турбированных автомобилей.

Принцип работы VTEC, в классическом виде по сравнению с другими системами газораспределения, конструктивно выглядит просто, — на распредвале между основными кулачками разместили один дополнительный кулачок большего профиля. Получается, что на каждый цилиндр приходится по одному дополнительному кулачку.

За наполнение топливной смесью камеры сгорания на низких и средних оборотах работы двигателя, отвечают два внешних кулачка, а центральный задействуется на высоких оборотах. Обратите внимание, что непосредственно на клапана воздействуют не кулачки распредвала, а через так называемые коромысла/рокеры, которых тоже три. Внешние кулачки воздействуют на рокеры, обеспечивающие открытие клапанов независимо друг от друга, а центральная пара кулачек-рокер, хотя и работает, но работает, что называется вхолостую. Клапаны имеют минимальную высоту подъема, фазы ГРМ характеризуются малой продолжительностью.

Как только двигатель достигает определенного количества оборотов, т.е. переходит в режим высоких оборотов, система VTEC активируется. Под давлением масла происходит смещение синхронизирующего штифта внутри рокеров таким образом, что все три рокера как бы становятся одной целой конструкцией, и после этого усилие на впускные клапаны передается от большого кулачка распредвала. Таким образом, увеличивается ход клапанов и фазы газораспределения.

При снижении количества оборотов система возвращается в исходную позицию.

Недостатками такой системы являются ступенчатый переход с одного режима на другой и конструктивная сложность реализации процесса блокировки.

 

Разновидности VTEC

На сегодняшний день существует несколько разновидностей системы VTEC. Первая категория рассчитана на увеличение мощности. Второй, VTEC-E, ставились совсем иные задачи — экономия топлива, о чем и говорит приставка «E» — econom. Итак, разновидности:

      • DOHC VTEC 1989-2001 гг, cамый мощный в семействе VTEC до 2001 года
      • SOHC VTEC 1991-2001 гг, средняя, более простая конструкция по сравнению с DOHC VTEC, но и менее мощная
      • SOHC VTEC-E 1991-2001 гг, самый экономичный VTEC
      • 3-stage VTEC-E 1995-2001 гг, совместил SOHC VTEC и VTEC-E, в отличие от них различает низкие, средние и высокие обороты
      • DOHC і-VTEC c 2001 года
      • SOHC і-VTEC
        c 2006 года
      • 3-stage i-VTEC (только на «гибридах») c 2006 года

Особенность данного двигателя заключается в том, что в городском цикле у автомобиля с системой VTEC-E, расход топлива составляет около 6,5-7 литров бензина на 100 км пути. Это поистине выдающийся результат, учитывая то, что такие двигатели Honda развивают мощность 115 «лошадиных сил». Но автомобили с таким двигателем лишены драйверских ощущений.

Такой результат достигается за счет того, что при небольших оборотах двигатель работает на обедненной топливовоздушной смеси, которая поступает в его цилиндры только через один впускной клапан. Это происходит по причине того, что на втором клапане, кулачек управляющий открытием и закрытием клапана, имеет профиль кольца и поэтому реально работает только один клапан.

За счёт несимметричности потока поступающей горючей смеси (один клапан закрыт, а второй открыт) возникают завихрения, происходит лучше и равномернее заполнение камеры сгорания, что позволяет двигателю работать на довольно бедной смеси. При увеличении оборотов (2500 оборотов и выше) срабатывает система VTEC, синхронизирующий шток под давлением масла перемещается, и рокер первичного клапана входит в зацепление с рокером вторичного клапана и оба клапана работают синхронно.

3-stage VTEC-E

Газораспределительный механизм 3-stage SOHC VTEC представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех вышеописанных систем эта система имеет не два режима работы, а три.

На первой стадии, когда частота вращения коленчатого вала не превышает ~2500 об/мин, рокер (коромысло) первого и второго работают независимо. Почти круглый кулачок второго клапана через рокер приводит в действие второй клапан, т.е. фактически процесс впуска осуществляется посредством первого клапана, тогда как второй клапан лишь ненамного приоткрывается для избегания скопления топлива над ним. Кулачок второго клапана работает вхолостую.

На второй стадии, начиная приблизительно с 2500 об/мин, масло, поступающее по каналу в распредвале, давит на синхронизирующий шток, который соединяет рокеры первого и второго клапана, обеспечивая синхронную работу обоих впускных клапанов в соответствии с профилем кулачка первого клапана. Остальные кулачки работают вхолостую.

В третьем режиме масло по-прежнему давит на шток в положении, когда обеспечивается синхронная работа обоих клапанов, в то время как, начиная с ~4500 об/мин начинает поступать масло по каналу в другую полость и давить на шпильку, обеспечивающую передачу управления клапанами от третьего кулачка большего профиля, обеспечивающему большую высоту подъема.

В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливо-воздушной смеси. В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности.

i-VTEC

Очередной разработкой компании Honda газораспределительного механизма с изменяемыми фазами VTEC является система, получившая обозначение i-VTEC (где буква «i» означает «Intellegence» — «интеллектуальный»).

«Интеллектуальность» же данной системы заключалась в следующем — управление изменением фаз осуществляется компьютером, при помощи функции поворота распредвала, регулируя угол опережения. Система i-VTEC позволила двигателям Honda получить больший крутящий момент на низких оборотах, что было постоянной проблемой для двигателей компании, — при высокой мощности они отличались малым крутящим моментом, получаемым на высоких оборотах.

Версия i-VTEC если не устранила, но существенно подкорректировала этот недостаток. Система i-VTEC начала устанавливаться на мощные моторы серии К и некоторых серии R, например, в автомобилях серии Type R, или Acura RSX. Другая версия, напротив, получила «экономичное» направление, и стала устанавливаться в гражданской серии двигателей (например на автомобилях CR-V, Accord, Element, Odyssey, и других).

