Мощность как измеряется – «Зачем вводят физические величины средняя мощность мгновенная мощность физика?» – Яндекс.Знатоки

Содержание

определение и виды нагрузок, зависимость от параметров сети, способы учесть киловатты

Как измеряется мощностьПо работе квартирного электросчётчика можно проследить, что накручивание киловатт-часов происходит тем быстрее, чем большая нагрузка подается на сеть. На этом основан один из способов того, как измеряется мощность. Существует несколько разновидностей показателя, обозначаемого по первой букве английского watt — W. От параметров электросхемы жилища зависит величина энергопотребления — оно прямо пропорционально мощности подключённых токоприёмников.

Виды электрической мощности

Физическая величина W представляет собой скорость изменения, передачи, потребления и преобразования энергии рассматриваемой системы. Конкретно определение мощности звучит как отношение выполняемой в какой-то период работы к промежутку времени действия: W=ΔА/Δ t, Дж/с=ватт (Вт).

В отношении электрической сети речь идёт о перемещении заряда под действием напряжения: А=U. Потенциал между двумя точками проводника — и есть показатель энергии движения единичного нуклона. Полная работа протекания всего количества электронов — Ап=U*Q, где Q — общее число зарядов в сети. В этом случае формула мощности приобретает вид W=U*Q/t, выражение Q/t — электроток (I), то есть W=U*I.

В энергетике различают несколько терминов W:

  • Обозначения в электричествеАктивная (полезная W) в ваттах — она выражается в полном преобразовании одной нагрузки в другую. Примером служит лампочка, при горении которой электричество всецело переходит в тепло и свет.
  • Реактивная, Wр — сопровождается появлением индукции, в результате чего часть энергии возвращается в сеть, негативно влияет на состояние схемы, нарушая баланс тока и напряжения. Измеряется в вольт-амперах реактивных ВАр.
  • Полная, W=Wа+Wр — обозначается ВА или кВА, МВА.
  • Мощность смыслового понимания: максимальная — по составу энергетического оборудования, присоединённая — суммарная по всем потребителям сети, трансформаторная — по энергии имеющихся преобразователей, установленная — алгебраически сложенная наибольшая активная мощность приборов, заявленная — определённая договором между потребителем и электроснабжающей организацией. Все перечисленные виды измеряют в мегаваттах — МВт.

Чем измерить напряжениеПодробнее следует остановиться на реактивной составляющей полной мощности. Обычно Wр является паразитной, вредной. Её понятие связано с пусковыми токами, она создаётся в устройствах как результат индуктивных и ёмкостных энергетических колебаний электромагнитного поля. Определяется из выражения Wр=U*I*sinφ, где синус угла — фазовый сдвиг между падением напряжения и рабочим током в трансформаторах, моторах и конденсаторах.

Характер установленного оборудования предопределяет избыточность Wр, когда преобладают ёмкостные приборы и потенциал увеличивается, или дефицитность, если превалирует индуктивность сети (напряжение снижается). При использовании принципа противоположности действия разработаны устройства, позволяющие компенсировать вредность Wр и повысить качество и эффективность энергоснабжения.

Влияние параметров сети на киловатты

Из формулы W=U*I, видно, что мощность зависит одновременно от двух характеристик энергосистемы — напряжения и силы тока. Их влияние на параметры сети паритетное. Процесс образования электрической мощности можно описать следующим образом:

  • U — это работа, потраченная на перемещение 1 кулона;
  • I — количество зарядов, протекающих через проводник за 1 секунду.

По расчётному значению W определяют потреблённую энергию сети, умножив величину мощности на время её расходования. Изменяя один из параметров W в сторону уменьшения или увеличения, можно сохранить энергетику системы на постоянном уровне — получить высокую силу тока при малом напряжении или большой потенциал сети при слабом движении кулонов.

Преобразовательные приборы, предназначенные для перемены параметров, называются трансформаторами напряжения или тока. Их устанавливают на повышающих или понижающих электроподстанциях для передачи энергии от источника к потребителям на дальние расстояния.

Способы измерения нагрузки

Электрическая мощность: ее определение и как измеряется

Узнать мощность прибора можно, обратившись к его инструкции или паспорту, а при отсутствии — посмотреть на шильдик, прикреплённый к корпусу. Если нет данных производителя, то доступны другие способы, чтобы определить энергетику оборудования. Основной из них — измерить нагрузку с помощью ваттметра (прибора для фиксирования электрической мощности).

По назначению их разделяют на 3 класса: постоянного тока и низкочастотные (НЧ), оптические и высокоимпульсивные. Последние относят к радиодиапазону и дробят на 2 вида: включаемые в разрыв линии (проходящая мощность) и монтируемые в конечной точке маршрута как согласованная (поглощаемая) нагрузка. По способу доведения информации до оператора различают приборы цифровые и аналоговые — показывающие стрелочные и самопишущие.

Краткие характеристики некоторых измерителей:

  1. НЧ-ваттметры определение и как измеряетсяНЧ-ваттметры применяют в одно- и трёхфазных сетях промышленной частоты. К этой же категории относятся варметры — приборы для определения реактивной мощности. Аналоговые измерители представлены моделями Д5071, Д8002, Ц301. Цифровые совмещают возможности фиксирования не только составляющей Wа, но и Wр. Итоговая величина выводится на табло и внешние устройства — принтер или электронные хранители информации. Приборы этого типа — ЩВ02, СР3010, MI2010А.
  2. Ваттметры проходящей мощности радиодиапазона. Датчиками в измерителе служат трансформаторы тока и напряжения. Для сверхвысоких частот — термисторные, гальваномагнитные и термоэлектрические преобразователи. Образцы — NAS, М2−32, М2−23.
  3. Ваттметры для измерения поглощаемой нагрузки импульсов радиоспектра — в них используется коэффициент отражения по мощности. Существует несколько разновидностей приборов: термисторные М3−28 и М3−22А, калориметрические МК3−68, МК3−70, М3−13, термоэлектрические М3−93, М3−56, М3−51 ваттметры и с пиковым детектором М3−3А, М3−5А.
  4. Оптические измерители — ОМ3−65, ОМК3−69.

Помимо помощи специальных приборов, мощность узнают посредством применения расчётной формулы: в разрыв одного из питающих проводов включают амперметр, определяют ток и напряжение сети. Перемножение величин даст искомый результат.

