Непосредственный впрыск или распределенный впрыск – Системы впрыска топлива бензиновых двигателей: с центральным впрыском, распределенным впрыском, непосредственным впрыском.

Содержание

Распределенный впрыск топлива или непосредственный что лучше?

Дорогие друзья, сегодня узнаем много интересного о впрыске системы питания. И так: распределенный впрыск топлива или непосредственный? Что лучше и чем они отличаются?

Допустим у вас пришло время осуществить вашу мечту и вы серьезно взялись за выбор автомобиля. Дело серьёзное, и если выбор цвета и формы машины даётся довольно легко, то с подбором типа мотора могут возникнуть трудности, особенно у неподготовленных в техническом плане людей.

Если так, тогда вам однозначно следует внимательно прочитать эту статью.

Распределенный впрыск топлива: экономно и экологично

Не секрет, что распределённый впрыск топлива (инжекция)  – это современная технология, тесно связанная со сложной электроникой. Главной её «фишкой» является наличие индивидуальной форсунки у каждого цилиндра бензинового мотора.

Но, на самом деле, похожие системы, правда, имеющие механическое управление, появились ещё в конце ХIХ – начале ХХ веков. Использовались они в авиации, в гоночных машинах и иногда их интерпретации даже выходили на массовый автомобильный рынок.

Настоящий же бум распределенный впрыск пережил с появлением доступных микропроцессоров в конце 80-х годов и пользуется уважением у производителей транспортных средств и по сей день.

Перейдём к принципу работы и разновидностям системы распределенного впрыска (кстати, её ещё называют многоточечной системой).

Как мы уже упомянули, ключевой особенностью данной технологии являются топливные форсунки, которые устанавливаются по одной перед впускными клапанами каждого цилиндра двигателя.

Таким образом, в отличие от моновпрыска, удаётся добиться равномерного распределения топливно-воздушной смеси по цилиндрам, а также точной её дозировки.

В целом данная схема расположения форсунок позволила инженерам значительно повысить экологичность моторов, а также сделать их менее прожорливыми. Контролирует весь этот ансамбль электронный блок управления (ЭБУ).

Он при помощи многочисленных датчиков, передающих данные о температуре, положении педали газа, количестве поступающего воздуха и прочих параметрах, вычисляет оптимальный объём бензина для впрыска и в нужный для этого момент подаёт управляющий сигнал на открытие форсунок.

Момент впрыск топлива

Кстати, о времени открытия форсунок. Тут не всё так просто, и системы распределённого впрыска различаются в зависимости от того, в каком порядке происходит активация этих элементов. Существуют такие варианты впрыска:

  • одновременный;
  • попарно-параллельный;
  • фазированный.

Одновременный

При одновременной инжекции бензина все форсунки открываются единомоментно, и происходит это за один полный рабочий цикл двигателя (два оборота коленчатого вала). Не считаю это разумным ходом и не понимаю зачем лишний расход топлива.

Видимо это практиковалось на заре изобретения такого метода, когда не очень беспокоились об экологии и бензин был дешевый.

Попарно-параллельный

При попарно-параллельном открытии процесс разбивается таким образом, чтобы в один момент времени впрыск производили только две форсунки и только тех цилиндров, которые переходят в такты впуска и выпуска.

Здесь тоже наблюдается лишний впрыск, зачем он нужен в такте выпуска. Говорят это помогает при запуске двигателя в аварийном режиме. Ну хоть единовременно, и то хорошо.

Фазированный

Но самым современным из перечисленной тройки является фазированный алгоритм работы системы  распределенного впрыска топлива и используется в современных автомобилях. Он предусматривает включение каждой форсунки непосредственно перед тактом впуска соответствующего ей цилиндра. Это конечно разумно и правильно.

Главное в таком впрыске то, что форсунка впрыскивает топливную смесь во впускной коллектор на входе в цилиндр, непосредственно на впускной клапан. Впрыск производится на такте ВПУСК.

Распределенный впрыск топлива

В погоне за показателями

Выше мы уже говорили о том, что система многоточечной инжекции позволила двигателям стать гораздо более «чистыми» по сравнению с предшественниками, оснащёнными моновпрыском или карбюратором.

Тем не менее, защитникам окружающей среды этого было мало и с каждым годом автопроизводителям приходилось учитывать всё более жёсткие экологические нормы.

Чем же отличается распределенный впрыск топлива от непосредственного?

А вот в чем. Как уже было сказано выше, при распределенном впрыске, смесь поступает в коллектор в область впускного клапана. А при непосредственном впрыске, прямо в камеру сгорания, минуя впускной коллектор.

Непосредственный впрыск

Непосредственный впрыск более точен и подаваемое давление топливной смеси выше, чем у распределенного впрыска. Такой принцип экономичнее (до 20% экономии топлива). экологичнее (топливо лучше сгорает). Но все же такой тип системы не лишен недоствтков и конструкторы пошли дальше.

А вот что из этого вышло, и какие технологии появились в результате, в Комбинированная система впрыска топлива TFSI.

 

 

Сравнение распределенного и непосредственного впрыска

//www.youtube.com/watch?v=lW7UOR68poQ

 

До встречи на страницах блога!

Непосредственный и распределенный впрыск

Многие современные инжекторные двигатели оснащаются различной системой впрыска топлива. Уже давно ушел в историю моновпрыск, а тем более карбюратор, и сейчас остались два основных вида – это распределенный и непосредственный тип (на многих автомобилях они «скрыты» под аббревиатурами MPI и GDI). Однако простой обыватель реально не понимает в чем разница, а также — какой из них лучше. Сегодня мы закроем этот пробел в конце будет видео версия и голосование, так что читаем-смотрим-голосуем …

СОДЕРЖАНИЕ СТАТЬИ

Действительно пришел в салон смотришь на комплектации, а там сплошные MPI или GDI, могут быть еще и ТУРБО варианты. Начинаешь спрашивать консультанта, а он однозначно хвалит непосредственный впрыск, а вот распределенный (ну если уж денег не хватает). НО чем он так хорош то? Зачем переплачивать, и тратится именно на него?

Распределенный или многоточечный впрыск топлива

Начнем именно с него, все потому что он появился первым (перед своим оппонентом). Прототипы существовали еще на заре 20века, правда они были далеко от идеала и зачастую использовали механическое управление.