Принцип работы SOHC i-VTEC

 

Компания Honda реализовала работу SOHC i-VTEC на простых принципах, которые заключаются, в том, что когда мы управляем автомобилем, то мы придерживаемся в основном двух различных стилей вождения.

Первый стиль вождения мы принимаем за спокойную езду без резких ускорений, с пустым багажником и без пассажиров. В таком режиме обороты двигателя, как правило, не превышают порог в 2,5 – 3,5 тысяч оборотов в минуту, а усилия на педаль газа минимальны. Такие условия являются наиболее благоприятными для экономии топлива.

В классическом виде воздействуя на педаль газа, мы открываем или закрываем дроссельную заслонку и регулируем подачу количества воздуха. В зависимости от количества попадающего воздуха, электронная система управления двигателем в нужной пропорции подает топливо для образования топливно-воздушной смеси. Чем сильнее нажимаем на педаль газа, тем больше открывается дроссельная заслонка (увеличивается поперечное сечение впускного канала). В это же время дроссельная заслонка являлась препятствием для прохождения воздуха.

Дроссельная заслонка — элемент впускной системы, которая регулирует подачу воздуха в двигатель.

По идее, такое поведение дроссельной заслонки должно способствовать экономии топлива — поступает меньше воздуха и соответственно компьютер уменьшает дозу подаваемого топлива. Однако это не совсем так. В такой ситуации дроссельная заслонка выступает в качестве силы сопротивления, препятствуя прохождению воздуха, когда этого требует рабочий процесс. Получается поршень, опускаясь в цилиндре вниз нижней мертвой точки, должен всасывать топливно-воздушную смесь, затрачивая на это собственную энергию. Энергию, которая в конечном итоге должна была полностью передаться на колеса. Этот побочный эффект прозвали «насосными потерями».

Попытаемся взглянуть на это с практической точки зрения на примере системы SOHC i-VTEC. Ведь именно устранение насосных потерь – преимущество нового i-VTEC на двигателях с одним распредвалом.

 

Все, что надо было сделать – это на низких оборотах двигателя дроссельную заслонку оставить открытой, а регулировку подачи топливно-воздушной смеси доверить системе i-VTEC. На деле, разумеется, не все так просто.

Следует учитывать следующий момент, что в период, когда дроссельная заслонка полностью открыта, во впускную систему поступает чрезмерно много воздуха и соответственно в цилиндры много топливно-воздушной смеси.

В стандартных двигателях на фазе впуска впускные клапаны открыты, поршень движется вниз к нижней мертвой точке (НМТ). Как только поршень достигает нижней мертвой точки, впускные клапаны синхронно закрываются, а поршень, начиная фазу сжатия, поднимается к верхней мертвой точке (ВМТ).

Но смесь не сгорает, как вы, наверное, подумали. Фишка системы состоит в том, что один из двух впускных клапанов в цилиндре после фазы впуска закрывается значительно позже второго.

Двигатель с SOHC i-VTEC работает несколько иначе. На фазе впуска – поршень движется к НМТ, впускные клапаны открыты. На фазе сжатия поршень начинает движение вверх к ВМТ. По условию работы i-VTEC в режиме экономии один из впускных клапанов остается открытым и под давлением движущегося вверх поршня, лишняя топливно-воздушная смесь, которая попала в цилиндр благодаря полностью открытой дроссельной заслонке, беспрепятственно возвращается во впускной коллектор.

Механизм SOHC i-VTEC

Механизм системы SOHC i-VTEC аналогичен механизму VTEC предыдущих поколений. Все двигатели с системой SOHC i-VTEC имеют два впускных клапана и два выпускных на каждый цилиндр, т.е 16 клапанов на 4 цилиндра. На каждую пару клапанов приходится 3 кулачка – два обычных крайних и один центральный большего профиля VTEC. Кулачки распредвала традиционно воздействуют на клапаны не непосредственно, а через рокеры, которых тоже три на два клапана.

При отключенной системе i-VTEC внешние кулачки обеспечивают открытие клапанов и каждый рокер работает независимо друг от друга, а центральный кулачок, хотя и вращается вместе с остальными, но работает вхолостую.

Как только двигатель переходит в режим работы, которую система Drive by Wire определяет как благоприятную для работы системы — посредством давления масла система смещает шток внутри рокеров таким образом, что два из трех рокеров работают, как единая конструкция. И с этого момента, рокер впускного клапана, который синхронизирован штоком с рокером кулачка системы VTEC, открывает клапан на величину и продолжительность в соответствии с профилем кулачка системы VTEC. Практически, как обычная система газораспределения с изменяемыми фазами VTEC, с той лишь разницей, что работают системы при разных условиях и в разных фазах.

Drive by Wire (DRW) или «управление по проводам» — электронная цифровая система управления автомобилем.

В обычной системе VTEC два внешних кулачка отвечают за работу двигателя на низких оборотах, а центральный кулачок системы VTEC, подключается на высоких оборотах, таким образом, обеспечивая большее высоту и период открытия, чтобы в цилиндры поступило как можно больше топливно-воздушной смеси. В «умном» SOHC i-VTEC все работает наоборот — рабочая зона системы находится в диапазоне от 1000 до 3500 оборотов в минуту. На «верхах» же мотор вступает в стандартный режим работы.

Однако, диапазон оборотов не единственный фактор по которому система Drive by Wire определяет момент включения и выключения системы. Иначе новый i-VTEC мало чем отличался бы от предшественников.

Новый SOHC i-VTEC в паре с «Drive by Wire» дополнительно определяет нагрузку на двигатель и в зависимости от ее величины принимает решение включать VTEC или нет.

Именно символ «i» в названии системы указывает на работу этих двух систем. Получается, что система VTEC работает при определенных оборотах двигателя и определенной величине нагрузки на двигатель. Поэтому «Drive by Wire», которая и определяет оптимальные условия, является наиважнейшей составляющей системы в целом.