Измерение мощности в электрических цепях постоянного и переменного токов: способы и формулы

Очень часто при проектировании электрических схем радиолюбители сталкиваются с проблемой измерения мощности, которую потребляют радиокомпоненты. Специалисты в метрологической сфере рекомендуют два метода, позволяющих вычислить и грамотно рассчитать ее значение. В этом случае нужно разобрать подробнее физический смысл величины, а также ее составляющих, от которых она зависит.

Измерение мощности

Общие сведения

При проектировании устройств нужно уметь правильно рассчитывать мощность электроэнергии электрооборудованием. Это необходимо, прежде всего, для долговечной работы устройства. Если изделие работает на износ, то оно способно выйти из строя сразу или в течение некоторого времени.

Такой вариант считается недопустимым, поскольку существуют виды техники, которые должны работать без отказов (аппарат искусственного дыхания, контроль уровня метана в шахте и так далее), так как от этого зависит человеческая жизнь. К основным характеристикам электрической энергии относятся следующие: мощность, сила тока, напряжение (разность потенциалов) и электропроводимость (сопротивление) материалов.

Мощность потребителя

 измерение мощности в цепях переменного тока

Мощность не следует путать с электрической энергией. Единицей измерения первой является ватт (Вт), название которой произошло от фамилии известного физика Джеймса Уатта. Физическим смыслом 1 Вт является расход электрической энергии за единицу времени, равной 1 секунде (1 Вт = расход 1 джоуля за 1 секунду).

Существуют производные единицы измерения: милливатт (1 мВт = 0,001 Вт), киловатт (1 кВт = 1000 Вт), мегаватт (1 МВт = 1000 кВт = 1000000 Вт), гигаватт (1 ГВт = 1000 МВт = 1000000 кВт = 1000000000 Вт) и так далее. Для измерения электрической энергии применяются специальные счетчики, а ее единицей измерения является Вт*ч.

Ватт можно связать с некоторыми физическими величинами: 1 Вт = 1 Дж/с = (1 кг * sqr (м)) / (c * sqr ©) = 1 Н * м / с = 746 л. с. Последнее числовое значение называется электрической лошадиной силой. Ваттметр — измеритель электрической мощности. Однако ее величину можно определить и другим способом. Для этого следует разобрать физические величины, от которых она зависит.

Сила тока

Измерение электрической энергии

Количество электрического заряда, который проходит через токопроводящий материал за единицу времени, называется силой электрического тока. Сокращенно величину называют силой тока или током. Она обозначается литерами «I» или «i» и имеет направление (векторная величина). Измеряется ток в амперах (А). Существуют также производные единицы, образованные при помощи приставок: 1 мА = 0,001 А, 1 кА = 1000 А и так далее. Измерить его значение можно амперметром. Для этого его нужно подключать последовательно в электрическую цепь.

Физическим смыслом тока в 1 А является прохождение электрического заряда в 1 Кл (кулон) за 1 секунду через площадь поперечного сечения S. В 1 кулоне содержится примерно 6,241*10^(18) электронов.

Ток в научной интерпретации классифицируется на постоянный и переменный. Первый вид не изменяет своего направления за единицу времени, но его амплитудные значения могут изменяться. Направление и амплитуда переменного тока изменяется по определенному закону (синусоидальный и несинусоидальный). Основным параметром считается его частота. Определяется тип переменного тока с помощью осциллографа.

Электрическое напряжение

Электрическое напряжение

Из курса физики известно, что каждое вещество состоит из атомов, которые обладают нейтральным зарядом. Они состоят из субатомных частиц. К ним относятся следующие: протоны, электроны и нейтроны. Первые имеют положительный заряд, вторые — отрицательный, а третьи — не заряжены вообще.

Суммарный заряд протонов компенсирует заряд всех электронов. Однако под действием внешних сил это равенство нарушается, и электрон «вырывается» из атома, который уже обладает положительным зарядом. Он притягивает электрон с соседнего атома, и процесс повторяется до тех пор, пока энергия не будет минимальной (меньше энергии «вырывания» электрона).

При межатомном взаимодействии образуется электромагнитное поле с отрицательной или положительной составляющими. Разность между двумя точками противоположных по знаку составляющих называется электрическим напряжением. Работа электромагнитного поля по перемещению точечного электрического заряда из точки А в точку В называется разностью потенциалов. Физический смысл напряжения (U): разность потенциалов в 1 В между двумя точечными зарядами в 1 Кл, на перемещение которых тратится энергия электромагнитного поля, равная 1 Дж.

Единицей измерения является вольт (В). Определить значение разности потенциалов можно с помощью вольтметра, который подключается параллельно. Производными единицами измерения считаются следующие: 1 мВ = 0,001 В, 1 кВ = 1000 В, 1 МВ = 1000 кВ = 1000000 В и так далее.

Сопротивление электрической цепи

Электропроводимость материала зависит от нескольких факторов: электронной конфигурации, типа вещества, геометрических параметров и температуры. Сведения об электронной конфигурации вещества можно получить из периодической таблицы Д. И. Менделеева. Согласно этой информации вещества бывают:

  1. Проводниками.
  2. Полупроводниками.
  3. Диэлектриками.

К первой группе следует отнести все металлы, электролиты (растворы, проводящие ток) и ионизированные газы. Носителями электрического заряда в металлах являются электроны. В растворах их роль выполняют ионы, которые бывают положительными (анионы) и отрицательными (катионы). Свободными носителями заряженных частиц в газах считаются свободные электроны и положительно заряженные ионы.

Полупроводники проводят электричество только при определенных условиях. Например, при воздействии на него внешних сил. Под их действием кулоновские связи электрона с ядром уменьшаются. При этом отрицательно заряженная частица «вырывается». На ее месте образуется «дырка», обладающая положительным зарядом. Она притягивает соседний электрон, вырывая его с атома. В результате этого осуществляется движение электронов и дырок. Изоляторы или диэлектрики вообще не проводят электричество. К ним относятся материалы без свободных носителей заряда, а также инертные газы.

Сопротивление электрической цепи

В проводниках при повышении температурных показателей происходит рост величины сопротивления. При этом происходит разрушение и искажение кристаллической решетки. Заряженные частицы сталкиваются (взаимодействуют) с атомами и другими частицами материала. В результате их движение замедляется, но потом снова возобновляется под действием электромагнитного поля. Процесс этого «взаимодействия» называется электрической проводимостью вещества. Однако в полупроводниках при повышении температуры эта величина уменьшается. К геометрии материалов следует отнести следующие: длину и площадь поперечного сечения.