Сокращение MPI (Multi Point Injection) – многоточечный распределенный впрыск. По сути это и есть современный инжектор

Сейчас с развитием электроники карбюратор и прочие системы питания, которые были на заре, уходят в прошлое. Распределенный впрыск это электронная система питания, которая основана на инжекторах (от слова injection — впрыск), топливной рампе (куда они устанавливаются), электронном насосе (который крепится в баке). Все просто ЭБУ дает приказания насосу качать топливо, оно по магистрали идет до топливной рампы, далее в инжектора и после распыляется на уровне

впускного коллектора.

Но эта система также шлифовалась годами. Существуют три типа впрыска:

  • Одновременный. Раньше в 70 – 80 годы никого не заботила цена на бензин (стоял он дешево), также никто не думал об экологии. Поэтому впрыск топлива происходил сразу во все цилиндры, при одном обороте коленчатого вала. Это было крайне не практично, потому как обычно (в 4 цилиндровом двигателе) — два поршня работают над сжатием, а другие два отводят отработанные газы. И если подавать бензин сразу во все «горшки» то другие два просто выкинут его в глушитель. Крайне затратно по бензину и очень вредно по экологии.
  • Попарно-параллельный. Этот вид в распределительном впрыске как вы наверное уже догадались, происходил в два цилиндра по очереди. То есть топливо поступало именно туда, где сейчас происходит сжатие.
  • Фазированный тип. Это самый совершенный на данный момент метод, здесь каждая форсунка живет «своей жизнью» и управляется отдельно. Она подает бензин именно перед тактом впуска. Здесь происходит максимальная экономия смеси, а также высокая экологическая составлявшая

Я думаю с этим понятно, именно третий тип сейчас устанавливается на все современные модели автомобилей.

ГДЕ РАСПОЛАГАЕТСЯ ИНЖЕКТОР. Здесь кроется основное отличие распределительного впрыска от непосредственного. Форсунка находится на уровне впускного коллектора, рядом с блоком двигателя.

Смешение воздуха и бензина происходит именно в коллекторе. От дроссельной заслонки поступает дозированный воздух (который вы регулируете педалью газа), при достижении им форсунки впрыскивается топливо, получается смесь, которая уже затягивается через впускные клапана в цилиндры мотора (дальше сжатие, воспламенение и отвод отработанных газов).

ПЛЮСАМИ такого метода можно назвать относительную простоту конструкции, дешевизну, также сами инжектора не должны быть сложными и устойчивыми к высоким температурам (потому как не имею контакта с горючей смесью), работают дольше без очистки, не так требовательны к качеству топлива.

МИНУСЫ больший расход топлива (по сравнению с оппонентом), меньшая мощность

НО из-за простоты, дешевизны и неприхотливости устанавливаются на большое количество моторов не только бюджетного сегмента, но и D-класса.

Непосредственный впрыск

Появился не так давно, в 80 – 90 года прошлого века. Развитием активно занимались такие бренды как MERCEDES, VOLKSWAGEN, BMW и т.д.

Сокращение GDI (Gasoline Direct Injection) – впрыск непосредственно в камеру сгорания

Впрыск происходит по принципу фазированного типа, то есть каждая форсунка управляется отдельно. Зачастую они закреплены в рампу высокого давления (что-то наподобие COMMON RAIL), но бывают и отдельные элементы топливо подходит именно к каждой отдельно.

КАКОЕ ЗДЕСЬ ОТЛИЧИЕ – форсунки вкручиваются в сам блок двигателя и имеют непосредственное соприкосновение с камерой сгорания и воспламененной топливной смесью.

Воздух также подается через дроссель, далее по впускному коллектору – через клапана заходит в цилиндры мотора, после этого на цикле сжатия впрыскивается топливо, смешиваясь с воздухом и воспламеняясь от свечи. ТО есть смесь происходит непосредственно в двигателе, а не во впускном коллекторе, в этом то и кроется основная РАЗНИЦА!

ПЛЮСЫ. Топливная экономичность (может достигать до 10%), большая мощность (до 5%), лучшая экология.

МИНУСЫ. Нужно понимать форсунка находится рядом с воспламененной смесью, из этого вытекает:

  • Сложная конструкция
  • Сложное обслуживание
  • Дорогой ремонт и профилактика
  • Требование к качеству топлива (иначе банально забьется)

Как видите эффективно-технологично, но дорого обслуживать.

Что же лучше — таблица?

Предлагаю подумать, составил таблицу по плюсам того и другого типов

Распределенный (MPI) плюсы:
Непосредственный (GDI) плюсы:
Дешевый Мощнее (около 5%)
Простой Меньший расход (до 10%)
Работают больше без очистки Экологичнее
Не требовательны к качеству топлива
Инжектора проще конструкция

Как видите и тот и другой тип имеют весомые преимущества перед другим, видимо пока существуют оба.

Сейчас видео версия смотрим.

А теперь голосование, как ВЫ считаете что лучше – MPI (распределенный) или GDI (непосредственный)?

НА этом заканчиваю, думаю, моя статья и видео были вам полезны. Читайте наш АВТОБЛОГ, подписывайтесь на обновления.

(14 голосов, средний: 4,64 из 5)

Похожие новости

Можно ли заливать дизельное масло в бензиновый двигатель. Какие .

Расточка блока цилиндров. Зачем нужно двигателю и можно ли сдела.

впрыск На вопрос о том, что делается при воздействии на педаль акселератора, можно услышать от большинства автовладельцев банальный ответ, который правильным можно назвать лишь наполовину: происходит увеличение либо уменьшение подачи топливной смеси в силовой агрегат.

На самом деле, при помощи газовой педали осуществляется управление воздухоподачей внутрь цилиндров. А в зависимости от температуры мотора и его реальной производительности, будет подано и необходимое количество топлива для приготовления оптимального состава горючей смеси.

Например, у давно устаревших двигателей с карбюратором дозировка бензина осуществлялась по принципу разрежения воздуха, находящегося за заслонкой дросселя, управление которой осуществлялось педалью «газ». Сразу стоит сказать, что дозировка бензина в таком типе силового агрегата не отличалась точностью, вследствие чего карбюраторный мотор нельзя было назвать экономичным и экологически безопасным. В итоге это и послужило толчком к полному списанию карбюраторных моторов с производства.

Карбюраторные системы впрыска топлива с успехом заменили системы форсунок, подача и впрыск топливной смеси в которых осуществляется под давлением, его обеспечивает бензонасос.