Общий рабочий диапазон SOHC i-VTEC демонстрирует график. Красная зона на графике и есть благоприятная среда для работы системы.

Ремонт механизмов регулировки фаз газораспределения

Представить себе современный двигатель без механизма регулировки фаз газораспределения практически невозможно. Сегодня подобные устройства есть и в «малолитражных» трехцилиндровых моторчиках, и в многолитровых V-образных «восьмерках». Само собой разумеется, что детали и узлы таких систем изнашиваются при эксплуатации и требуют замены во время капитального ремонта. Или их тоже можно ремонтировать? Во всяком случае, наши коллеги из США научились восстанавливать муфты фазовращателей и здесь рассказывают о своем опыте.

Мы начали восстанавливать фазовращатели еще в 1990-е годы по двум причинам. Во-первых, новые узлы зачастую невозможно было купить, а, если они и были в наличии, то оказывались слишком дорогими. Без ремонта (и до того, как подобные механизмы стали доступны на вторичном рынке) цены на новые детали у официальных дилеров кусались. Цена за 3-клапанную муфту Ford составляла $325, для мотора Nissan VQ40 — $230, механизмы для 2-литрового Kia — $400. И даже сегодня мы сталкиваемся с проблемами поставок некоторых механизмов фазовращателей, например – для Chevrolet Colorado, что подтолкнуло нас к освоению ремонта таких муфт, так как GMC их больше не предлагает.

Вторая причина, почему мы занялись подобным видом ремонта – наша философия: мы восстанавливаем изношенные детали и узлы, а не устанавливаем новые. Постепенно, шаг за шагом, мы освоили способы ремонта многих компонентов двигателя, и механизмы регулировки фаз газораспределения здесь не исключение. Теперь мы восстанавливаем все типы подобных механизмов.

Ремонт механизмов регулировки фаз газораспределения (муфт фазовращателей) очень успешен, потому что обычно причины поломок двигателей не в них. Обычно менее 1% поломок моторов вызывается плохим качеством самого фазовращателя. Большинство двигателей выходят из строя из-за загрязнения, низкого давления масла давления или поломки управляющего клапана. Так что большое количество шестерен/звездочек фазовращателей обычно пригодны к дальнейшему использованию.

Крайне редко встречаются шестерни/звездочки, поврежденные настолько, что их остается только выбросить. Хорошему качеству ремонта способствует чистота всех масляных каналов (их вскрытие и промывка строго обязательны), промывка всех фильтрующих элементов и строгое выдерживание масляных зазоров между деталями двигателя.

Системы регулировки фаз газораспределения есть двух видов

Фото. Системы регулировки фаз газораспределения есть двух видов: переключением или фазированием. Система переключения работает по принципу «да-нет»: т. е. сдвигает фазы на фиксированный угол вперед или назад. А система фазирования регулирует фазы постоянно и непрерывно. Такая система может фиксировать механизм в любом положении, в пределах рабочего диапазона.

Мы расскажем о процессе все: от демонтажа до проверки, расскажем, что работает правильно, а что нет.

Система регулировки фаз газораспределения проворачивает распределительный вал на определенный угол, в зависимости от оборотов и нагрузки на двигатель и позволяет двигателю работать при «идеальных» условиях в более широком рабочем диапазоне, чем при фиксированном положении распредвала. Система управления фазовращателем, используя информацию от множества датчиков двигателя, «командует» гидравлическим клапаном. Который, в свою очередь, направляет масло под давлением к муфте фазовращателя. Есть два основных типа механизма изменения фаз газораспределения: тип «винтовой пружины» и тип «масляной камеры». В большинстве двигателей используется механизм камерного типа. Муфта фазовращателя такого типа имеет внешний корпус, связанный со звездочкой газораспределительного механизма, и внутренний ротор, который связан с распредвалом. Промежутки между корпусом и ротором образуют рабочие камеры, разделяемые специальными уплотнениями. Стопорный штифт удерживает шестерню от смещения при запуске. Масло под давлением, наполняющее камеры, толкает ротор для поворота распредвала вперед или назад.

Ремонт механизма начинается с демонтажа деталей и их последующей промывки. Мы предварительно моем демонтированные детали в ультразвуковых ваннах, примерно полчаса, а затем вскрываем муфты фазовращателей. Затем все детали снов помещаются в моющие корзины. Ротор стоит оставить подсобранным с корпусом, чтобы не потерять уплотнения насадки или их пружины. Большинство уплотнительных насадок пластиковые, и они обычно теряются при промывании.

Ремонт механизма начинается с демонтажа и промывки

Важная причина, почему мы вскрываем муфту – потому что, внутри остается много масла и мелких загрязнений, которые невозможно будет вымыть. Еще одна причина вскрыть муфту – необходимость проверить наличие блокировки. Некоторые владельцы намертво блокируют муфту, чтобы увеличить мощность. Такое встречается во всех типах муфт.

Некоторые владельцы намертво блокируют муфту, чтобы увеличить мощность

После того, как все детали промыты, можно проверить их износ и повреждения. Больше всего страдают зубья шестерни ГРМ и боковые стенки корпуса, которые контактируют с торцевыми уплотнениями. Механизм с металлическими уплотнениями изнашивается больше, чем с пластиковыми. Любое повреждение, допускающее перетекание масла или заедание, в дальнейшем создаст проблему со перемещением деталей. Также надо проверить, повреждено ли отверстие стопорного штифта. Стопорный штифт подпружинен и он скользит к запорному диску, при работе шестерни. При блокировке муфты, пружина смещает штифт внутрь отверстия, поэтому заходная часть штифта может быть повреждена. Штифт или его паз испытывают на себе большие нагрузки и могут треснуть или сломаться. А износ запорных дисков может быть очень похожим на износ торцевой поверхности корпуса масляного насоса. Проверка муфты очень напоминает проверку масляного насоса – и там, и там вы можете увидеть похожие повреждения.