Сопротивление измеряется в Омах (Ом) при помощи омметра, который подсоединяется параллельно к участку цепи или радиодетали. Существуют производные единицы измерения: 1 кОм = 1000 Ом, 1 МОм = 1000 кОм = 1000000 Ом.

Методы измерения

Методы измерения тока

Мощность можно определить двумя способами: косвенным и прямым. В первом случае это делается при помощи амперметра и вольтметра, а также осциллографа. Измеряются значения напряжения и тока, а затем по формулам вычисляется мощность. Этот способ имеет один недостаток: величина мощности получается с некоторой погрешностью.

При использовании прямого метода используется специальный прибор-измеритель. Он называется ваттметром и показывает мгновенное значение мощности. У каждого из способов есть свои достоинства и недостатки. Какой из методов наиболее оптимален, определяет сам радиолюбитель. Если проектируется какое-либо изделие, которое отличается надежностью, то следует применять прямой метод. В других случаях рекомендуется воспользоваться косвенным методом.

Косвенный способ

Мощность в цепях постоянного и переменного токов определяется различными способами. Для каждого случая существуют свои законы и формулы. Однако мощность можно не рассчитывать, поскольку она указана на электрооборудовании. Расчет применяется только при проектировании устройств.

Для цепей постоянного тока нужно воспользоваться формулой: P = U * I. Ее можно вывести из закона Ома для участка или полной цепи. Если рассматривается полная цепь, то формула принимает другой вид с учетом ЭДС (е): P = e * I. Основные соотношения для расчета:

  1. Для участка электрической цепи: P = I * I * R = U * U / R.
  2. Для полной цепи, в которой подключен электродвигатель или выполняется зарядка аккумулятора (потребление): P = I * e = I * e — sqr (I) * Rвн = I * (e — (I * Rвн)).
  3. В цепи присутствует генератор или гальванический элемент (отдача): P = I * (e + (I * Rвн)).

Эти соотношения невозможно применять для цепей переменного тока, поскольку он подчиняется другим физическим законам. При измерении мощности в цепях переменного тока следует учитывать ее составляющие (активная, реактивная и полная). Если в цепи присутствует только резистор, то мощность считается активной. При наличии емкости или индуктивности — реактивной. Полная — сумма активной и реактивной составляющих.

Для вычисления первого типа физической величины применяется формула такого вида: Ра = I * U * cos (a). Значения тока и напряжения являются среднеквадратичными, а cos (a) — косинус угла между ними. Для определения реактивной мощности нужно воспользоваться следующей формулой: Qр = I * U * sin (a). Если нагрузка в цепи является индуктивной, то значение будет больше 0. В противном случае — меньше 0. Полная мощность Р определяется по следующему соотношению: P = Pa + Qp.

Прямое определение величины

Для определения значения мощности в цепях переменного и постоянного тока применяются ваттметры. В них используются электродинамические или ферроидальные механизмы. Приборы с электродинамическим механизмом выпускаются в виде переносных приборов. Они обладают высоким классом точности. Измерители мощности рекомендуется применять при выполнении точных расчетов для цепей постоянного и переменного тока с частотой до 5 кГц.

Измерительные приборы

Ферродинамические приборы изготавливаются в виде электронных узлов, которые вставляются в измерительные стенды или щитовые. Основное их назначение — контроль приблизительных параметров потребления мощности электрооборудованием. Они обладают низким классом точности и применяются для измерения значений мощности переменного тока. При постоянном токе погрешность увеличивается, поскольку это обусловлено искажением петли гистерезиса ферромагнитных сердечников.

По диапазону частот приборы можно разделить на две группы: низкочастотные и радиочастотные. Ваттметры низких частот применяются в сетях промышленного питания переменного тока. Радиочастотный тип рекомендуется применять для точных измерений при проектировании различной техники. Они делятся на две категории по мощности:

  1. Проходящие.
  2. Поглощающие.

Первый вид подключается в разрыв линии, а второй — в ее конец в качестве нагрузки согласования. Кроме того, приборы для измерения мощности бывают аналоговыми и цифровыми.

Ваттметр прибор

При измерении мощности на высоких частотах применяются электронные и термоэлектронные ваттметры. Главным узлом считается микроконтроллер и преобразователь активной мощности. Последний преобразовывает переменный ток в постоянный. После этого происходит перемножение в микроконтроллере силы тока и напряжения. Результатом является сигнал на выходе, который зависит от I и U.

Ваттметр состоит из двух катушек. Первая из них подключается последовательно в цепь нагрузки, а другая (подвижная с резистором) — параллельно. В цифровых моделях роль катушек выполняют датчики тока и напряжения. Прибор имеет две пары зажимов. Одна пара применяется для последовательной цепи, а другая — для параллельной. Для правильного включения ваттметра выполняется обозначение * одной из двух пар зажимов.

Таким образом, для измерения мощности электрического тока применяются два метода. Первый из них является косвенным, а второй — прямым. Последний рекомендуется применять при проектировании сложной техники.

Ваттметр прибор Загрузка…

Измерение электрической мощности

Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.

Измерение мощности в цепи постоянного тока

Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью последовательно включенного амперметра измеряют ток I в цепи, а с помощью параллельно подключенного вольтметра измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.

Чтоб уменьшить погрешность измерений из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:

Измерение мощности косвенным методом в цепи постоянного тока при малом сопротивлении нагрузки

А при большом значении R такую схему:

Измерение мощности косвенным методом в цепи постоянного тока при большом сопротивлении нагрузки

Измерение мощности в однофазных цепях переменного тока

Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – полная, активная и реактивная. Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.

Замер же активной P=UIcosφ и реактивной  Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:

Схема подключения однофазного ваттметра

Где токовую обмотку необходимо подключить последовательно с нагрузкой Rн, и, соответственно, обмотку напряжения параллельно нагрузке.

Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.

Измерение мощности в трехфазных цепях переменного тока

Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:

Полная мощность трехфазной сети

Uл – напряжение линейное, I- фазный ток.

Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:

Полная мощность нессиметричной трехфазной сети

При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:

Схема подключения трехфазного ваттметра с нулевым проводом

Общей энергией потребляемой из сети будет сумма показаний ваттметров:

Активная мощность при измерении ваттметром

Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):

Схема подключения трехфазного ваттметра с без нулевого провода

Сумму их показаний можно выразить следующим выражением:

Сумма показаний ваттметров для трехпроводной цепи

При симметричной нагрузке применима такая же формула как и для полной энергии:

Активная мощность трехфазной цепи

Где φ – сдвиг между током и напряжением (угол фазового сдвига).

Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:

Измерение реактивной мощности ваттметром

Измерение реактивной мощности ваттметром будет равна

Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.

Процесс измерения активной и реактивной мощности

Счетчиками индукционными или электронными производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.

 

обозначение, в чем измеряется и какой её максимум

Электрическая мощность любого прибора — важный показатель, который позволяет определить возможность его работы в сетях абонента. Этот показатель применяется для расчета электрических схем и режима работы электроустановки, для обеспечения надежной работы электросетей. Чем мощность приемников будет большей, тем быстрее они выполнят нужную работу.

Что называется мощностью электрического тока

Мощность электрического тока (EP -electric power), потребляемая электрооборудованием, равна напряжению на нем, умноженному на ток, протекающий через него.

P = U*I

Данная формула показывает, в каких единицах измеряется электрическая мощность — это В⋅А.

Изменение тока

Формулировка верна для сетей постоянного тока (DC — Direct Current), а в сетях переменного тока (AC -Alternating Current) ситуация более сложна для нагрузок, которые являются реактивными. Чтобы рассчитать истинную EP, потребляемую приемником, необходимо учитывать несинусоидальные формы величин, а также углы сдвига тока опережение/запаздывание, вызванных реактивными нагрузками от присутствия в сети индуктивности (L) и конденсаторов ©. В таком случае истинная EP, будет меньше, чем простое произведение: U*I.

Треугольник мощности

Важно! Определение такого показателя потребуется при выборе источников питания AC, проектировании проводки и защите электрических цепей. Это вызвано тем, что, хотя кажущаяся энергия больше, чем истинная потребляемая EP, протекающий через нагрузку ток становится большим. Под него необходимо будет выбрать размеры проводов и устройства защиты оборудования электросети.

Виды электрических мощностей

Существует энергия, генерируемая некоторыми механизмами для создания электромагнитного и электрического поля, которая им необходима для функционирования, — это реактивная составляющая нагрузки. С другой стороны, активная составляющая показывает способность агрегата преобразовать полученную энергию в механическую работу или тепло.

Этот полезный эффект называется активной мощностью и измеряется в кВтч.

Приемники, образованные чистыми резисторами: нагревательные приборы, лампы накаливания и другие, обладают исключительно этим типом нагрузки.

Обратите внимание! Коэффициент мощности относится к активному и кажущемуся энергопотреблению установки. Кажущаяся энергия в свою очередь зависит от активной и реактивной энергии. При одинаковом потреблении активной нагрузки, чем выше потребление реактивной составляющей, тем ниже коэффициент.

Синусоидальный ток

Активная мощность

Активная — реальная или истинная мощность (Pa) выполняет фактическую работу в нагрузке и выражается в Вт.

Для однофазной цепи:

Pa = I*U* cosφ = UI PF

где:

  • φ= фазовый угол;
  • PF = cosφ -коэффициент нагрузки.

Трехфазная сеть:

Pa = 3* U* I* cosφ = 1,732 *U*I* PF

Реактивная мощность

Реактивная мощность (Pr) присутствует у электродвигателей, трансформаторов и устройств с реактивными сопротивлениями и индуктивностью. Эти устройства, как правило, индуктивные, поглощают энергию из сети, создавая магнитные поля, и возвращают ее, при смене направления синусоиды. При таком обмене энергией возникает дополнительное потребление, которое не способно быть использовано некоторыми приемниками. Этот вид называется реактивной энергией и измеряется в кВАр. Она вызывает перегрузку в линиях, трансформаторах и генераторах.

Для однофазной цепи:

Pr = U*I* sinφ

Реактивная мощность

Трехфазная сеть:

Pr = 3* U *I *sinφ

Во многих отношениях реактивную мощность можно рассматривать, как пену на бокале пива. Покупатель платит бармену за полный стакан пива, но выпивает только само пиво, которое всегда меньше.

Основным преимуществом использования распределения электроэнергии переменного тока является то, что уровень напряжения питания можно изменять с помощью трансформаторов, но не все электрооборудование потребляет реактивную мощность, которая занимает часть нагрузки на линиях электропередач.

В то время, как реальная или активная мощность — это энергия, подаваемая для работы двигателя, обогрева дома или освещения электрической лампочки, реактивная мощность обеспечивает важную функцию регулирования напряжения, помогая тем самым эффективно перемещать энергию через энергосистему по линиям электропередач.

Оборудование энергосистемы рассчитано на работу в пределах ± 5% от номинального напряжения. Колебания уровней напряжения приводят к неисправности различных приборов. Высокое напряжение повреждает изоляцию обмоток, в то время как низкое напряжение вызывает плохую работу различного оборудования, например, низкую освещенность шин или перегрев асинхронных двигателей.

Если потребляемая мощность больше, чем потребляемая с помощью передающих линий, ток, потребляемый от линий питания, увеличивается до такого высокого уровня, что вызывает резкое падение напряжения на стороне приемника. Если низкое напряжение будет продолжать падать — это приведет к отключению генераторирующих блоков, перегреву двигателей и выходу из строя другого оборудования.

Чтобы преодолеть это, реактивная мощность должна подаваться на нагрузку путем помещения реактивных катушек индуктивности или реакторов в линии электропередачи. Мощность этих реакторов зависит от количества видимой мощности, которая должна быть подана.

Полная мощность

Полная мощность — это энергия, подаваемая от поставщика в электросеть, для покрытия активной и реактивной составляющих.

Полная мощность

Она рассчитывается по формуле:

S = (Pa2 + Pr2 ) ½

Где: S — подача питания в цепь, В⋅А.

Кажущаяся EP будет измеряться в вольт-амперах (В⋅А) — напряжение системы, умноженное на текущий ток. Это комплексное значение, равное векторной сумме активной и реактивной энергии.

Однофазная сеть:

S = U*I

Где : U — электро потенциал, В.

Трехфазная сеть:

S = 3*U*I = 1732* U*I

Комплексная мощность

Взаимоотношения между тремя данными показателями легли в основу работы всего современного силового оборудования электрических сетей. Взаимосвязь между величинами выражается путем использования треугольника мощности. Применение векторов упрощает ряд математических операций. Преобразование комплексных чисел дает возможность установить размер комплексной мощности:

S=P+ jQ

Где: j — число, квадрат которого равен − 1 или мнимая единица.