Выделяют три основных типа систем впрыска:

Однако сегодня на автомобилях применяются только последние две. Если говорить о центральной системе распределения впрыска (моновпрыске), то ее работа оказалась неэффективной, поскольку топливная смесь неравномерно распределялась по цилиндрам, а на впуске возникало значительное сопротивление, в результате чего не удалось достичь требуемого уровня экономичности. По этой причине и в связи с ужесточением норм экологической безопасности, моноврпрыск, как и карбюратор, также канул в Лету.

Относительно распределительной (многоточечной) системы впрыска MPI -Multi Point Injection можно сказать, что в ее работе также далеко не все в порядке. Однако, ее «конкуренту» – системе прямой подачи топлива, которую с конца ХХ века стал использовать на всем своем модельном ряде концерн Mitsubishi, более чем за 15 лет так и не получилось отправить MPI в отставку. Теме не менее, по прогнозам специалистов, это когда-нибудь да случится, и систему распределительного впрыска, как карбюратор и центральный впрыск отправят на «свалку автомобильной истории».

Действительно ли использование системы прямой топливоподачи настолько эффективно и оправдано, что скорое вытеснение с рынка MPI неизбежно? Дабы правильно ответить на этот вопрос, стоит провести сравнение этих систем топливоподачи.

В отличие от центрального типа топливовпрыска в этих обеих системах бензин впрыскивается через форсунку в цилиндр силового агрегата, но в распределенной системе предусмотрен впускной коллектор, через который вначале проходит топливо.

Во время прямой подачи топлива его впрыск осуществляется непосредственно в цилиндр, а точнее, в его камеру сгорания. Пожалуй, это и является главным отличием двигателей, которые у разных производителей имеют свои буквенные обозначения: CGI (Mercedes), FSI (Volkswagen), GDI (Mitsubishi), HPi (Peugeot) от модельного ряда моторов MPI.

Интересно, а чем же так хорош прямой впрыск топлива в цилиндр? Реально – ничем, если учитывать конструкционные особенности моторов. А все потому что в этом случае на создание горючей смеси и испарение паров бензина выделено слишком мало времени, чем при его прохождении через впускной коллектор, когда на выходе в цилиндр поступает уже полностью готовая смесь.

Рассмотрим и другие отличия агрегатов HPi, GDI, CGI и FSI от модельного ряда MPI-моторов:

  1. В системе прямого впрыска, давление проходящего через форсунку топлива, в несколько десятков раз выше, нежели в системе распределенного впрыска. Это достигается благодаря применению ТНВД в конструкции силовых агрегатов с прямым топливовпрыском.
  2. Специальная конструкция форсунок системы прямой топливоподачи позволяет раскручивать капельки бензина на выходе, благодаря чему быстрее осуществляется их испарение. В то время как вся функция форсунки распределительной системы состоит из средств формирования топливного факела.

Как видно, система топливоподачи MPI гораздо проще во всех отношениях. Но, это далеко не все. В двигателях с прямой подачей топлива на их производительность влияет распределение воздуха внутри них и количество впрыснутого топлива в цилиндры. По этой причине поршневая часть в агрегатах с системой прямого впрыска имеет сложную профилированную конструкцию.

Подобную функцию выполняют и клапаны впуска в конструкции коллектора системы прямой подачи топлива. В конструкции HPi, GDI, CGI и FSI агрегатов предусмотрено послойное образование горючей смеси. Это говорит о том, что полностью сгорает лишь небольшое количество топлива, находящееся вблизи свечи зажигания либо происходит процесс разрушения этого облака из горючего для того, чтобы сделать всю рабочую смесь более обогащенной. В силовых бензиновых агрегатах конструкции MPI каналы для впуска топлива необходимы исключительно для впрыска смеси бензина с воздухом в цилиндры, поэтому они не имеют заслонок и винтовой формы, как моторы с прямой топливоподачей.

Такими «наворотами» перечисление отличий системы прямой подачи топлива от распределенной не заканчивается. Однако, большинство заметных моментов уже описаны выше. Если копнуть поглубже, то стоит отметить, что топливный насос высокого давления, наличие специального впускного коллектора, поршневой части особой конструкции и сложной системы форсунок отчасти можно отнести к недостаткам, наличие которых вовсе не говорит, что лишенным этого двигателям MPI придется сойти с дистанции. Во всяком случае, в ближайшее время.

Но, рано или поздно, это все же произойдет. И опять-таки по той же причине, которая относительно недавно сделала карбюратор и систему центральной подачи топлива достоянием политехнических музеев – отсутствие у системы распределенной подачи бензина высоких показателей экономии топлива без потери мощности силового агрегата, и большое количество вредных соединений в выхлопных газах автомобиля. Проведенные тестирования систем топливоподачи выявили, что силовые агрегаты с системой прямого впрыска топлива в отличие от других моторов, имеющих одинаковый объем, позволяют экономить порядка 20-25% топлива, при этом их мощность возрастает на 10%. Естественно, что ни один из существующих автопроизводителей не станет пренебрегать заявленными удовольствиями!

Но, наличие большого количества преимуществ вовсе не говорит об отсутствии недостатков. У системы прямой подачи топлива есть свой «скелет в шкафу». Если рассматривать экологическую составляющую использования прямого впрыска, то она практически идеальна, за исключением одного «но» – повышенного содержания сажи в выхлопных газах. Это и делает систему прямой топливоподачи единственным конкурентом дизельным силовым агрегатам. А это уже реальная возможность FSI поладить с MPI. Это было бы классно, но, во всяком случае, этим системам придется ладить друг с другом в одном двигателе.

Именно эту идею и воплотили в жизнь конструкторы компании Volkswagen, объединив в одном моторе обе системы MPI и FSI. Двигатели 1,8 и 2,0 TFSI относятся к третьему поколению агрегатов EA888.

Любой работник автосалона с гордостью заявит вам, что двигатель предлагаемого вам автомобиля «оборудован новейшим непосредственным впрыском». Чаще всего, при этом, смысл и принцип работы нововведения объяснить затруднится, но зато посулит немыслимую экономию («до 30%») и «увеличение мощности».

Между тем, «новейший» непосредственный впрыск, это технология разработанная еще в середине 30-х и серийно применявшаяся в годы Второй мировой, например, на истребителях «Мессершмитт 109».

Вскоре после войны немецкая инженерия несколько раз пыталась применить этот принцип на мелкосерийных автомобилях, в числе которых был и культовый Mercedes 300SL c механическим непосредственным впрыском — по сути, настоящий «бензиновый дизель».