Некоторые владельцы намертво блокируют муфту, чтобы увеличить мощность

Обратная сборка – несложная. Детали движутся только в одном направлении, поэтому ошибиться сложно. Слегка смажьте все внутренние детали моторным маслом. Мы обычно используем масло типа 5W-30. Сборка механизма с пружиной немного сложнее. Самая очевидная ошибка – это установить ротор в корпусе вверх ногами, но в большинстве случаев стопорные диски не совместиться должным образом, и вы, поэтому, не сможете установить шестерню на распредвал. После того, как детали установлены, вы можете вручную завернуть болты, но, прежде чем болты будут затянуты полностью, вам надо выровнять ротор и стопорный диск, чтобы распредвал «подошел». Для этого вы можете использовать сам вал, или, как мы, — специальную оправку.

Болты затянуты, и шестерня готова к работе. Мы предварительно определяем момент затяжки крепежных болтов, прежде чем запустить деталь в дело. Можно для этого использовать разъединительный динамометрический ключ или маркировать болты перед отворачиванием. По нашему опыту, большинство из них тянутся моментом 13…14 Нм, но некоторые бывают затянуты на удивление слабо. Поэтому лучше всегда проверять крутящий момент для любого нового типа шестерни, которую вы устанавливаете.

Большинство ошибок при сборке всегда приводят к провальному результату: шестерня не подойдет к распредвалу или никогда не пройдет испытание. Нам встречались: отсутствие уплотнений, стопорных штифтов, поврежденные или неправильно установленные импульсные датчики. Механизм с отсутствующими деталями никогда не пройдет испытание: он не сдвинется и не заблокируется.

Чтобы избежать ошибок лучше использовать шаблоны и памятки для сборки.

Мы проверяем отремонтированные механизмы на нашем моторном стенде путем проверки перемещения ротора. Лучше это делать на небольших оборотах или с помощью стробоскопа. На испытательном стенде мы видим некоторые неисправности, чаще всего шестерня вообще не смещается, но это не всегда беда шестерни. Если есть проблемы с давлением масла, то шестерня-муфта просто не будет работать.

Большинство современных механизмов, с которыми мы сталкиваемся, очень простые, легко разбираются, чистятся, собираются и проверяются. Включение подобной услуги в перечень ваших ремонтных услуг позволит вам предложить лучшую цену вашим клиентам и подготовиться к появлению более сложных систем. Например, механизм изменения фаз газораспределения нового 5-литрового двигателя Ford, в котором управляющий клапан встроен в шестерню. Другой тип муфты, с которым вы можете столкнуться, — система электромагнитного привода на двигателях Nissan VQ35. На крышке корпуса установлен электромагнит, который работает с механическим фиксатором, прикрепленным к распредвалу. Если возникнет какая-либо деталь будет повреждена, как если бы привод коснулся магнита, ее надо заменить. Вы можете очистить детали и проверить сопротивление катушки, но вы не сможете проверить это устройство как муфту с гидроприводом. Вам придется удостовериться, что распредвал сместился, визуально.

И, напоследок, несколько полезных советов.

Если у вас нет обменного фонда механизмов муфты, которую планируете отремонтировать, то лучше всего найти их и подготовиться наилучшим образом до того, как начнете демонтаж. Я рекомендую фотографировать каждый шаг разборки устройства, чтобы обеспечить правильную сборку. Некоторые из этих компонентов содержат детали замысловатой формы, и вы должны быть уверены, что они вернутся на место в правильном положении. Если на шестерне есть датчик положения распредвала, будьте внимательны и зафиксируйте фазу, чтобы правильно вставить его назад. Есть шестерни, которые спрессованы вместе, а есть шестерни, которые стянуты болтами. С ними иметь дело проще, лишь проверьте крутящий момент на болтах, прежде чем снять шестерню.

Спрессованные шестерни, встречающиеся в моделях Nissan и GM, сложно демонтировать, для них требуются специальные оправки, которые обычно не валяются на полках. Для такого типа механизма мы маркируем все детали перед демонтажом, чтобы вновь собрать их в правильном положении. Если вы можете найти подходящую замену уплотнительным кольцам, этот тип муфты можно успешно восстановить.

Мы установили, что попытка помыть механизм, не открывая его, всегда оставляет загрязнение в нем, даже если использовать ультразвуковые очистители и даже если оставить их в ванне на ночь. Винтовые шестерни захватывают и удерживают все остатки старого масла. Как только вы поместите их в мойку, они впитают все из воды. Механизм нужно обязательно вскрыть, чтобы вымыть его, высушить и смазать должным образом.

Спрессованные шестерни, встречающиеся в моторах Nissan и GM, сложно демонтировать

Фото. Спрессованные шестерни, встречающиеся в моторах Nissan и GM, сложно демонтировать, для них требуются специальные оправки. Для такого типа механизма мы маркируем все элементы перед демонтажом, чтобы собрать их с правильной фазой распределения.

После того, как вы познакомитесь с ремонтом механизма изменения фаз газораспределения и разработаете свой собственный процесс их тестирования, вы обнаружите, что и процесс, и оборудование можно легко применить к другим продвинутым системам управления двигателем. Чтобы можно было и далее предлагать нашим клиентам продукцию, которую они хотят, и ремонтировать вместо того, чтобы заменять.

ХОТИТЕ СТАТЬ АВТОРОМ?

Пришлите свою статью


Фазы и механизм газораспределения двигателя

Газораспределительный механизм

Термин «фаза» означает часть, этап или ступень какого-то процесса. Поэтому впускная и выпускная фазы газораспределения – часть полного цикла работы двигателя внутреннего сгорания. Прочитав статью, вы узнаете, что происходит во время фаз, каким образом двигатель регулирует их и на что влияют фазы газораспределения.