Для примера можно проанализировать работу идеальной цепи из источника, создающего переменную ЭДС и имеющую общую нагрузку, в которой I и U, изменяются по синусоиде. В случае, когда потребление только резистивное/активное, I и U изменяют полярность синхронно, направление I не изменяет знак и всегда имеет положительное значение, в таком варианте потребляется нагрузка Pa.

В случае реактивной нагрузки — U и I имеют фазовый сдвиг на 90 градусов, а полезная энергия равна нулю. За 1/4 периода I создает реактивную нагрузку, а последующие 1/4 периода — возвращается. Когда схема состоит из параллельно включенных L и C, то, протекающие через них токи, имеют противоположные знаки. Поэтому C создает нагрузку Pr, а L гасит её.

Неактивная мощность

Неактивная или пассивная нагрузки образуется в AC-цепях. Она равняется квадратному корню из суммы (Pa2+Рr2), когда реактивная нагрузка отсутствует, то пассивная будет равна модулю |Pa|.

Присутствие нелинейных токовых искажений в сетях обусловлено несоблюдением направленности между U/I, инициированное нелинейностью сети, в частности, когда энергия обладает импульсной характеристикой. В случае нелинейных режимов возрастает полная EP. Такая нагрузка не считается активной, потребляя Pr и энергию иных токовых искажений. Она измеряется в единицах обычной мощности.

В чем измеряется электрическая мощность

Мощность — это энергия за единицу времени. Единица СИ для мощности — это ватт (Вт), который равен джоулю в секунду (Дж/с), при этом джоуль — единица СИ для энергии, а секунда — единица СИ для времени.

Единицы мощности

Умножение киловатта на час дает киловатт-час (кВт • ч), единицу, часто используемую электроэнергетическими компаниями для представления количества электрической энергии, произведенной или предоставленной потребителям. Аналогичным образом энергоемкость батарей нужно измерять в единицах ампер-часов (А-ч) или для переносных батарей в миллиамперах-часах (мА-ч).

В единицах СИ ватт имеет обозначение W. Имя сохранилось в знак признания Джеймса Уатта, который ввел термин «лошадиная сила» — старая единица мощности.

Единицы преобразования энергии:

  • Лошадиные силы (HP) — 746 Вт;
  • килоВатты (кВт) — 1×1000 Вт;
  • мегаватты (МВт) −1×1000000 Вт;
  • гигаватт (ГВт) — 1×1000000000 Вт.

Как определить максимальную мощность тока

Полезная мощность обладает наибольшим значением в случае, когда нагрузочное сопротивление — R равняется сопротивлению внутри источника — r.

R = r.

Pmax=E2 /4r

Где: E — электродвижущая сила (ЭДС) источника.

Можно рассчитать максимальную токовую нагрузку, которую будет использовать электрическое устройство, исходя из номинальной нагрузки и входного напряжения переменного тока. Номинальная энергонагрузка будет указана в технических характеристиках устройства, руководстве или на маркировке.

Так, например, если номинальное энергопотребление электрического устройства (P) составляет 12 Вт, максимальное потребление тока при различных напряжениях U= 120 В переменной сети будет:

I = 12/120 = 0,100 А или 100 мА

В переменной сети 220 В:

I = 12 / 220= 0,055A или 55 мА

Мощность электрооборудования

Во всех паспортных данных на электрооборудование указывают не только его активную нагрузку, но и коэффициент мощности, который является очень важным параметром, в сетях переменного тока AC и определяет, насколько эффективно электроэнергия используется нагрузкой.

Косинус фи

Это рациональное число от −1 до 1, и никогда не равняется единице. Коэффициент мощности системы зависит от типа нагрузки: C, L или R. Первые две отрицательно влияет на PF = cosφ системы. Его большое значение приводит к увеличению тока, потребляемого оборудованием.

PF определяется как отношение реальной активной нагрузки к полной. Его также можно определить, зная по косинусу фазового сдвига между U и I в AC-цепи. Улучшение PF направлено на оптимальное использование электроэнергии, сокращение на электроэнергию и снижение потерь в сетях. Силовые трансформаторы не зависят от коэффициента мощности. Если он близок к единице, для того же номинального значения КВА трансформатора, к нему может быть подключена большая нагрузка. Большинство силовых нагрузок являются индуктивными и заставляют ток отставать от напряжения.

Дополнительная информация! Чтобы преодолеть сдвиг, адаптировано несколько методов коррекции коэффициента PF, помогающих нейтрализовать этот запаздывающий разрыв. Наиболее распространенным методом коррекции коэффициента PF является использование статических конденсаторов параллельно нагрузке. Они подают опережающий ток в систему, тем самым сокращая отставание. Конденсаторные батареи подключены параллельно к индуктивным нагрузкам. Измерить PF можно фазометром — измерительный прибор, определяющий угол сдвига фаз.

Главными параметрами электроприборов считаются: U, I и P. Потребляемую мощность всех устройств абонента учитывают при расчете электропроводки жилого помещения. В противном случае, при включении в сеть большого количества устройств, наступит перегрузка сети. Электропроводка не выдержит ток от электротехнических агрегатов, что приведет к плавлению изоляции, короткого замыкания в сети и воспламенению проводов.

единица измерения и что должно измеряться в киловаттах, как рассчитать

Единица измерения киловаттПри подсчете энергии, потребляемой различными электрическими приборами, часто используют такие единицы, как ватт и киловатт-час. По названию они похожи и применяются в одной и той же сфере. Однако на самом деле эти единицы во многом отличаются друг от друга. Если в ваттах измеряется мощность, то кВт-час показывает, сколько энергии было потреблено прибором за определенный период его работы.

Ватт, киловатт и киловатт-час

Единица измерения ватт получила свое название в честь ученого Джеймса Ватта, который занимался изучением электричества в позапрошлом веке. Именно ему приписывают изобретение универсальной паровой машины.

Что измеряется в кВт В ваттах сегодня измеряется любая мощность, а не только электрическая. Например, для измерения мощности двигателя автомобиля наряду с лошадиными силами также применяется ватт. Однако чаще всего используется не сама единица «ватт», а производная от нее — киловатт (кВт). По аналогии с метром и километром, а также с граммом и килограммом один киловатт равен тысяче ватт.