Количество поломок систем первого поколения оказалось решающим — про принцип в промышленном масштабе забыли на пяток десятилетий, несмотря на заметную экономию на фоне примитивного карбюраторного смесеобразования.

Идея распылять топливо непосредственно в цилиндр стала практически полезной только в начале 90-х. Причина проста — экология и ее нормативы. Значительное количество времени при городском режиме движения автомобиль работает в режиме малых и частичных нагрузок, иногда топливо тратится практически «в пустую» — фактически только на поддержание холостых оборотов.

Хорошо было бы, подумали инженеры, для режимов малых нагрузок наполнять цилиндры бедной смесью, сильно отступив от пропорций стехиометрии. И если для полноценного горения за идеал принято соотношение 14.7 кг воздуха на 1 кг бензина плюс-минус 10%, то выгодным, с точки зрения экологии, было бы найти возможность поджигать смесь в несколько раз более бедную, экономя бензин. Раза так в 2-3 более бедную, иначе заметного результата не будет. Из практики однако известно, что уже соотношение более 15,7 вызывает проблемы с горением. При соотношениях более 22:1 эффективного воспламенения уже не происходит, что грозило затее провалом.

Вот тут-то про непосредственный впрыск и вспомнили. В отличие от обычного распределенного впрыска, где форсунка льет прямо во впускной канал, поместив форсунку прямо в цилиндр, мы получаем возможность управлять фазой и длительностью впрыска — впускной клапан уже не мешает. Это как видео против киноаппарата с обтюратором — когда источник топлива уже в цилиндре, управляй им как хочешь — ничто не мельтешит перед форсункой и не отвлекает от процесса. 🙂

Для режима частичных нагрузок впрыскивание организовали в момент начала такта сжатия. Топливо долетает до днища поршня специальной формы, попутно забирая часть тепла в цилиндре и препятствуя тем самым детонации, хорошо перемешивается с воздухом и вспыхивает к моменту конца сжатия совместно с дополнительно поданной порцией в итоговом соотношении всего около 40:1(!). В обычном же режиме, двигатель работает на уже привычном соотношении воздуха и бензина, близком к стехиометрии. Вот вам и зримая экономия.

Это как бы осязаемые плюсы. А теперь сюрприз, поговорим о недостатках.

Система питания обычного двигателя работает при давлении около 3,5 атм. Для этого нам требуется электронасос, не шибко отличающийся по конструкции, надежности и цене от насоса «Малыш» у вас на даче. Также потребуется несколько форсунок, по числу цилиндров — а это тоже не ахти какие большие затраты как при производстве так и при последующей возможной замене. Добавляем сюда только обычные шланги и фильтр. Неисправный насос сразу даст о себе знать и может быть довольно просто продиагностирован и заменен на аналогичный. С форсунками возни и проблем еще меньше — живут десятками лет.

А теперь вот вам, форсунка непосредственного впрыска, по сравнению с распределенным впрыском, это недешевые, сложные в производстве и довольно капризные форсунки с давлением от 50 до 200 атм. Сравните с 3,5 атм. Да, это не дизель с 1800-2500 атм, но уже совсем точно не «обычный» распределенный впрыск.

Систему дополнительно усложняет наличие ТНВД — самого насоса, который обеспечивает столь высокое давление. В принципе, любой насос — штука механическая. А если давления высокие, то потенциально проблемная.

Идем далее: осмоление и закоксовка рабочей части форсунки нарушают точность ее работы — чувствительность к качеству топлива заметно повышается. Надежность — нет.

Требования экологии подразумевают рециркуляцию картерных газов — избытка давления в масляной системе. Это минимум. А иногда еще и части выхлопных газов… То есть, пока двигатель не прогрет, часть выхлопных газов снова отправляется на впуск, «на переработку». Экология…

Вспоминаем теперь, что форсунка во впускные каналы уже не прыскает — грязь и отложения не смывает. А вентиляция именно через них и организована, что в итоге?! А вот что:

Закоксовывание приводит к затруднению закрытия клапана, что в скором времени гарантирует снижение компрессии в цилиндрах. Мотор начинает ощутимо потряхивать, а после цилиндры и вовсе отключаются. Применение масел обычного качества, что норма для всех производителей (LowSAPS, с низкой щелочностью и высоким NOACK индексом)
отпускает мотору пару-тройку лет сравнительно беспроблемного существования.

Теперь поговорим про прирост мощности и экономичности. Как современный (года так с 1990) автомобиль с условным 3-х литровым двигателем ел по городу 15-16 литров, так и ест. Без улучшений. Что с непосредственным впрыском, что с распределенным. Какие тесты журналисты не проводят — там везде примерно одни и те же цифры фактического расхода.

Мощность, точнее — момент? Для примера рассмотрим в сравнении два практически идентичных мотора — BMW N52 и BMW N53. Ну едва ли этот эксцесс в 20 Н/м можно назвать достижением, чиптюнингом можно достичь сравнимых результатов.

Непосредственный впрыск для реальных условий эксплуатации это:

1.Использование конструктивно сложных и потенциально ненадежных узлов и агрегатов.
2.Исключительно высокие требования к качеству топлива, а особенно — масла.
3.Снижение потребления топлива и увеличение мощности на практике малозначительны, или вообще отсутствуют.
4.Диагностирование неисправностей и ремонт значительно усложнены.

Покупая автомобили BMW, Audi, Mercedes и прочих марок с непосредственным впрыском топлива, найдите время разобраться с особенностями эксплуатации этих двигателей на основе практического опыта владельцев, а не рекомендаций производителя.

Смотрите также

Комментарии 71

а как вам давление наддува 1,5 бара на 87 октане при непосредственном впрыске? и это на минеральном масле типа автола, без ЭБУ, с закисью и метанолом!

Идеально масло для непосредственного выпрска это масла на базе ПАО и Эстеров

ПАО 3.8 — вспышка — 213С, застывания — (-72С)

ПАО 4 — вспышка — 228-230С, застывания — (-60С -64С -67С)

ПАО 6 -вспышка — 270С, застывания — (-53С)

ПАО 7 — вспышка — 277С, застывания — (-42)

*(Это данные из технических таблиц)

MillersOilsCFS 5W-40 NT — температура вспышки – 232С, tC застыв. -44С

IdemitsuZeproRacing 5w-40 — вспышка — 230С, застывания -50С.

Red Line 0w-40 — вспышка -222С, застывания -60С (по паспорту), испаряемость NOACK — 9%.

Red Line 5w-40 — вспышка — 232C, застывания -45С (по паспорту), испаряемость NOACK — 6%.

Татнефть Ультра 5w-40 — вспышка — 252С, застывания -56С (по паспорту), испаряемость NOACK — 5,7% (вспышка — 246С -данные Ойл Клаба)

Ред Лайн/Идемитсу/Миллерс примерно похожи на ПАО 4 (50-60%) + с учетом Эстеров (18-20% у Миллерс ) и минералки для растворения присадок.

50-60% ПАО -это много. С учетом, что в ТОПовых Кастролах и Мобилах 20% (по тех докам MSDS).

В старых ПАО маслах Валволин, в техдоках указывалось, что состав ПАО 4 — 64%, загустители 8-9%. Примерно такая картина и у Идемитсу, Ред Лайн и Миллерс.

Как видно, полностью ПАО только Татнефть

для непосредственного впрыска идеальны масла с кальцием примерно ниже 1600 ppm
читайте патент
речь идет о lspi
drive.google.com/file/d/0…4cll3M2s/view?usp=sharing

ПАО не панацея от всех бед.
В настоящий момент ПАО целесообразно использовать лишь в качестве дополнительного компонента для т.н. масел longlife!

Не согласен. Кальций уменьшают для уменьшения общей зольности.

Современные низкозольноые масла спецификации АСЕА С3 это сильно задушенное по присадкам масла. Для чего душат?

1. Новые экологические норма Европы по выбросам фосфатов.
2. Для уменьшения зольности.

Страдают моюще-диспергирующая способность и противоизносные свойства.
По выбросам фосфатов, которые попадают в камеру сгорания, а затем негативно отражаются на ДПФ фильтрах, есть такой момент.

Делали расчеты на зольность и выбросы между разницами малозольных и полнозольных масел, и разницой в качестве топлива (Евро 4 и Евро5).

Так вот, разница в количествах выброса между маслами полнозольник/малозольник и топливом Евро4/Евро5 отличается в 20-100 раз!

Т.е. разница во вреде от использования полнозольного масла против малозольного на столько мизерна, что не стоит данный вопрос даже рассматривать, а лучше беспокоиться о качестве топлива.

Теперь о другом факторе (второй момент). Зольность в масле. Зола образуется при окончательном сгорании элементов содержащих соли металлов. Для уменьшения зольности, производители масел пытаются перейти на беззольные аналоги, но по эффективности для замены традиционному пакету ZDDP пока ни чего не найдено.
Зола имеет свойство абсорбировать в себя продукты нитрации и окисления, т.е. углеродистые вещества. Абсорбируясь в золу продукты окисления увеличиваются в размерах и превращаются в тяжелые смолистые вещества. Удержать, которых, масло, в себе, уже не в состоянии. Смолистые вещества липнут на самых горячих участках двигателя (клапана, канавки поршневых колец и турбина. В основном, в первую очередь страдают клапана). Поэтому масла с индексом С3/С4/С2 рекомендуют для двигателей с прямым непосредственным впрыском топлива, где клапана не омываются топливом и их самоочистка не происходит. Технологии самоочистки клапанов в двигателях с прямым впрыском топлива, до сегоднешнего дня не существует. Но С3 не спасает от данной напасти, а лишь несколько замедляет процесс закоксовывания.

Теперь самое важное и главное, о чем не договаривают рекламодатели и многие знатоки двигателей, рекламирующих масла со спецификацией С3/С4/С2!

1. Процесс смолообразования происходит строго в определенный момент, когда упущен момент замены масла. Первая стадия это стадия индукции, когда масло еще имеет диспергирующие свойства, вторая стадия это стадия смолообразования, когда диспергирующих свойств больше нет и продукты окисления и нитрации начинают резко увеличиваться в размерах, и тут хоть С3 или А3 разницы практически ни какой, только сам процесс смолообразования чуть медленнее у С3.

ПРИЧЕМ! именно у С3 первая стадия индукции очень короткая из-за нехватки моюще-диспергирующих присадок!

2. Когда речь идет о полностью ПАО маслах, то абсолютно нет ни какой разницы по содержанию золы. Углеродистых веществ (продуктов окисления) в ПАО маслах не образуется или образуется очень медленно и незначительно мало!

3. При уменьшении зольности сильно страдают проитвоизносные свойства из-за нехватки присадков ZDDP. Сами инженера разработчики современных двигателей Мерседес, БМВ, Ауди НЕ рекомендуют Россиянам применять новые масла с последними допусками и масла со спецификацией С, из-за их малой противоизносной способности и способности борьбы с кислотами, по причине плохого качества топлива и тяжелых условий эксплуатации. Они рекомендуют полнозольные масла с полным содержанием ZDDP со старыми допусками.

4. Масла со спецификацией С не выдерживают высоких температур! Легко начинается процесс полимеризации. Мне самому до конца не ясно почему это происходит.

Очень много слов ни о чем!
melbu.livejournal.com/168497.html
Щепотку соды добавьте в любое масло и отложений не будет!

Я вижу, что ПАО уже конкретно превратили в религию!
А фактически — это безумство!

www.drive2.ru/b/2406066/
не я сно ему, чего тут не ясного: сода увеличивает щелочное число в разы и не дает прилипать в результате окисления.

Вместо щелочной неорганики в маслах С класса применяются беззольные детергенты органического происхождения.

ПАО не панацея и в настоящий момент применяется лишь как компонент, использование его в качестве базы нецелесообразно.

Эти слова основаны на матчасти. Вы видете только то, что хотите услышать. Наука родилась не вчера, ПАО эстеровые масла эксплуатируются с 30-х годов 20-го века, но все еще замена не найдена. За этот период каких только испытаний не проводила наука. И тут в раз уменьшением кальция все не решается.

Для минеральных ГК масел, куда приписывают маркетинговые пробеги под 15-20 тыс.км, возможно и стоит уменьшить кальций, чтобы образованный в итоге пластилин был менее плотнее и чернее

Эти слова основаны на прочтении достаточного количества литературы и на глубоком анализе всего этого: например drive.google.com/drive/fo…ZiWElMNDhZNkk?usp=sharing

Зачем ссылки? Выкладывайте скриншоты с переводом и с подчеркнутыми текстами! Ссылки это не докозательство. Тоже могу выбросить 10 ссылок и сказать, что анализ глубочайший

не хочу!
Это вы выкладываете картинки, а я не хочу!
я говорю своими словами, коротко и по делу!

Вот текст своими словами. Поверите?

Сранение масел III группы и IV ПАО

1. Смазывающая способность ПАО в 6,5 раза выше, чем у гидрокрекинга, прочность адсорбционной пленки 6,5 тонн/см2 у ПАО против 900 кг/см2 у парафинового гидрокрекинга.

ПАО вместе с Эстерами обладает прочностью масляной пленки уже в 22-25 тонн/см2.
Помнить! что в момент пуска и до нагрева масла до 150С ни какая противоизносная/противозадирная присадка не работают, работает только сама база и загустители.
Минимальная необходимая прочность масляной пленки на холостом ходу составляет 10 тонн/см2 (распределительная система).
На парафиновом гидрокрекинговом масле в момент пуска и до полного прогрева идет усиленный износ распредвалов и толкателей. Именно поэтому с пробегом авто теряет мощность.

2. Максимальная рабочая температура гидрокрекинга это 130С, дальше он просто перестает быть маслом.Масло превращается в воду. Адсорбционная пленка разрывается.

ПАО же, меняет свою вязкость только до 50С, выше вязкость и характеристики ПАО уже не меняются и остаются рабочими вплоть до 250-350С! Минимальная темепратура ПАО это -72С -55С против -17С у гидрокрекинга, путем добавления в гидрокрекинг антидепрессантов, минимальная температура ГК достигается до -35С. Антидепрессанты не дают парафинам связываться в кристаллические цепочки.

3. Гидрокрекинговое масло после остановки двигателя полностью стекает в картер из-за отсутствия полярности молекул. Двигателисты давно заметили, автомобиль вечером приезжает своим ходом на ремонт, ремонт начинают рано утром. При разборе обнаруживают, что цинидры и распредвалы покрыты слоем ржавчины.

Одним из лучших преимуществ ПАО-Эстеров является то, что они не стекают в картер даже через сутки после остановки автомобиля. Помните рекламу Кастрол Магнатек про умные молекулы, которые работают с первой секунды пуска двигателя? Там говорится именно про Эстеры. Хотя в этом Магнатеке самих Эстеров нет уже с 1999 года, просто реклама осталась.

4. Потеря вязкости и важного параметра HTHS. Любое гидрокрекинговое масло состоит из базы (0w=3.5 cst; 5w=4 cst и т.д.) + чтобы достичь второго значения Y, в масло добавляют полимерные загустители в больших количествах. Вот тут-то все современные производителя борятся между собой у кого круче загустители тот и получает крутые допуски. Но нет в Природе таких загустителей, которые не просаживались бы (не подвергались бы деструкции молекул — потере связи молекул) и не горели бы (полимеризация). Вязкость гидрокрекинговой 5w-40 уже через 1000 км становится 5w-30, а еще через 4000 км становится 5w-20. Во время езды, гидрокрекинговый 5w-40 становится 5w-10, затем после охлаждения восстанавливается заново, но уже не полностью.
На самом деле загустители быстро теряют молекулярную связь при езде и быстро восстанавливают вязкость после остывания, но не до конца. ПАО +Эстеры практически не содержат загустителей, т.к. они программируются уже в момент производства, Эстеры выступают как конструктор дающий чудо свойства маслам. Именно поэтому Гидрокрекинговые масла имеют индекс вязкости выше 180, а ПАО+Эстеры от 150 до 160, т.к. не содержат загустителей. Помнить! Загустители это главное зло в любом масле!

5. В ПАО маслах не образуется сажа, не образуется серная кислота, не образуется кокс в канавках поршневых колец и клапанах, не образуются смолы. Даже при пробеге в 800 тыс.км двигатель во всех его скрытых частях будет кристально чистым. Чего не скажешь про гидрокрекинг, он коксуется в любом случае, даже если с виду двигатель чист, то на самых горячих участках (клапана, канавки поршневых колец) неизбежно образуется кокс, т.к. углероды имеют свойство к нитрации, т.е. молекулы распадаются на тяжелые углеродистые соединения при окислении и затем уже эти соединения слипаются между собой образуя кристаллические решетки (нагары коксы лаки и т.д.).

6. Прокачиваемость и охлаждаемость ПАО выше на 30-40%, что не маловажно для тяжелых условий и для двигателей с турбонаддувом, где температура в турбине и в зоне подшипника турбины достигает 950С!

7. Запуски в мороз. Гидрокрекинг кристализуется и мутнеет уже при температуре -14С -17С, окончательная потеря текучести достигается при температуре -30С -35С. ПАО масло остается текучим до -46С -70С, в зависимости от плотности ПАО и Эстеров.

8. Присадки гораздо эффективнее работают с ПАО, т.к. молекулы ПАО не замещают их, не мешают присадкам, доказано всеми старыми и новейшими исследованиями.

9. Срок хранения ПАО не ограничен. Гидрокрекинг ограничен.

10. Износостойкость с ПАО не теряется на всем протяжении моточасов, у гидрокрекинговых масел износ от моточасов резко увеличивается, скачкообразно, и замена раз в 3000-5000 км не спасает положение.

«>

Система непосредственного впрыска топлива в бензиновых двигателях — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 4 правки. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 декабря 2018; проверки требуют 4 правки.

Система непосредственного впрыска топлива (СНВТ) (Gasoline Direct Injection (GDI)) — инжекторная система подачи топлива для бензиновых двигателей внутреннего сгорания с непосредственным впрыском топлива, у которой форсунки расположены в головке блока цилиндров и впрыск топлива происходит непосредственно в цилиндры. Топливо подается под большим давлением в камеру сгорания каждого цилиндра в противоположность стандартной системе распределённого впрыска топлива, где впрыск производится во впускной коллектор.

Такие двигатели более экономичны (до 20 % экономии[1]), отвечают более высоким экологическим стандартам, однако и более требовательны к качеству топлива.

Аббревиатура GDI подразумевает систему непосредственного впрыска на двигателях Mitsubishi. Это произошло потому, что впервые система непосредственного впрыска была применена на двигателе GDI, устанавливаемом на автомобили компании Mitsubishi.[1] Это утверждение верно лишь частично. Так, первый серийный двигатель с непосредственным впрыском был Daimler-Benz DB 601 для Messerschmitt Bf.109E. Впервые непосредственный впрыск топлива на автомобиле Mercedes W196, на котором знаменитый Фанхио выиграл сезоны 54 и 55 года. Mitsubishi первыми применила электронно-управляемый непосредственный впрыск что позволило применить на некоторых режимах суперобедненную смесь.

Согласно SAE J1930, система непосредственного впрыска имеет наименование DFI, direct fuel injection (рус. «непосредственный впрыск топлива»). В то же время, производители двигателей часто дают системам непосредственного впрыска собственные торговые наименования, например:

GDI состоит из следующих составляющих:

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

На дизельных моторах непосредственный впрыск и ТНВД появился существенно раньше, и ресурс узлов был не таким уж низким. У бензиновых все получилось иначе: насосы оказались весьма недолговечными. Почему? Потому что дизтопливо имеет более высокие смазочные свойства, чем бензин, и без специальных смазывающих присадок ресурс всех узлов трения очень мал.

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Под капотом 2015–н.в. Toyota Camry XLEПод капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

Непосредственный впрыск — Энциклопедия журнала «За рулем»

Схема двигателя Volkswagen FSI с непосредственным впрыском бензина

Первые системы впрыска бензина непосредственно в цилиндры двигателя появились еще в первой половине ХХ в. и использовались на авиационных двигателях. Попытки применения непосредственного впрыска в бензиновых двигателях автомобилей были прекращены в 40-е годы ХХ в., потому что такие двигатели получались дорогостоящими, неэкономичными и сильно дымили на режимах большой мощности. Впрыскивание бензина непосредственно в цилиндры связано с определенными трудностями. Форсунки для непосредственного впрыска бензина работают в более сложных условиях, чем те, что установлены во впускном трубопроводе. Головка блока, в которую должны устанавливаться такие форсунки, получается более сложной и дорогой. Время, отводимое на процесс смесеобразования при непосредственном впрыске, существенно уменьшается, а значит, для хорошего смесеобразования необходимо подавать бензин под большим давлением.
Со всеми этими трудностями удалось справиться специалистам компании Mitsubishi, которая впервые применила систему непосредственного впрыска бензина на автомобильных двигателях. Первый серийный автомобиль Mitsubishi Galant с двигателем 1,8 GDI (Gasoline Direct Injection — непосредственный впрыск бензина) появился в 1996 г.
Преимущества системы непосредственного впрыска заключаются в основном в улучшении топливной экономичности, а также и некоторого повышения мощности. Первое объясняется способностью двигателя с системой непосредственного впрыска работать на очень бедных смесях. Повышение мощности обусловлено в основном тем, что организация процесса подачи топлива в цилиндры двигателя позволяет повысить степень сжатия до 12,5 (в обычных двигателях, работающих на бензине, редко удается установить степень сжатия свыше 10 из-за наступления детонации).

Форсунка двигателя GDI может работать в двух режимах, обеспечивая мощный (а) или компактный (б) факел распыленного бензина

В двигателе GDI топливный насос обеспечивает давление 5 МПа. Электромагнитная форсунка, установленная в головке блока цилиндров, впрыскивает бензин непосредственно в цилиндр двигателя и может работать в двух режимах. В зависимости от подаваемого электрического сигнала она может впрыскивать топливо или мощным коническим факелом, или компактной струей.

Поршень двигателя с непосредственным впрыском бензина имеет специальную форму (процесс сгорания над поршнем)

Днище поршня имеет специальную форму в виде сферической выемки. Такая форма позволяет закрутить поступающий воздух, направить впрыскиваемое топливо к свече зажигания, установленной по центру камеры сгорания. Впускной трубопровод расположен не сбоку, а вертикально сверху. Он не имеет резких изгибов, и поэтому воздух поступает с высокой скоростью.

В работе двигателя с системой непосредственного впрыска можно выделить три различных режима:
1) режим работы на сверхбедных смесях;
2) режим работы на стехиометрической смеси;
3) режим резких ускорений с малых оборотов;
Первый режим используется в том случае, когда автомобиль движется без резких ускорений со скоростью порядка 100–120 км/ч. На этом режиме используется очень бедная горючая смесь с коэффициентом избытка воздуха более 2,7. В обычных условиях такая смесь не может воспламениться от искры, поэтому форсунка впрыскивает топливо компактным факелом в конце такта сжатия (как в дизеле). Сферическая выемка в поршне направляет струю топлива к электродам свечи зажигания, где высокая концентрация паров бензина обеспечивает возможность воспламенения смеси.
Второй режим используется при движении автомобиля с высокой скоростью и при резких ускорениях, когда необходимо получить высокую мощность. Такой режим движения требует стехиометрического состава смеси. Смесь такого состава легко воспламеняется, но у двигателя GDI повышена степень сжатия, и для того чтобы не наступала детонация, форсунка впрыскивает топливо мощным факелом. Мелко распыленное топливо заполняет цилиндр и, испаряясь, охлаждает поверхности цилиндра, снижая вероятность появления детонации.
Третий режим необходим для получения большого крутящего момента при резком нажатии педали «газа», когда двигатель работает на малых оборотах. Этот режим работы двигателя отличается тем, что в течение одного цикла форсунка срабатывает два раза. Во время такта впуска в цилиндр для его охлаждения мощным факелом впрыскивается сверхбедная смесь (α=4,1). В конце такта сжатия форсунка еще раз впрыскивает топливо, но компактным факелом. При этом смесь в цилиндре обогащается и детонация не наступает.
По сравнению с обычным двигателем с системой питания с распределенным впрыском бензина, двигатель с системой GDI примерно на 10 % экономичнее и выбрасывает в атмосферу на 20 % меньше углекислого газа. Повышение мощности двигателя доходит до 10 %. Однако, как показала эксплуатация автомобилей с двигателями такого типа, они очень чувствительны к содержанию серы в бензине. Оригинальный процесс непосредственного впрыска бензина разработала компания Orbital. В этом процессе в цилиндры двигателя впрыскивается бензин, заранее смешанный с воздухом с помощью специальной форсунки. Форсунка компании Orbital состоит из двух жиклеров, топливного и воздушного.

Работа форсунки Orbital

Воздух к воздушным жиклерам поступает в сжатом виде от специального компрессора при давлении 0,65 МПа. Давление топлива составляет 0,8 МПа. Сначала срабатывает топливный жиклер, а затем в нужный момент и воздушный, поэтому в цилиндр, мощным факелом впрыскивается топливно-воздушная смесь в виде аэрозоля.
Форсунка, установленная в головке цилиндра рядом со свечой зажигания, впрыскивает топливно-воздушную струю непосредственно на электроды свечи зажигания, что обеспечивает ее хорошее воспламенение.

Конструктивные особенности двигателя с непосредственным впрыском бензина Audi 2.0 FSI

Система питания с распределенным впрыском имеет следующие составные части:
— система подачи и очистки топлива;
— система подачи и очистки воздуха;
— система улавливания и сжигания паров бензина;
— электронная часть с набором датчиков;
— система выпуска и дожигания отработавших газов.

Чем отличается распределенный впрыск и непосредственный

Существующие наиболее распространенные типы двигателей можно разделить на две части: распределенный впрыск и непосредственный впрыск.

1. Распределенный впрыск топлива подразумевает размещение форсунок индивидуально под каждый цилиндр. На такте впуска каждого цилиндра отдельная форсунка впрыскивает топливо (газ или бензин) в определенный момент. Дозированная порция топлива попадает на впускной клапан соответствующего цилиндра. Бензин, поступивший в цилиндры, испаряется, перемешиваясь с воздухом, образуя горючую смесь. Составные узлы системы распределенного впрыска:

  • системы подачи и очистки бензина, воздуха;
  • электроника, включающая в себя набор датчиков;
  • система, которая улавливает пары топлива и сжигает их.

2. Система непосредственного впрыска топлива относится также к инжекторным двигателям, но отличается в первую очередь расположением форсунок. Они расположены в головке блока цилиндров и под большим давлением подают топливо в камеру сгорания каждого цилиндра. В отличие от распределенного впрыска, где впрыск происходит во впускной коллектор, здесь впрыск идет прямо в цилиндры.

Преимущество систем непосредственного впрыска — экономичность и соответствие экологическим стандартам. Такие двигатели на 15-20% более экономны, чем распределенный впрыск, а также соответствуют нормам Евро 5, тогда как распределенный впрыск — Евро 4.

Отличия ГБО для двигателей с распределенным и непосредственным впрыском

Пока что большинство автомобилей в Украине комплектуются двигателями распределенного впрыска, для которых подходит ГБО 4-го поколения. Для прямого впрыска предназначены ГБО 5-го и 6-го поколений. Их принципиальная разница в следующем:

  • в 4-м поколении газ подается на редуктор под давлением 15-16 атм., где переходит в газовую фазу. С редуктора газ подается на форсунки, установленные перед впускным коллектором;
  • 5-е поколение исключает редуктор. Жидкий газ сразу подается на форсунки благодаря системе из нескольких насосов: два общих (один в баллоне, второй — под капотом) и индивидуальные форсуночные насосы. Форсунки располагаются на рампе;
  • 6-е поколение не предусматривает ни редуктора, ни газовых форсунок — газ подается в цилиндры через родные бензиновые форсунки.

ГБО с непосредственным впрыском (TSI, FSI) требовало решения вопроса смазки бензиновых форсунок, стоящих в двигателе, что и было реализовано в ГБО 6. Если ГБО 5 использует соотношение «бензин/газ» 20/80, то в ГБО 6 газ подается через родные узлы.

Установка ГБО непосредственного впрыска занимает до 3-х дней, ГБО распределенного впрыска устанавливается быстрее — 8-12 часов. В силу ответственности установки данных комплектов рекомендуем обращаться только в авторизированные центры. PRIDE GAS — официальный дистрибьютор в Украине итальянского производителя AEB, чьи системы PRIDE by AEB отлично зарекомендовали себя на украинских дорогах. 3 года гарантии и индивидуальный подход к каждому клиенту — это только часть того, что мы готовы вам предложить.

PRIDE GAS — не стоит рисковать своим автомобилем, доверьте установку ГБО нам!

Также интересные статьи от PRIDE GAS:

ГБО Италия: подбор ГБО по марке автомобиля

ГБО Италия для двигателей с непосредственным впрыском

Рекомендуемые комплекты ГБО для двигателей распределенного впрыска 4 поколения

Непосредственный впрыск

При плавном разгоне и равномерном движении двигатели с прямым впрыском работают на обычной смеси с соотношением 14,7:1. А вот переход со сверхбедной смеси на богатую, то есть резкий разгон, тоже потребовал творческого инженерного подхода. Дабы исключить детонацию или неконтролируемое воспламенение, в начале такта впуска впрыскивается небольшое количество бензина, охлаждающее камеру сгорания. Вторая подача осуществляется в конце такта сжатия. Таким образом мотор, «не стуча пальцами», перебирается на богатую горючую смесь.
Эксперименты

Казалось бы, вот он, идеальный двигатель для любых режимов движения. Экономичный в пробках и при размеренной езде, и способный «выстрелить», когда это необходимо. Но какой ценой! В начале 2000-х все прелести новых технологий первыми оценили жители Дальнего востока и Сибири. Моторы Mitsubishi с GDI (gasoline direct injection), которые сразу прозвали «джедаями», «привыкшие» к японскому бензину, буквально бунтовали от нашего «газолина». Не будем трогать системы очистки отработавших газов. Хотя тот же EGR, особенно полезный в случае с direct injection — для уменьшения выбросов оксидов азота — сам по себе является источником проблем. Катализатор, рассчитанный на очистку опять же от NOx, могла «приговорить» единственная заправка топливным суррогатом. Однако не сразу, не с одного бака грязь в бензине выводила из строя и погружной насос, подававший топливо к основному ТНВД. Он «перенапрягался», пытаясь преодолеть пробки в магистралях излишне маленького сечения. Бывало, что и датчик давления дурил, опять же заставляя погружной насос работать на полную.

Тойотовская система D4, в частности, та, которой оснащался «вечный» 3S, подкидывала другой сюрприз. Ее насос высокого давления плунжерного типа имел две особенности. При значительном износе избытки бензина не полностью стекали через канал «обратки», попадая прямиком в картер двигателя и разбавляя моторное масло. Владельцу, продолжавшему эксплуатировать автомобиль при потере мощности, фактически приходилось не только менять ТНВД, но и восстанавливать силовую группу двигателя. А вот предотвратить «капиталку» в другом случае можно было, только проверяя уровень масла. Одна из уплотнительных резинок в насосе имела небольшой срок службы, и через некоторое время… да, опять бензин в масле и два-три уровня на щупе.

Toyota быстро устранила все проблемы с насосом, которые встречались у 3S-FSE. Моторы серии AZ пугали топливным насосом гораздо меньше, и автомобили с ним, как, например, минивэн Gaia, пользовались популярностью. Правда, обычно имелась и какая-нибудь «распределенно-впрысковая» альтернатива

Отправить ответ

avatar
  Подписаться  
Уведомление о