Как работает двигатель внутреннего сгорания

Воспламенение топливовоздушной смеси в цилиндре двигателя приводит к выделению выхлопных газов и увеличению температуры. Во время такта сжатия поршень движется к верхней мертвой точке (ВМТ) сжимая топливовоздушную смесь или воздух (дизельный двигатель).

Воспламенение происходит незадолго до ВМТ. В бензиновом двигателе топливовоздушную смесь воспламеняет искра свечи зажигания. В дизельном моторе в раскаленный от сжатия воздух впрыскивают распыленное топливо. Когда поршень приближается к нижней мертвой точке (НМТ), наступает выпускная фаза газораспределения. Выпускной клапан открывается и поднимающийся к ВМТ поршень выдавливает из цилиндра продукты горения топливовоздушной смеси. Когда поршень подходит к ВМТ заканчивается фаза выпуска и начинается фаза впуска. Поршень движется в ВМТ, в цилиндре возникает разряжение, благодаря которому воздух засасывает внутрь камеры сгорания. После достижения ВМТ фаза впуска завершается и начинается такт сжатия.

Устройство механизма газораспределения

Газораспределительный механизм (ГРМ) состоит из:

  • одного или двух кулачковых распределительных валов, на каждый из которых установлена своя шестерня;
  • шестерни коленчатого вала;
  • цепного или ременного привода.

Число зубьев шестерни распределительного вала всегда в 2 раза больше, чем у шестерни коленчатого вала.

Благодаря этому за два оборота коленчатого вала происходит лишь один оборот распределительного вала. Это позволяет открывать и закрывать клапаны головки блока цилиндров (ГБЦ) в зависимости от такта двигателя. Фазы газораспределения зависят от расположения кулачков распределительного вала. Поэтому на одновальных двигателях возможна только одновременная регулировка фаз впуска и выпуска. На двухвальных двигателях возможна раздельная регулировка фазы впуска и фазы выпуска. Это позволяет оптимизировать работу двигателя под различные режимы.

Когда кулачок распределительного вала доходит до клапана, то начинает давить на него до тех пор, пока клапан полностью не откроется. Затем кулачок проходит дальше и пружина начинает выдавливать клапан, стремясь закрыть его. Как только давление со стороны распределительного вала исчезает, пружина полностью закрывает клапан. Угол поворота распределительного вала, в течение которого впускные или выпускные клапаны одного цилиндра открыты и называется фазой газораспределения.

На что влияют фазы ГРМ

В двигателях современных бюджетных автомобилей не предусмотрена автоматическая регулировка фаз газораспределения, поэтому они настроены на средний режим работы. Форма кулачков распределительных валов таких двигателей рассчитана на максимальное наполнение и освобождение цилиндров при скорости вращения, близкой к максимальному крутящему моменту. Обычно он расположен между 2/3 и 3/4 от максимальных оборотов. Поэтому такой двигатель «плохо тянет» на оборотах ниже половины от максимальных.

Почему так происходит? Чем выше обороты двигателя, тем быстрей движутся поршни. В результате давление внутри цилиндра во время фазы выпуска возрастает, но пропускная способность выпускного клапана не меняется. Во время фазы впуска поршень движется быстрей, чем на холостых оборотах, но пропускная способность клапана не меняется. Поэтому чем выше обороты двигателя, тем хуже наполнение цилиндров. Поэтому нередко фазы выпуска и выпуска пересекаются. В то время когда выпускной клапан закрывается, но еще открыт, начинает открываться впускной клапан.

На холостых и низких оборотах часть топлива, которая поступает в двигатель, уходит в выхлопную трубу. Это снижает мощность и экономичность двигателя. По мере роста оборотов влияние этого эффекта слабеет. Поэтому чем выше обороты двигателя, тем длинней должны быть фазы газораспределения. Это позволит избежать снижения мощности мотора.

Если сдвинуть фазы газораспределения от оптимальной точки, то произойдет резкое падение мощности мотора. Ведь цилиндры будут или не до конца освобождаться от выхлопных газов или не до конца наполняться топливовоздушной смесью. Однако оптимальная точка начала фазы и ее продолжительность зависят от нагрузки на мотор и оборотов двигателя. Поэтому тюнинговые мастерские и умелые автомобилисты устанавливают вместо штатной шестерни распределительного вала разрезную шестерню, с помощью которой можно сдвигать фазу на угол до 10 градусов. Также используют тюнинговые распределительные валы, рассчитанные на различные режимы и нагрузки. Те, кто предпочитает ездить на максимальной скорости, устанавливают валы с максимальными фазами впуска и выпуска. Те же, кто ездит на средних оборотах двигателя, избегая резких стартов и больших скоростей, ставят валы с чуть уменьшенными фазами.

Регулятор фаз газораспределения

Существует большое количество моделей фазорегуляторов, которые работают по различным алгоритмам. Однако, общий принцип неизменен. Когда двигатель работает на низких оборотах, фазорегулятор сокращает впускную и выпускную фазы. Это позволяет сократить расход топлива.

Когда двигатель начинает работать на высоких оборотах или под нагрузкой, регулятор увеличивает продолжительность фаз, а нередко и точку их начала. Это позволяет не только увеличить мощность и крутящий момент, но и снижает расход топлива. Наиболее популярны модели фазорегуляторов, которые работают на основе центробежного принципа. Чем выше обороты двигателя, тем сильней они натягивают цепь или ремень привода ГРМ, тем самым сдвигая и фазы газораспределения. Благодаря тому, что эти устройства регулируют натяжение ремня или цепи со стороны обоих распределительных валов, они эффективно сдвигают обе фазы. Такие фазорегуляторы не требуют настройки, однако после пробега в 40-70 тысяч километров необходимо менять уплотнительные кольца гидроцилиндров.