Нередко также подсчет энергии ведется и в других единицах, кратных ватту. Например, для измерения большой мощности удобно применять мегаватт — единицу, которая соответствует миллиону ватт. Также можно использовать и другие префиксы международной системы единиц, в том числе и те, которые соответствуют десятым, сотым, тысячным долям.

Например:

  • дециватт — это десятая часть ватта;
  • сантиватт — его сотая часть;
  • милливатт — это тысячная часть ватта.

Мощность электротокаМощность электротока, которая потребляется обычными бытовыми приборами, такими как светильники, холодильник, телевизор лучше всего измеряется в кВт. Если ватт и производные единицы внесены в систему СИ, то киловатт-час там отсутствует. КВт·ч — это единица для измерения, которая внесистемная. Она была создана только для того, чтобы вести учет производящейся или, наоборот, использующейся электрической энергии.

Применение кВт·ч на территории РФ регламентирует ГОСТ, где однозначно указано название, обозначение и сфера, в которой она используется. Обозначаться киловатт-час может либо четырьмя русскими буквами, либо тремя английскими. Русское обозначение — «кВт·ч», а английское — «kW·h».

Применение величины

Согласно ГОСТу, кВт·ч — это основная единица для ведения учета количества применяющейся электрической энергии. Главное ее преимущество — удобство использования. Результаты при ее использовании получаются наиболее приемлемыми. Однако никто не запрещает при необходимости использовать и кратные единицы, например, мегаватт-час, гигаватт-час.

Что измеряется в киловатт-часГОСТом также установлены правила написания единицы измерения — «киловатт-час». Ее полное название необходимо писать с применением дефиса. Если используется краткое обозначение английскими или русскими буквами, то перед «h» и «ч» нужно ставить точку в середине строки. По сути, такая точка является знаком умножения.

Мощность приборов, работающих от электричества, а также потребляемую ими за час энергию принято указывать на их корпусе. При этом единица «ватт» может быть обозначена английской буквой — «W». Выбор той или иной производной единицы зависит от производителя.

Нередко можно видеть произведенные разными компаниями бытовые микроволновые печи, мощность и энергопотребление на корпусах которых указаны в разных единицах измерения.

Это могут быть кВт-часы, кВт или даже вольт-амперы. Например:

  1. Мощность микроволновой печиЕсли на корпусе микроволновой печи присутствуют обозначения «кВт», «kW» или «kVt», то по числу, расположенному перед ними, можно судить о тепловой мощности этого прибора.
  2. Если же на корпусе присутствуют символы «кВт·ч» и «kW·h», то это значит, что производитель микроволновой печи решил указать электрическую мощность, которую потребляет прибор за определенный период своей работы.

Особенности расчета

Несмотря на то что мощность электроприборов зачастую указывается на их корпусах, все же нередко приходится самостоятельно подсчитывать, сколько электроэнергии потребляет та или иная бытовая техника. Чтобы не ошибиться при подсчете и прийти к правильному результату, нужно не только знать об отличиях между кВт и кВт-часами, но и уметь переводить эти величины из одной в другую. Например, мощность часто требуется перевести в энергию и наоборот.

Прежде чем приступать к подсчету энергии, которая потребляется тем или иным бытовым электрическим прибором, необходимо приготовить калькулятор, так как цифры могут получиться такими, что оперировать ими в уме будет довольно трудно.

Перед переводом мощности в энергию, то есть кВт в кВт-час, необходимо уточнить, что предварительно измерялось. Если проводились измерения показаний счетчика, то в этом случае все будет крайне просто. Достаточно лишь исправить «киловатт» на «киловатт-час».

Показания счетчика — это и есть энергия, которую потребляют электрические приборы за единицу времени. Измеряется она также в киловатт-часах. Просто в быту название этой единицы утратило слово «час». В результате она сокращенно стала называться просто кВт. Довольно часто владельцы какого-либо бытового электрического прибора переводят кВт в кВт-часы для того, чтобы определить, сколько энергии израсходуется во время его работы и, следовательно, как часто его нужно включать.

Если прибор будет потреблять слишком много энергии, то использовать придется редко, чтобы сэкономить электроэнергию. Чтобы безошибочно определить, сколько энергии потребуется тому или иному оборудованию, например, электрообогревателю, нужно знать время его работы и мощность, которая, как правило, указывается на корпусе. Например, если мощность прибора составляет 2 кВт, а работает он 3 часа, то в результате простого математического умножения можно выяснить, что суммарное потребление электроэнергии за это время — 6 киловатт-часов.

Особенности расчета мощности

Небольшие проблемы могут возникнуть при подсчете потребляемой энергии, если мощность указана не в кВт, а в других единицах измерения. Ситуация усугубится, если еще и время измеряется не в часах, а, например, в минутах. Тогда перед тем как приступать к расчетам, необходимо перевести единицы мощности в кВт, а единицы времени — в часы. Только в этом случае результаты подсчета будут правильными.

В качестве примера можно взять обыкновенную лампу, производители которой утверждают, что ее мощность равна 100 Вт. Допустим, нужно определить, сколько используется электроэнергии, если она будет гореть целые сутки. Следует определить мощность лампочки в киловатт. Поскольку Вт (ватт) — это единица, которая является тысячной частью киловатта, нужно просто разделить это значение мощности лампочки на 1000.

То есть 100 Вт делится на 1000 и получается в результате 0,1 киловатта. На этом перевод из одной единицы мощности в другую заканчивается.

Необходимо перевести в нужную единицу показатель времени. По условию требуется определить, сколько энергии израсходует осветительный прибор за сутки. Здесь просто: в сутках 24 часа, и поэтому именно эту цифру можно считать результатом перевода единиц времени. Остается только умножить полученные в результате перевода числа и узнать, сколько энергии будет израсходовано лампочкой. 0,1 киловатт умножается на 24 часа, и в результате получается число — 2,4. Это означает, что энергопотребление прибора составляет 2,4 кВт·ч.

Так можно определить не только количество энергии, которое потребляет какой-то один прибор, но и общее энергопотребление всего электрооборудования, которое есть в доме. Главное, знать продолжительность его работы и мощность.