Более сложные регуляторы представляют собой систему из датчиков, контроллера двигателя и исполнительных устройств. Однако, принцип их работы точно такой же, как у центробежных. Исполнительное устройство увеличивает или ослабляет натяжение цепи со стороны впускного и выпускного валов. Благодаря этому каждая фаза регулируется отдельно. Такие системы требуют настройки и регулярной проверки. Благодаря тому, что исполнительные механизмы работают от электричества, нет необходимости в регулярной замене уплотнительных колец. Существуют также системы, в которых электронное управление совмещено с гидравлическим приводом. В таких системах регулировка происходит не за счет натяжения цепи, а с помощью увеличения давления внутри шестерни распределительного вала.

Чем выше давление, тем дальше гидропривод проворачивает распределительный вал относительно положения шестеренки.

Как установить фазы газораспределения

На большинстве современных автомобилей, оснащенных механическим ГРМ, фазы газораспределения выставляют одинаково. По ВМТ первого цилиндра. Для этого на корпусе блока цилиндров и ГБЦ, а также на шестернях распределительного и коленчатого валов нанесены специальные метки. В первую очередь совмещают метки коленчатого вала. Затем совмещают метки распределительного (распределительных) валов. После этого надевают и натягивают цепь или ремень, затем проверяют метки. Если метки на месте, коленчатый вал прокручивают 2 или 4 раза и снова проверяют метки. Если метки шестерней распределительного и коленчатого валов совпадают с метками на блоке цилиндров и ГБЦ, то фазы выставлены правильно. Если отличаются, необходимо снять цепь или ремень и повторить все операции. 

Системы изменения фаз ГРМ: типы и особенности работы

Известно, что продолжительность цикла открытия и закрытия клапана и оптимальные его значения зависят от режима работы мотора. Система автоматического управления ГРМ, с одной стороны, способствует лучшей работе мотора в режиме холостого хода, увеличению мощности и крутящего момента двигателя, а с другой стороны, позволяет снизить уровень токсичности отработавших газов и обеспечить их рециркуляцию. При этом система изменения фаз ГРМ оптимизирует работу двигателя без внедрения каких-либо конструктивных изменений. Современные моторы помимо системы автоматического управления фазами ГРМ могут оснащаться также и системой отключения цилиндров, которая позволяет снизить расход топлива и уменьшить токсичность выхлопа при неполной нагрузке на мотор. Изменение фаз ГРМ может осуществляться или поворотом распредвала, или с помощью кулачков разнообразного профиля, или же варьированием высоты подъема клапана.

В современном автомобилестроении чаще всего для изменения фаз применяется схема изменения поворота распредвала. Такую схему можно встретить, например, на автомобилях BMW, она называется Vanos (Double Vanos), на машинах марки Toyota (VVT-i или Dual VVT-i). Разработчики Honda применяют систему VTC (Variable Timing Control). На машинах концерна Volkswagen AG используется традиционная и хорошо знакомая всем система изменения фаз ГРМ – VVT (Variable Valve Timing) с гидроуправляемыми муфтами (по одной муфте на каждый распредвал). 

От Single VANOS к Duble VANOS

Систему VANOS (Variable Nockenwellen Steuerung) создали разработчики из BMW совместно со специалистами компании Continental Teves. Принцип работы системы: изменение положения распредвала относительно коленвала, за счет чего и осуществляется регулировка фаз ГРМ. Первое поколение системы VANOS использовалось с начала 90-х годов. Отличительная особенность Single VANOS в том, что относительно коленвала регулируется только положение впускного распредвала. Такое решение позволило увеличить крутящий момент мотора в режиме низких оборотов, улучшило наполняемость цилиндров, стабилизировало работу холостого хода, а также способствовало снижению расхода топлива. С середины 90-х годов разработчики BMW внедрили систему Double VANOS, которая позволила регулировать положение двух распредвалов, и это благотворно отразилось и на крутящем моменте двигателя, и на его мощности. При этом при работе системы Double VANOS удалось реализовать процесс дожига небольшой части выхлопных газов (в зависимости от режима работы мотора они направляются обратно в выпускной коллектор), что также улучшило экологические показатели автомобилей. Слабое место системы – уплотнительные кольца поршней, которые зачастую приходят в негодность в условиях перепада температур и перестают обеспечивать герметичность системы.

Такие гидроуправляемые муфты соединены с системой смазки силового агрегата. Работой всего узла «руководит» блок управления двигателя, который формирует свои команды на основе анализа данных о частоте работы коленвала, нагрузках на него, изменениях температурного режима. Блок управления посылает соответствующий сигнал, и масло из системы смазки двигателя поступает в муфты, а они поворачивают распредвалы с учетом полученных команд.  

В системах, в которых используются кулачки различного профиля, изменение фаз ГРМ осуществляется за счет ступенчатого изменения продолжительности открытия и высоты подъема клапана. Подобные системы применяются в двигателях автомобилей Honda (VTEC), Mitsubishi (MIVEC) и других. Например, в двигателе VTEC на каждые два клапана распредвала приходится по три кулачка – два малых и один большой. Малые кулачки запускают в работу пару впускных клапанов в режиме невысоких оборотов коленвала. Задача большого кулачка – перемещать свободное коромысло в холостом режиме. Высота подъема клапанов минимальна, а фаза ГРМ имеет небольшую продолжительность. Переключение с одного режима работы на другой осуществляется бесступенчато за счет системы управления, оснащенной блокирующим механизмом с гидравлическим приводом. При этом переключение происходит всякий раз, когда коленвал достигает заданной частоты вращения. Увеличение хода клапанов и, как следствие, увеличение фазы осуществляются за счет совместной работы малых и большого кулачков, которые, будучи соединенными стопорным штифтом, подают усилие на впускные клапаны. Отметим, что такая «кулачковая» система имеет ряд объективных недостатков – бесступенчатую смену режимов, а также сложную с конструктивной точки зрения схему блокировки.

Если говорить о более эффективных решениях для изменения фаз ГРМ, стоит упомянуть систему регулирования высоты подъема клапанов. И здесь стоит говорить о разработке BMW – системе Valvetronic, первой в своем роде системе управления фаз газораспределения с использованием регулировки высоты подъема клапана. Причем Valvetronic работает только на впускных клапанах. Принцип работы такой системы основан на кинематической схеме, именно она позволяет изменять ход клапана. Эксцентриковый вал работает от электродвигателя через червячную передачу. Вал изменяет положение промежуточного рычага, который направляет коромысло по заданной траектории, по соответствующей траектории перемещается и клапан. При этом высота подъема клапана изменяется непрерывно (в зависимости от режима работы мотора).

И хотя система изменения фаз газораспределения – это весьма надежный и долговечный узел, его эксплуатация во многом зависит от качества моторного масла и соблюдения интервалов его замены. Наличие в масле примесей, а также использование масла ненадлежащей вязкости могут оказать негативное воздействие на работу системы.

К числу наиболее типичных неполадок в работе системы изменения фаз ГРМ можно отнести неполадки в муфте распредвала впускных клапанов, которые проявляются в виде стука от верхней части мотора, возникающего после «холодного» пуска. Сильный шум от привода системы может указывать также на неполное включение стопорного штифта привода системы изменения фаз газораспределения.

Valvetronic – залог экологичной работы

В ответ на ужесточение экологических норм и в поисках решений для снижения токсичности выхлопа автомобиля разработчики BMW создали систему Valvetronic. Ее стали внедрять в первой половине 2000-х. Конструктивной особенностью Valvetronic стало отсутствие дроссельной заслонки, которая, как известно, способствует увеличению расхода топлива и повышения токсичности выхлопа. Разработчики предложили альтернативу – механизм, который позволяет поднимать клапан в ограниченном диапазоне. Работа Valvetronic обеспечивает снижение расхода топлива даже в режиме интенсивной работы мотор, приятным бонусом стало увеличение динамики хода автомобиля, а также его приемистость. 

Система изменения фаз газораспределения Википедия

Система изменения фаз газораспределения (англ. variable valve timing, VVT) в двигателях внутреннего сгорания предназначена для изменения времени открытия клапанов и часто применяется для улучшения показателей эффективности, экономичности и токсичности. Система все более часто используется совместно с системой изменения высоты подъёма клапанов. Изменение фаз газораспределения может достигаться разными способами: полностью механическим, электро-гидравлическим и при конструкции двигателей без использования кулачков. Одной из причин внедрения автопроизводителями систем изменения фаз газораспределения является законодательное ужесточение норм токсичности.

Описание

Клапаны в двигателях внутреннего сгорания используются для управления потоками газов, втекающих и истекающих из камеры сгорания. Момент смены состояния клапана (открытие или закрытие), продолжительность нахождения в одном состоянии и высота подъёма этих клапанов в высокой степени оказывают влияние на эффективность двигателя. Без установки системы изменения фаз газораспределения или системы изменения высоты подъёма клапанов момент смены состояния этих клапанов будет независим от скорости и условий работы двигателя, что предполагает усреднённую настройку таких параметров[1]. Система изменения фаз газораспределения позволяет избавиться от этого ограничения, позволяя улучшить эффективность во всем рабочем диапазоне двигателя.

В поршневых двигателях обычно клапаны приводятся в действие посредством распределительного вала. Кулачки открывают (поднимают) клапана на определённый промежуток времени (длительность) во время каждого цикла впуска и выпуска. Момент открытия и закрытия клапанов важен и зависит от положения коленчатого вала. Распределительный вал приводится в движение от коленчатого вала посредством приводного ремня, цепи или зубчатой передачи.

Для работы на высоких скоростях двигателю требуется большой объём воздуха. Однако в таком случае впускные клапана могут закрыться раньше, прежде чем в камеру сгорания поступит необходимое количество воздуха, что снижает эффективность. С другой стороны, при оборудовании двигателя распределительным валом, позволяющим клапанам дольше оставаться открытыми, например, при установке спортивных модификаций кулачков, двигатель будет испытывать проблемы при работе на низких скоростях. Открытие впускных клапанов до закрытия выпускных может приводить к выбросу не сгоревшего топлива из двигателя, что снижает эффективность двигателя и увеличивает токсичность.

Ранние системы изменения фаз газораспределения имели дискретный (ступенчатый) принцип действия. Например, одна настройка момента открытия и закрытия клапанов при работе двигателя на скорости ниже 3500 мин−1, вторая настройка — при работе двигателя на скорости выше 3500 мин−1. Более современные системы производят плавную (бесступенчатую) регулировку момента открытия и закрытия клапанов. Такие системы позволяют производить оптимальную настройку механизма газораспределения для любых скоростей и условий работы двигателя[1][2].

Одной из простейших реализаций системы изменения фаз газораспределения является система сдвига фаз, при которой распределительный вал может быть повёрнут на некоторый угол вперёд или назад относительно положения коленчатого вала. При этом клапана закрываются и открываются раньше или позже, однако высота подъёма клапанов и длительность открытия и закрытия остаются неизменны. Для возможности регулировки длительности в системе изменения фаз газораспределения требуется внедрение более сложных механизмов, включающих, например, несколько кулачковых профилей или колеблющиеся кулачки.

Достигаемые результаты

Позднее закрытие впускных клапанов (англ. late intake valve closing, LIVC). Первыми реализациями изменения момента закрытия клапанов были системы, позволяющие оставлять клапан открытым дольше, чем в двигателе, не оборудованном такой системой. В результате был достигнут эффект выталкивания воздуха из цилиндра во впускной коллектор во время цикла сжатия. Вытесненный из цилиндра воздух повышает давление во впускном коллекторе, вследствие чего при следующем открытии впускного клапана воздух в цилиндр будет подаваться по б́ольшим давлением. В результате внедрения позднего закрытия выпускных клапанов достигается снижение потерь до 40 % во впускном тракте, а также снижение выбросов оксидов азота (NOx) до 24 %. Максимальный крутящий момент двигателя при этом снижается приблизительно на 1 %, а выбросы углеводородов не изменяются[2].