Потребляемая энергия некоторых приборов

Показания счетчика Электрическая плита, которая имеет мощность 2 кВт за полчаса работы израсходует энергию, равную 1 кВт·ч. Обычная лампа, обладающая мощностью 100 Вт, при ежедневном включении на 8 часов за месяц потребит энергию, равную 24 киловатт-час. Если вместо этой лампы в таком же режиме использовать энергосберегающую, мощность которой составляет 20 Вт, то месячный расход энергии на освещение сократится в 5 раз. Энергопотребление такой лампы за месяц составит 4,8 кВт·ч.

С помощью киловатт-часов измеряется не только энергопотребление, но и, наоборот, отдача электроэнергии. Например, аккумуляторная батарея емкостью 50 А·ч и напряжением в 12 вольт, способна выработать энергию, равную 0,6 кВт·ч.

Важно не путать мощность электроприбора, которая измеряется в обычных ваттах или киловаттах с энергопотреблением этого прибора, измеряющимся уже в киловатт-часах. Несмотря на схожесть названий этих единиц и на то, что применяются они в одной и той же сфере, разница между ними большая.

Ваттметр — Википедия

Ваттметр (ватт + др.-греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала.

По назначению и диапазону частот ваттметры можно разделить на три категории — низкочастотные (и постоянного тока), радиочастотные и оптические. Ваттметры радиодиапазона по назначению делятся на два вида: проходящей мощности, включаемые в разрыв линии передачи, и поглощаемой мощности, подключаемые к концу линии в качестве согласованной нагрузки. В зависимости от способа функционального преобразования измерительной информации и её вывода оператору ваттметры бывают аналоговые (показывающие и самопишущие) и цифровые.

Ваттметры низкой частоты и постоянного тока[править | править код]

Аналоговый ваттметр

НЧ-ваттметры используются преимущественно в сетях электропитания промышленной частоты для измерения потребляемой мощности, могут быть однофазные и трехфазные. Отдельную подгруппу составляют варметры — измерители реактивной мощности. Цифровые приборы обычно совмещают возможность измерения активной и реактивной мощности.

Аналоговые НЧ-ваттметры электродинамической или ферродинамической системы имеют в измерительном механизме две катушки, одна из которых подключается последовательно нагрузке, другая параллельно. Взаимодействие магнитных полей катушек создает вращающий момент, отклоняющий стрелку прибора, пропорциональный произведению силы тока, напряжения и косинуса или синуса разности фаз (для измерения соответственно активной или реактивной мощности).

  • ПРИМЕРЫ: Ц301, Д8002, Д5071

Цифровые НЧ-ваттметры имеют в качестве входных цепей два датчика — по току и по напряжению, подключаемые соответственно последовательно и параллельно нагрузке, датчики могут быть на основе измерительных трансформаторов, термисторов, термопар и другие. Информация с датчиков через АЦП передается на вычислительное устройство, в котором рассчитываются активная и реактивная мощность, далее итоговая информация выводится на цифровое табло и, при необходимости, на внешние устройства (для хранения, печати данных и так далее).

  • ПРИМЕРЫ: MI 2010А, СР3010, ЩВ02

Ваттметры поглощаемой мощности радиодиапазона[править | править код]

Детекторный СВЧ-ваттметр М3-5С

Ваттметры поглощаемой мощности образуют весьма большую и широко используемую подгруппу ваттметров радиодиапазона. Видовое деление этой подгруппы связано в основном с применением различных типов первичных преобразователей (приемных головок). В серийно выпускаемых ваттметрах используются преобразователи на базе термистора, термопары и пикового детектора; значительно реже, в экспериментальных работах, применяются датчики, основанные на других принципах — пондеромоторном, гальваномагнитном и т. д. При работе с ваттметрами поглощаемой мощности следует помнить, что из-за неидеального согласования входного сопротивления приемных головок с волновым сопротивлением линии, часть энергии отражается и реально ваттметр измеряет не падающую мощность, а поглощаемую, которая отличается от падающей на величину, равную KP×Pпад, где KP — коэффициент отражения по мощности.

Термисторные (болометрические) ваттметры состоят из приемного преобразователя на базе термистора (или болометра) и измерительного моста с источником низкочастотного переменного тока для подогрева термистора. Принцип действия термисторного преобразователя состоит в зависимости сопротивления термистора от температуры его нагрева, которая, в свою очередь зависит от рассеиваемой мощности сигнала, подаваемого на него. Измерение осуществляется методом сравнения мощности измеряемого сигнала, рассеиваемой в термисторе и разогревающей его, с мощностью тока низкой частоты, вызывающей такой же нагрев термистора. В процессе измерения полная мощность, рассеиваемая на термисторе (при подаче на него одновременно измеряемого сигнала и тока подогрева) и, соответственно, сопротивление термистора поддерживается одинаковым с помощью измерительного моста, который уравновешивается изменением тока подогрева. В первых моделях термисторных ваттметров уравновешивание осуществлялось вручную, в современных ваттметрах уравновешивание автоматическое, показания выводятся в цифровом виде. К недостаткам термисторных ваттметров относится их малый динамический диапазон — максимальная мощность рассеивания — несколько милливатт, это ограничение преодолевается использованием аттенюаторов, делящих мощность, но вносящих при этом дополнительную погрешность.

  • ПРИМЕРЫ: М3-22А, М3-28

Калориметрические ваттметры отличаются от термисторных тем, что для поглощения измеряемой мощности используется отдельная нагрузка, от которой тепло передается на термисторный преобразователь через рабочую среду — дистиллированную воду или специальную жидкость. Жидкая среда циркулирует со строго заданной скоростью потока, омывая по очереди входную нагрузку, преобразователь и охлаждающий теплообменник.

  • ПРИМЕРЫ: М3-13, МК3-68, МК3-70

Термоэлектрические ваттметры в качестве первичного преобразователя используют термопару (или блок термопар) прямого или косвенного нагрева. При измерении горячий спай термопары нагревается под воздействием подводимой мощности измеряемого сигнала, при этом вырабатывается термо-э.д.с. Измерительная информация в виде сигнала постоянного тока поступает на электронный блок (аналоговый или цифровой), где обрабатывается и поступает на показывающее устройство.

  • ПРИМЕРЫ: М3-51, М3-56, М3-93

Ваттметры с пиковым детектором просты в устройстве, в отличие от других видов ваттметров способны измерять не только мощность непрерывного сигнала, но и пиковую мощность радиоимпульсов, однако, из-за низкой точности измерения в настоящее время применяются редко. По принципу действия такой ваттметр представляет собой выпрямительный вольтметр переменного тока, имеющий на входе нагрузку с сопротивлением, равным волновому сопротивлению кабеля, и с отcчетным устройством, проградуированным в значениях мощности.

  • ПРИМЕРЫ: М3-3А, М3-5А

Ваттметры проходящей мощности радиодиапазона[править | править код]

В ваттметрах проходящей мощности в качестве первичного преобразователя, обычно используется направленный ответвитель — устройство, позволяющее ответвлять от основного тракта передачи очень небольшую долю энергии. Отведенная часть энергии подается на вторичный преобразователь, например, детекторную или термисторную головку, откуда сигнал измерительной информации подается на функциональный преобразователь и, далее, на показывающее устройство.

На относительно низких частотах (в ДВ- и СВ-диапазонах), использование направленных ответвителей затруднительно, в этом случае в качестве первичных преобразователей можно использовать датчики силы тока и напряжения в линии, измерительная информация с которых далее обрабатывается в функциональном преобразователе (перемножение значений с учетом разности фаз). Датчиками могут служить, например, трансформатор напряжения и трансформатор тока. Такой способ измерения используется обычно в специализированных приборах для контроля мощности, выдаваемой в антенну радиопередатчиком. На сверхвысоких частотах, в волноводных трактах, для измерения проходящей мощности может использоваться пондеромоторный метод или датчики, встраиваемые в стенку волновода — термисторные, термоэлектрические, гальваномагнитные.

  • ПРИМЕРЫ: М2-23, М2-32, NAS
  • ПРИМЕРЫ: ОМК3-69, ОМ3-65

Видовые наименования:

  • Измеритель мощности — другое название ваттметров радио- и оптического диапазонов
  • Киловаттметр — прибор для измерения мощности больших значений (единицы сотни киловатт)
  • Милливаттметр — прибор для измерения мощности малых значений (меньше 1 ватта)
  • Варметр — прибор для измерения реактивной мощности
  • Ваттварметр — прибор, позволяющий измерять активную и реактивную мощность

Для обозначения типов электроизмерительных (низкочастотных) ваттметров традиционно используется отраслевая система обозначений, в которой приборы маркируются в зависимости от системы (основного принципа действия):

  • Дхх — приборы электродинамической системы
  • Цхх — приборы выпрямительной системы
  • Фхх, Щхх — приборы электронной системы
  • Нхх — самопишущие приборы

Ваттметры радио- и оптического диапазонов маркируются по ГОСТ 15094:

  • М1-хх — калибраторы, установки или приборы для поверки ваттметров (радиодиапазона)
  • М2-хх — ваттметры проходящей мощности (радиодиапазона)
  • М3-хх — ваттметры поглощаемой мощности (радиодиапазона)
  • М5-хх — преобразователи приемные (головки) ваттметров
  • ОМ3-хх — оптические ваттметры поглощаемой мощности

Основные нормируемые характеристики[править | править код]

Нормативно-техническая документация
  • ГОСТ 8476-78 Ваттметры и варметры. Общие технические условия
  • ГОСТ 8476-93 Приборы аналоговые показывающие электроизмерительные прямого действия и вспомогательные части к ним. Часть 3. Особые требования к ваттметрам и варметрам
  • ГОСТ 8.392-80 Государственная система обеспечения единства измерений. Ваттметры СВЧ малой мощности и их первичные измерительные преобразователи диапазона частот 0,03-78, 33 ГГц. Методы и средства поверки
  • ГОСТ 8.397-80 Государственная система обеспечения единства измерений. Ваттметры волноводные импульсные малой мощности в диапазоне частот 5,64-37,5 ГГц. Методы и средства поверки
  • ГОСТ 8.497-83 Государственная система обеспечения единства измерений. Амперметры, вольтметры, ваттметры, варметры. Методика поверки
  • ГОСТ 8.569-2000 Государственная система обеспечения единства измерений. Ваттметры СВЧ малой мощности диапазона частот 0,02-178,6 ГГц. Методика поверки и калибровки
  • IEC 61315(1995) Калибрование измерителей мощности (ваттметров) волоконно-оптических источников излучения

Мощность электрической сети: определение, в чем измеряется

Мощность электрической сети Чтобы определить сущность понятия мощности электрической сети, необходимо дать обозначения мощности электрического тока как такового.

Под мощностью электрического тока считают ту количественную меру, которой он непосредственно и характеризуется. Определить ее можно сложив основные параметры — силу тока и его напряжение. Обозначается данное выражение мощности в Ваттах и измеряется специальным прибором – Ваттметром.

Как определить мощность электрической сети

Мощность электрической сети, внешней или внутренней, определяется этими соотношениями — величиной тока и временем произведенной работы за определенную единицу времени. Работы современных энергосистем разрешают не только генерировать, но и передавать на расстояние практически любые мощности, вопрос лишь в непосредственной нуждаемости в них и в необходимых ресурсах для производства электрической энергии.

Так рядовой потребитель обычно использует мощность, которую ему передает поставщик электроэнергии, в размере от 5 до 10Кв. Как правило, данной мощности потребителю с лихвой хватает для своего жизнеобеспечения и для работы всех необходимых электроприборов бытовой техники. Понятно, что энергонасыщенному производству для эффективной работы нужны будут совсем иные значения мощностей, на сотни порядков выше.

От чего зависит мощность электрической сети?

Смена мощностей электрической сети зависит и от внешних условий их поступления, и от установки ограничительных устройств (автоматов, полуавтоматов), которые регулируют поступление емкостных мощностей к источнику потребления. Делаться это может на разных уровнях, от бытового щитка в доме до центральных устройств электрораспределения.

Мощность электрической сети можно определить специальным прибором или рассчитать посредством математических вычислений (если знать параметры силы тока и напряжения).

Для измерения мощности прибором, нужно подключить тестер к источнику тока, настроить его именно на получение нужных данных, ведь тестер работает как в режиме ваттметра, так в режиме и амперметра. Поэтому можно узнать мощность сети и иным способом. Измерив силу тока и зная рабочее напряжение сети 220В, можно умножить данные значения и получить нужную сумму в Ватах.

Пропуск определенного объема мощностей через электрическую сеть требуют применения в обустройстве электроснабжения, комплектации энергосети материалами, которые будут соответствовать требованиям необходимых номинальных значений.

Отправить ответ

avatar
  Подписаться  
Уведомление о