Раннее закрытие впускных клапанов (англ. early intake valve closing, EIVC). Другим способом снижения потерь во впускном тракте, применимым на малых скоростях работы двигателя, является создание высокого разрежения во впускном коллекторе, используя раннее закрытие впускных клапанов. Для достижения этого впускные клапаны должны закрываться в ходе цикла впуска. При малой загрузке потребности двигателя в топливо-воздушной смеси небольшие, однако достаточно высоки требования к наполнению ей цилиндров, что возможно достигнуть внедрением раннего закрытия впускных клапанов[2]. Исследования показали, что на двигателях с ранним закрытием впускных клапанов наблюдается снижение потерь во впускном тракте до 40 %, а также увеличение экономичности до 7 %. Также наблюдается снижение выбросов оксидов азота до 24 % в режимах с частичной нагрузкой. Возможной негативной стороной внедрения раннего закрытия впускных клапанов является существенное снижение температуры в камере сгорания, что может вызвать увеличение выбросов углеводородов[2].

Раннее открытие впускных клапанов (анг

Изменения фаз газораспределения форсированного двигателя

При модернизации двигателя наддувом особое внимание должно быть уделено правильному выбору фаз газообмена. Для двигателя без наддува выбор фаз газообмена определяется задачей наилучшей очистки цилиндра от остаточных газов (оптимальная продувка), задачей получения максимального коэффициента наполнения. Однако, в случае применения турбонаддува важной задачей является обеспечение турбины достаточной энергией выхлопных газов. Обычно для быстроходных двигателей опережения открытия выпускных и впускных клапанов, а также запаздывания их закрытия превышают аналогичные параметры проходных двигателей. Величина этого превышения составляет порядка 10 градусов поворота коленчатого вала. Особенно существенно это превышение для двухтактных ДВС, где это превышение cоставляет 15-20 градусов и более.

Схема фаз газораспределения двигателей без наддува

Рис. Схема фаз газораспределения двигателей без наддува: Б — быстроходный, Т — тихоходный.

Для двигателей с наддувом, с целью обеспечения необходимой мощности турбины, опережение открытия выпускного клапана на 15-30 градусов превышает опережение, применяемое в быстроходных ДВС. Такие изменения требуют изменения конструкции кулачков привода клапанов, а чаще всего механизма газораспределения.

Ещё сложнее проблема решается в двухтактных двигателях, где фазы газораспределения определяются положением окон относительно управляющей кромки поршня.

Схема фаз газообмена быстроходного двигателя с наддувом

Рис. Схема фаз газообмена быстроходного двигателя с наддувом: О.Вып. — увеличение опережения открытии выпускного клапана относительно НМТ, Б — быстроходный, Т — тихоходный.

Правильный выбор фаз газообмена совместно с правильно спроектированной турбиной обеспечивают получение величины рк/рг > 1 (где рг — давление в выпускной системе). Тогда обеспечивается получение положительной работы при смене рабочего тела (положительная работа процессов выпуска-наполнения), а следовательно, повышение механического КПД двигателя (в двигателях без наддува или с наддувом, но при рк/рг < 1, работа всасывания — выпуска, т. е. работа насосных ходов является отрицательной и суммируется со всеми механическими потерями в двигателе).

В процессе газообмена между полостью цилиндра и полостью выпускного коллектора имеют место определённые перепады давления, которые определяют возможности перетекания газа между ними. Причём, закрытие выпускного клапана должно происходить тогда, когда давление в коллекторе начнёт превышать давление в цилиндре. В противном случае часть ОГ поступит обратно в цилиндр, снизится коэффициент наполнения, возрастёт коэффициент остаточных газов и т.д. Уровень давления в коллекторе в данный момент времени определяется тем волновым процессом, который сформировался в процессе открытия выпускного клапана и перетекания газов из цилиндра в выпускной коллектор.

Формирование волн давления в выпускном коллекторе дизелей

Рис. Формирование волн давления в выпускном коллекторе дизелей:
Б — быстроходный,
Т — тихоходный,
рц — давление в цилиндре,
Рвып — давление в выпускном коллекторе,
ОюВып — опережение выпуска,
Вып — шкала фаз выпуска,
Вп — шкала впуска.

Причём линия изменения давления в коллекторе быстроходного двигателя или двигателя с наддувом показана более жирной. Видно, ни при угле п. к. в. (поворота коленчатого вала), соответствующем опережению его открытия (О.Вып) для быстроходного двигателя более раннем, чем для тихоходного, давление в цилиндре рц существенно превышает давление в коллекторе рвып. В коллекторе нарастает давлении и формируется волна. Причём максимальное давление в волне рзб превышает рзт. Вблизи минимума давления в волне начинается открыто впускного клапана. В области ВМТ имеет место перекрытие клапаном. Величина этого перекрытия определяется также параметрами давления в цилиндре, во впускном и выпускном коллекторах. Очевидно, что в период перекрытия клапанов давление во впускном коллекторе должно превышать давление на выпуске, чтобы произошла продувка цилиндра. При этом фазы газораспределения учитывают также и инерционность потоков газа из цилиндра в выпускной коллектор и из впускного коллектора — в цилиндр и в выпускной коллектор. Итак, волна давления, сформированная выпуском ОГ из цилиндра, отразившись от свободного конца коллектора, формирует волну разрежения (уровень рзат и рзаб). Эта волна разрежения в период перекрытия клапанов обеспечивает истечение газов из цилиндра и продувку цилиндра свежим зарядом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *