Помпа из чего состоит – устройство помпы, принцип работы, схема и конструкция, РК и как устроен насос для воды

Содержание

Жидкостный насос системы охлаждения.


Приборы и механизмы жидкостной системы охлаждения

Жидкостный насос



Назначение и устройство насоса охлаждающей жидкости

Жидкостный насос, или как его называют – помпа, создает в системе охлаждения принудительную циркуляцию жидкости.
Как правило, в системах охлаждения двигателей применяют одноступенчатые насосы центробежного типа. Привод жидкостного насоса обычно осуществляется от коленчатого вала при помощи клиноременной, зубчатоременной или зубчатой цилиндрической передачи.

Жидкостный насос состоит из корпуса, представляющего собой улитку, вала привода, размещенного в корпусе на подшипниках, крыльчатки, которая часто выполняется заодно с валом привода, а также уплотняющих элементов – манжет, сальников и т. п.

Подшипники, на которых устанавливается вал привода с крыльчаткой, чаще всего не нуждаются в периодической смазке – они выполняются закрытыми или уплотненными, и предварительно заполняются тугоплавкой смазкой. Иногда предусматривается смазка подшипников охлаждающей жидкостью — антифризом.

На рисунке 1 представлен жидкостный насос и вентилятор двигателя ЗИЛ-431410, который состоит из корпуса

7, крыльчатки 5 и корпуса 10 подшипников, соединенных между собой через прокладку 6.
Вал 4 насоса вращается в двух шарикоподшипниках 3, снабженных уплотнительными манжетами для удержания масла. Передний подшипник фиксируется упорным кольцом 2, а задний удерживается от перемещения дистанционной втулкой 11.

Крыльчатка 5 крепится на конце вала. При вращении крыльчатки охлаждающая жидкость из подводящего патрубка 9 поступает к ее центру, захватывается лопастями и под действием центробежной силы отбрасывается к стенкам корпуса 7, перемещается по спирали вдоль стенок и через полые отводы 8 подается в рубашку охлаждения.



Герметичность вращающихся деталей, расположенных в корпусе 7 насоса, обеспечивается самоподжимной уплотнительной манжетой, установленной в крыльчатке и состоящей из уплотнительной шайбы

17, резиновой манжеты 16 и пружины, прижимающей шайбу 17 к торцу корпуса подшипников. Своими выступами шайба 17 входит в пазы крыльчатки 5 и закрепляется обоймой 18.
На переднем конце вала 4 с помощью втулки 12 установлена ступица 13, к которой крепится шкив 14 привода насоса и вентилятора.

На рис. 2 представлен продольный разрез жидкостного насоса системы охлаждения двигателя ВАЗ. Как видно из рисунка, принципиально конструкция мало отличается от рассмотренной выше.

***

Вентилятор и его привод



Центробежные насосы: классификация, конструкция, назначение, типы

Центробежные насосы являются самыми распространённым насосами в мире. Благодаря своей конструкции и стабильной работе этот тип насосов нашел широкое применение, как для решения бытовых задач, так и для основных технологических процессов в самых различных отраслях промышленности. В данной статье будет дано полное описание центробежных насосов, рассказано как работает центробежный насос, его классификация и основные области использования.

Принцип действия центробежного насоса

Основным элементом центробежного насоса является рабочее колесо (импеллер), расположенное внутри спирального корпуса (улитка), которое имеет лопасти, направленные в обратную сторону относительно вращению самого колеса. Импеллер устанавливается на вал, который соединен с приводом насоса. При старте работы агрегата рабочее колесо начинает вращаться, и жидкость через всасывающий патрубок поступает вдоль оси вращения колеса.

Под действием центробежной силы, жидкость перемещается по каналам между лопастями в радиальном направлении (от центра импеллера к его периферии)  в спиральную камеру корпуса насоса, а затем и в нагнетательный патрубок насоса. На периферии рабочего колеса располагается зона повышенного давления. В центре же давление понижено, что обеспечивает постоянное поступление  жидкости в насос.

Конструкция центробежных насосов

Центробежный насос состоит из следующих основных частей:

  • Всасывающий патрубок
  • Нагнетательный патрубок
  • Спиральный корпус (проточная часть насоса)
  • Рабочее колесо (импеллер)
  • Уплотнение вала
  • Картер насос

Классификация центробежных насосов

Центробежные насосы можно классифицировать по конструктивным исполнениям   его основных элементов, по типу установки  и назначению.

По расположению патрубков насосов

  • Насос «ин-лайн» типа. У данного типа насоса всасывающий и нагнетательный патрубок находятся на одной линии друг напротив друга. Перекачиваемая жидкость проходит сквозь насос. Насос устанавливается на прямых участках трубопровода.
Насос ин-лайнНасос ин-лайн
    • Консольные насосы. Жидкость поступает в центр рабочего колеса (импеллера). Патрубки расположены под 90˚С относительно друг друга.
    Консольные насосыКонсольные насосы

    По количеству ступеней насоса

    • Многоступенчатый насос имеет на валу более одного последовательно соединённых колес. Такой тип насосов используется для обеспечения высокого напора при сравнительно небольшом расходе. Высокий напор создается благодаря сумме напоров, создаваемых каждым отдельным колесом. Перекачиваемая жидкость переходит последовательно от одной ступени к другой.
  • Многоступенчатый насосМногоступенчатый насос

    По типу уплотнения вала

    Для защиты от попадания перекачиваемой жидкости  в окружающую среду и в механическую часть центробежного насоса  используются различные уплотнительные системы. По типу применяемой системы насосы можно разделить на:

    • Центробежные насосы с сальниковым уплотнением (ссылка на сальниковое уплотнение)
    • Центробежные насосы с торцевым уплотнением (одинарным или двойным) (ссылка на торцевое уплотнение)
    • Центробежные насосы с магнитной муфтой (ссылка на магнитную муфту)
    • Центробежные насосы герметичные с мокрым ротором (ссылка на мокрый ротор)
    • Центробежные насосы с динамическим уплотнением (ссылка на динамическое уплотнение)

     

    По типу соединения с электродвигателем

    Центробежные насосы разделяются также по типу соединения гидравлической части насоса с электродвигателем. Выделяют типы:

    • Насос с соединительной муфтой. Упругая муфта — это элемент, позволяющий соединить вал электродвигателя и вал, на котором крепится рабочее колесо. Для этого используется, как обычная муфта, так и муфта с промежуточным элементом. Использование промежуточного элемента позволяет не отсоединять электродвигатель при  техническом обслуживании насоса, например при замене торцевого уплотнения.

      Обычная муфтаОбычная муфта

      Муфта с промежуточным элементом

      Муфта с промежуточным элементом

    • Моноблочный насос. У данного типа насосов рабочее колесо крепится либо сразу на удлиненном валу электродвигателя, либо для соединения вала двигателя и насоса используется неподвижная постоянная глухая муфта. Центробежный насос с глухой муфтойЦентробежный насос с глухой муфтой

      По назначению

      Благодаря своим конструкционным возможностям назначение центробежного насоса может быть самым различным. По данному показателю выделяют следующие типы центробежных насосов:

      • Дренажные
      • Скважинные
      • Фекальные
      • Шламовые
      • Пищевые
      • Санитарные
      • Пожарные
      • Самовсасывающие

      Материальное исполнение центробежных насосов

      Центробежные насосы применяются практически во всех отраслях промышленности, перекачивают самые различные  жидкости, начиная с воды и заканчивая высоко агрессивными и абразивными суспензиями.

      Поэтому выбор материалов для основных элементов центробежных насосов очень широкий и чаще всего он основывается на стойкости данного  материала к свойствам перекачиваемой жидкости (ссылка на таблице хим. стойкости) и условиям работы самого насоса.

      Можно выделить следующие основные материалы:

      Металлическое исполнение

      • Чугун
      • Бронза
      • Углеродистая сталь
      • Нержавеющая сталь
      • Дуплекс
      • Супер-дуплекс
      • Титан
      • И.т.д

      Футерованные и пластиковые исполнения

      При работе с высоко агрессивными жидкостями, например с кислотами, металлическое исполнение не всегда может обеспечить  необходимой коррозионной защиты. Либо применения сверхстойких сплавов может привести к значительному удорожанию всей конструкции.

      Поэтому широкое распространение приобрело использования самых различных пластиков, в качестве основного материала контактирующего со средой в центробежных насосах.

      Можно выделить два основных типа:

      • Футерованные насосы. Футеровка – это процесс нанесения пластикового покрытия на металлический корпус насоса. Все элементы контактирующие с перекачиваемой средой покрыты слоем полимера, что значительно увеличивает коррозионною устойчивость всей проточной части. Современные технологии обеспечивают отличное сцепление между покрытием и корпусом, т.к при отливке полимер заполняет все полости и зазоры.

      Центробежный насос с глухой муфтой

       

      • Пластиковые центробежные насосы. Основные элементы насоса, контактирующие со средой, выполнены из цельного пластика, обработанного на специальных станках.
       Центробежный насос с глухой муфтой  Центробежный насос с глухой муфтой

      Материалы для футерованных и пластиковых насосов:

      • PP — полипропилен
      • PVDF- поливинилденефлуорид
      • PE – полиэтилен
      • PVC – поливинилхлорид
      • PFA – перфторалкоксил
      • PTFE – политетрафторэтилен
      • ETFE – этилентетрафторэтилен (Tefzel)
      • FEP – фторэтиленпропилен

       

      Материалы уплотнительных колец

      В качестве уплотнительных колец в центробежных насосах чаще всего используют следующие эластомеры:

      • EPDM — Этилен-пропиленовые каучук
      • NBR — Бутадиен-нитрильный каучук
      • FPM/FKM/Viton — Фторкаучук
      • FFKM — Каучук перфторированный

      Преимущества и недостатки центробежных насосов

      Преимущества:

      • Простая конструкция
      • Немного движущихся частей, большой срок службы
      • Высокий КПД
      • Высокие показатели производительности
      • Постоянная подача, без пульсаций
      • Регулировка производительности с помощью дроссельного клапана на линии нагнетания или частотного преобразователя

      Недостатки

      • Невозможность «самовсасывания»
      • Большой риск кавитации
      • Производительность сильно зависит от напора
      • Наиболее эффективны только в одной заданной рабочей точке. При регулировании подачи с помощью частотного преобразователя эффективность понижается
      • Не может работать с мультифазными жидкостями с содержанием воздуха или газа
      • При перекачки абразивных жидкостей возможный быстрый износ основных элементов из-за высокой скорости вращения рабочего колеса (около 1500 об/мин).
      • Не может работать с высоковязкими жидкостями (макс. 150 сСт)

      Области применения

      Центробежные насосы применяются практически во всех отраслях промышленности.

      Основные из них:

      Водоснабжение и водоотведение

      Водоочистные сооружения

      Энергетика

      Нефтяная и газовая промышленность

      Химическая промышленность

      Целлюлозно-бумажная промышленность

      Горнодобывающая промышленность

      Пищевая

      Фармацевтическая

Основные производители

Крупных игроков на рынке  центробежных насосов можно также разбить по отраслям в которых они наиболее сильны:

Водоснабжение, водоотведение, водоочистка

  • Grundfos : grundfos.com
  • Wilo :wilo.ru
  • Группа компаний Xylem. Насосы Lowara, Goulds, Flygt, Vogel и.т.д : http://xylem.ru
  • KSB: https://www.ksb.com/ksb-ru/
  • Pentair : www.pentair.com
  • Ebara : http://www.ebaraeurope.ru/
  • Caprari : www.caprari.it

Нефтехимическая отрасль

  • Flowserve www.flowserve.com
  • ITT www.itt.com/
  • Sulzer www.sulzer.com
  • Hermetic Pumpen www.hermetic-pumpen.com
  • Kirloskar pumps www.kirloskarpumps.com/
  • Ruhrpumpen www.ruhrpumpen.com

Химическая промышленность

  • Munsch munsch.de/
  • Pompe Travaini www.pompetravaini.it/
  • Someflu pump www.someflu.com/
  • Rutschi Gruppe www.grupperutschi.com

Горнодобывающая отрасль

  • Warman . Группа компания Weir mineral https://www.global.weir/brands/
  • Krebs . Группа компаний flsSmidt http://www.flsmidth.com/en-US/Krebs
  • Habermann pumpen www.aurumpumpen.de/ru/

 

 

 

Поршневой насос — Википедия

Материал из Википедии — свободной энциклопедии

Поршневой насос (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней (плунжеров), совершающих возвратно-поступательное движение.

Рис. 1. Конструктивная схема простейшего поршневого насоса одностороннего действия Рис. 2. Дифференциальная схема включения поршневого насоса. Во время движения поршня влево часть жидкости отводится в штоковую полость, объём которой меньше объёма вытесняемой жидкости за счёт того, что часть объёма штоковой полости занимает шток

В отличие от многих других объёмных насосов, поршневые насосы не являются обратимыми, то есть, они не могут работать в качестве гидродвигателей из-за наличия клапанной системы распределения.

Поршневые насосы не следует путать с роторно-поршневыми, к которым относятся, например, аксиально-поршневые и радиально-поршневые насосы.

Принцип работы таков: за счет поступательного движения поршня создаётся разрежение в полости под ним, и туда засасывается жидкость из подводящего (всасывающего) трубопровода. При обратном движении поршня на всасывающем трубопроводе закрывается клапан, предотвращающий протечку жидкости обратно, и открывается клапан на нагнетательном трубопроводе, который был закрыт при всасывании. Туда вытесняется жидкость, которая находилась под поршнем, и процесс повторяется. Недостаток такого насоса в том, что жидкость движется по трубопроводу с различной скоростью (скачками). Этот момент обычно обходят созданием насосов, в которых несколько поршней. Основное преимущество в том, что он способен закачивать жидкость, будучи в момент пуска незаполненным ею (сухое всасывание), и поэтому применяется обычно там, где этим преимуществом необходимо воспользоваться.

Рис. 3.Принцип работы поршня

Одной из разновидностей поршневого насоса является диафрагменный насос.

Одним из недостатков поршневых насосов, как и других объёмных насосов, являются пульсации подачи и давления. Пульсации можно уменьшить, расположив несколько поршней в ряд и соединив их с одним валом таким образом, чтобы циклы их работы были сдвинуты друг относительно друга по фазе на равные углы. Другим способом борьбы с пульсацией является использование дифференциальной схемы включения насоса (рис. 2), при которой нагнетание жидкости осуществляется не только во время прямого хода поршня, но и во время обратного хода.

Также широко применяют насосы двустороннего действия, у которых как поршневая, так и штоковая полость имеют (в отличие от дифференциальной схемы включения) свою клапанную систему распределения. У таких насосов коэффициент пульсаций ниже, а КПД выше, чем у насосов одностороннего действия (рис. 1).

Для борьбы с пульсацией также применяют гидроаккумуляторы, которые в момент наибольшего давления запасают энергию, а в момент спада давления отдают её.

Поршневые насосы используются с глубокой древности. Известно их применение для целей водоснабжения со II века до нашей эры. В настоящее время поршневые насосы используются в системах водоснабжения, в пищевой и химической промышленности, в быту. Диафрагменные насосы используются, например, в системах подачи топлива в двигателях внутреннего сгорания.

  1. Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  2. Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учеб для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.

Помпы разные нужны, помпы разные важны… / Корпуса, БП и охлаждение

Помпа — сердце системы водяного охлаждения (СВО). От нее зависит не все, но многое, ведь она обеспечивает циркуляцию хладагента в системе. Как выбрать подходящую помпу для своего проекта СВО? Сегодня мы попытаемся дать ответ на, казалось бы, такой простой вопрос.

Вопрос выбора помпы для СВО достаточно сложен. Возможно читатели, имеющие у себя СВО, знают ответ на вопрос «какая нужна помпа?». Но реалии рынка как всегда вносят свои коррективы. Не ошибиться можно только с дорогими, проверенными временем и опытом брендами. Предложение помп огромно и достаточно проблематично найти одну и ту же модель в разных городах нашей необъятной Родины. К тому же потребности людей разные и их могут удовлетворять разные помпы.

Сегодня мы поговорим о том, какие бывают помпы, как можно улучшить их характеристики, как бороться с их недостатками, как сделать правильный выбор при выборе помпы. В следующем материале мы проведем небольшой блиц тест помп Heto для наглядности некоторых предлагаемых выводов.


Помпа — внешняя или погружная?

Помпы бывают двух видов, погружные и внешние. Принцип работы у них одинаков, просто погружные помпы работают только «опущенными» в воду. Для некоторых даже требуется минимальная глубина в 10 см от всасывающего штуцера (для целей СВО это не критично). Внешние же могут работать и как погружные, и как наружные. Бесспорных достоинств тех и других нет.

Погружные помпы самые распространенные. Причин этому много. Во-первых, в России не распространены магазины, где бы продавались принадлежности для создания собственной СВО. Обычно в таких магазинах предлагают внешние помпы, так как именно их стараются использовать зарубежные энтузиасты СВО. Во-вторых, помпу можно купить в магазинах торгующих принадлежностями для аквариумов, или похожих местах. А для аквариумов обычно применяются погружные помпы, нередко со специальными фильтрами. В-третьих, цена погружных помп банально ниже, а значит, их охотнее будут приобретать. Такая уж специфика рынка.


Внешние же помпы представляют собой более затратный продукт. Если утрировать, то это погружные помпы, которые очень хорошо герметизированы. Обычно цена внешней помпы в два раза выше, чем у погружного аналога. Их сложнее найти, но с появлением моды на офисные «фонтанчики» и дачные пруды предложение на рынке за последние три года заметно расширилось.

Каковы же достоинства и недостатки помп в различном их исполнении?

Погружные помпы:


Достоинства

Недостатки

 

1.      Стоимость заметно ниже

2.      Большая распространенность

3.      Относительно компактные размеры

4.      Звукоизоляция слоем воды в расширительном бачке

 

1.   Необходимо использовать относительно большой расширительный бачок

2.   Вся потребляемая мощность рассеивается в жидкость

3.   Большие требования к характеристикам расширительного бачка

Внешние помпы в большинстве своем дорогой товар. Это накладывает свой отпечаток, который в данном случае можно считать положительным. Применяются более качественные материалы, а само изделие из этих материалов лучше обработано. Например, во внешних помпах чаще применяют керамическую или стальную ось вместо пластмассовой, что не только благоприятно отражается на сроке службы, но и на шумовых характеристиках продукта. Другим примером может быть лучшая балансировка рабочей крыльчатки, что благоприятствует снижению вибрации во время работы.

Внешние помпы:


Достоинства

Недостатки

1.      Универсальность, возможность работы как погруженными в жидкость, так и во внешнем исполнении

2.      Относительно высокое качество и надежность

3.      Достоверные характеристики, так как по многим из распространенных моделям уже накоплена внушительная статистика, включая лабораторные испытания.

4.      Невысокий уровень шума

5.      Возможность создания более компактной СВО

6.      Не вся потребляемая мощность рассеивается в жидкость

7.      Некоторые модели работают от 12в постоянного тока, специально для подключения к БП компьютера

 

1.      Относительно высокая цена

2.      Меньшая распространенность на рынке

3.      Менее компактные размеры

4.      Обычно помпы с питанием от 12в постоянного тока имеют меньшую производительность, чем 220в аналоги. Дополнительная нагрузка на 12в линию блока питания, что особенно важно для блоков питания не соответствующих стандарту ATX v 2.0 или выше.

 

Внимательный читатель, наверное, уже заметил, что достоинства и недостатки внешних и погружных помп перетекают друг в друга. Местами даже имеются противоречия, например «размер помпы — компактность системы». Все правильно. Это объясняется тем, что для каждого пользователя, даже для каждого конкретного случая реализации СВО, будут свои определяющие факторы. Каждый пользователь сам расставляет приоритеты СВО и в соответствии с ними делает окончательный выбор.

Но давайте вернемся к «табличному противоречию» и проиллюстрируем его на примере. Погружные помпы компактны, но требуют объемных расширительных бачков, в которых они и размещаются. Внешние помпы крупнее сами по себе, но могут обходиться без расширительного бачка вообще. На практике в последнем случае все же разумно использовать расширительный бачок, хотя бы очень небольшой, для удобства заправки системы и «отлавливания» воздушных пузырьков. В случае с погружной помпой система будет компактней при наличии большого свободного пространства в корпусе, например 2-3 отсека для 5 дюймовых устройств. Но случается так, что бывает легче найти 2 небольших «местечка» для внешней помпы и маленького расширительного бачка, особенно если в системном блоке используется множество устройств или сам он небольших размеров.

Итак, выбор типа помпы не зависит от желаемой производительности СВО и диктуется другими параметрами системы, включая вкусы пользователя.

Характеристики помпы

Существует несколько характеристик помп, которыми необходимо руководствоваться при создании СВО. Надеюсь вам не стоит напоминать, что иногда заявленные характеристики немного «не совпадают» с реальными.

Производительность

Производительность измеряется в литрах в час (л/ч). Она показывает, сколько воды может прокачать через себя помпа за 1 час при отсутствии таких факторов как гидросопротивление контура и перепад высот. В СВО применяются помпы с производительностью от 70 л/ч (например, система 3R Poseidon) до 2000 л/ч, иногда встречаются пользователи СВО с помпами в 4500 л/ч, но их абсолютное меньшинство.

Стоит заметить, что реальная производительность помпы в контуре много меньше заявленных цифр. Это происходит не только благодаря гидросопротивлению элементов контура, но и из-за банального несоответствия реальных и заявленных характеристик. При прочих равных, больший расход всегда ведет к лучшим результатам. Однако, это не всегда справедливо для конкретной реализации проекта СВО. Для каждой системы лучше подбирать производительность помпы индивидуально, так как она напрямую связана с другими характеристиками.


Пример взаимозависимости расхода и высоты подъема воды, такие графики обычно присутствуют на упаковке.

Высота подъема воды

Высота подъема столба воды (Hmax или max head) измеряется в метрах. Встречаются помпы с высотой столба от 30 см. То есть, именно на такую высоту помпа может поднять воду в вертикальном шланге. Это наиболее важный параметр при выборе помпы, так как он говорит о развиваемом ею давлении. Именно это давление служит средством преодоления гидросопротивления контура. Чем выше параметр столба воды, тем ближе будет реальный расход в системе к заявленному расходу в характеристиках помпы. Повторюсь, что это ведет к лучшим результатам. Здесь следует сделать особое пояснение. Рассмотрим его на примере: У нас имеется 5 помп со следующими характеристиками. Уделите внимание именно высота подъема столба.


Помпа Hydor Seltz L30. Заявлен расход 1000 л/ч, высота подъема воды 2м, сечение штуцера 13мм, 27вт
Atman AT-305 Заявлен расход 1200 л/ч, высота подъема воды 1,3м, сечение штуцера 10мм, 25вт
Hydor PICO 500 II Заявлен расход 500 л/ч, высота подъема воды 1,1м, сечение штуцера 10мм, 7вт
Sicce Nova. Заявлен расход 800 л/ч, высота подъема воды 1,6м, сечение штуцера 10мм, 10вт
Sicce Idra. Заявлен расход 1300 л/ч, высота подъема воды 2,2м, сечение штуцера 20мм, 25вт

Необходимо уделять внимание не только параметру «высота подъема», но и сечению штуцера («калибр»), при котором этот подъем достигается. Давайте приведем упомянутые помпы к «общему знаменателю». Для этого посчитаем реальный объем воды в столбе. Получилось следующее:


Название помпы

Высота подъема, м

Калибр, мм

Объем воды в столбе, мм3

Hydor Seltz L30

2

13

Около 265500

Atman AT-305

1,3

10

Около 102100

Hydor PICO 500 II

1,1

10

Около 86400

Sicce Nova

1,6

10

Около 125700

Sicce Idra

2,2

20

Около 691000

Как видите, хоть цифры характеристик и похожи, но реальное развиваемое помпами давление различается просто колоссально. Тем не менее, это не значит, что нужно бежать и приобретать помпу с сечением штуцера в 1 дюйм. Это совсем не необходимость. Просто если вам известны значения гидросопротивления элементов контура, то можно прикинуть, даст ли вам какую либо пользу использование более мощной помпы с делителями потока или вас устроит последовательное подключение ватерблоков с помпой, чье сечение наиболее близко к сечению ВБ.

При прочих равных характеристиках помп следует отдавать предпочтение той, у которой Hmax выше, нежели той, у которой больше расход. В замкнутой системе перепады высот отсутствуют (если только со временем воздух не скопится в самой верхней точке), вся мощь помпы тратится на преодоление гидросопротивления контура.

Мощность

Мощность измеряется в ваттах. Показатель показывает, сколько электроэнергии потребляет помпа в процессе работы. Значение варьируется от 4вт до 35вт и более. При прочих равных условиях желательно выбирать помпу с меньшей мощностью, так как это свидетельствует о том, что КПД помпы выше. Большее энергопотребление означает большую рассеиваемую мощность, а лишний источник теплового излучения в контуре нам не нужен.

Напряжение

Обычно либо 220 вольт переменного тока, либо 12 вольт постоянного. Рассматриваемые нами аквариумные и фонтанные помпы питаются 220 вольтами. В брендовых СВО чаще используют 12-вольтовые помпы. Хотя они и являются менее производительными, их удобнее подключать непосредственно к БП компьютера. 220-вольтовые помпы подключают либо непосредственно к розетке 220 вольт либо через реле, чтобы обеспечить синхронное с компьютером включение.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

Помпы разные нужны, помпы разные важны… / Корпуса, БП и охлаждение

Конструктивные особенности: Диаметр, камера, геометрия крыльчатки, вал, вес, размер

Все эти параметры тоже важны. Мы уже затронули важность параметра «калибр», когда говорили о развиваемом помпой давлении. Тут мы позволим себе небольшое, но важное дополнение: Чтобы увеличить расход в системе в 2 раза, необходимо либо в 2 раза увеличить сечение контура, либо в 4 раза давление. В таких случаях резонно использовать помпы большого калибра вместе с делителями потока.

Что касается рабочей камеры, то лучше чтобы она находилась внутри помпы. Бывает так, что камера просто накрывает крыльчатку. Это ведет к некоторым потерям давления и расхода. Подробнее об этом аспекте мы поговорим в следующем материале, посвященному тестированию помп Heto.

Пример помпы со съемной камерой. Не лучший выбор, но зато имеется возможность повернуть штуцер в любую удобную сторону.

С параметром геометрии крыльчатки мало что ясно, но он тоже имеет определенное влияние на параметры помпы. Возможно потребуются дополнительные исследования, но пока мною был замечен следующий факт: помпы с большим диаметром крыльчатки обеспечивали большее давление, чем похожие помпы с меньшим диаметром крыльчатки, но большей площадью лопастей. Затруднение в проведении эксперимента обусловливается тем, что невозможно найти помпы с одинаковыми моторами, но с разными крыльчатками.

Вал — тут все просто, лучше избегать помпы с пластиковым валом, хотя это не определяющий параметр. Размер и вес — про размер можно вспомнить поговорку «на вкус и цвет…», а про вес следует сказать, что чем он больше, тем меньше вибрация помпы. Это очень благоприятно сказывается, когда используется не очень дорогой корпус, где толщина металла небольшая и корпус не способен гасить вибрацию своей массивностью.

Способы доработки помп

Как и многие вещи, используемые «не совсем по назначению», помпу можно доработать под задачи СВО. Эти доработки в основном сводятся к фиксации крыльчатки, замене оси, расширению входного и выходного отверстия, уменьшению объемов рабочей камеры и переделки из погружной во внешнюю.


Фиксация крыльчатки очень полезна, когда помпа издает стрекот при работе. На иллюстрации фиксация была произведена при помощи термопистолета

Иногда помпы имеют зафиксированную крыльчатку изначально. Но чаще крыльчатка свободно закреплена и может сделать почти целый или половину оборота, до того как встретит упор. Это сделано для того, чтобы уменьшить стартовое усилие помпы. Также подвижность крыльчатки спасает при попадании в камеру песка или камешков (что, понятно, в СВО невозможно). Фиксировать крыльчатку можно как клеем, так и уплотнителем. Необходимо использовать не растворимый в воде клей. А то я долго не мог понять, почему со временем приклеенная суперклеем крыльчатка начинает шуметь через пару дней. Ответ нашелся, когда случайно были склеены… пальцы. Автора это заставило заглянуть в инструкцию к клею, где было написано «при попадании клея на кожу, промыть участок водой».


Также фиксацию крыльчатки осуществляют с помощью ленты ФУМ или специально изготовляемых колец. Рассверливают отверстие в крыльчатке, затем вставляют уплотнительное кольцо и крепко одевают на вал. Иногда встречается мнение, что не следует фиксировать крыльчатку, так как в таком случае помпа не сможет стартовать. Что ж, вполне возможно… может не стоит использовать настолько слабые помпы? На этот вопрос читатель должен ответить сам. Все помпы по своему хороши.


Заменой оси можно продлить ресурс помпы. Обычно устанавливают керамическую ось. К сожалению, подобные товары не распространены на российском рынке
Замена оси в помпах Eheim

Расширение входного и выходного отверстия полезно не для всех помп. Эта нехитрая процедура помогает немного снизить гидросопротивление, тем самым увеличить расход. Процедура реализуется напильником или любым другим удобным инструментом. Уменьшение объемов камеры тоже полезно не всегда. Целью такой модификации является уменьшение потерь внутри камеры помпы. Не советую этим заниматься, так как эффект от этого минимален.

Переделка погружной помпы во внешнюю. Очень полезная процедура. Практически любую помпу, где забор воды осуществляется по штуцеру, можно переделать во внешнюю. Нельзя переделать помпы, втягивающие воду через прорези в корпусе. Заветная процедура переделки сводится к герметизации швов и рабочей камеры. Подробное описание процесса будет приведено в материале по тестированию помп Heto.

Способы снижения шума

Шум от помпы может быть трех видов: шум из-за крыльчатки, вибрационный шум и кавитация (холодное кипение). Если с последним эффектом можно легко бороться, снижая обороты крыльчатки, подключив помпу через пониженное напряжение (12в помпы иногда продаются с подобными регуляторами), то с первыми двумя феноменами относительно сложно бороться, если помпа очень мощная.

Шум от крыльчатки резко снижается при ее фиксации. Однако это не спасает при ее плохой балансировке (низком качестве помпы). Решением может быть использование помпы в качестве погружной в просторном бачке. Вода имеет звукопоглощающие свойства. Однако следите, чтобы в бачке не было слишком много воздуха. Иначе шум в закрытом пространстве приведет к эффекту сабвуфера.

С вибрацией же бороться и легко и сложно одновременно. Можно утяжелить помпу, прикрепив ее к тяжелому основанию. Можно поставить ее на губку, поролон или другой материал, который хорошо гасит вибрацию. Также иногда решением может быть подвешивание помпы (как в бачке, так и вне его) за провод, шланги или резинки. В таком случае вибрация будет передаваться по шлангу, но если он достаточно длинный, то вы ее не заметите. При вибрации погружной помпы можно обложить весь бачок изнутри поролоном, так как при подвешивании передаваемая по шлангам вибрация перекинется на бачок, который в свою очередь тоже начнет шуметь.

Однажды на просторах Интернета, очень уважаемым мною человеком был дан такой небольшой совет: «перед тем как установить помпу в систему, можно разобрать и смазать ось крыльчатки, какой-нибудь смазкой (литол 24, вазелин, цеотим и т.д.) Потом поместить в теплую воду 35 градусов и дать поработать 3-4 часа для притирки трущихся поверхностей. Затем добавить несколько капель моющего средства, дать поработать 15 минут (для смывки смазки) и 15 минут дать поработать в проточной воде (для удаления мыла). Больше помпу разбирать не надо. При таком вводе в эксплуатацию, помпа будет работать тише и дольше».

Решением шумовой проблемы со 100% гарантией без приложения усилий может быть только приобретение недешевых помп мировых брендов водяного охлаждения.

Использование нескольких помп в СВО

Использование нескольких помп в общем контуре СВО тоже встречается. При этом увеличивается создаваемое помпами давление, но не расход. Давление просто складывается. Некоторые считают подобный вариант более надежным, но так как помпа по конструкции даже надежнее вентиляторов (меньше механических частей), то городить «зоопарк» из помп ради безопасности не стоит. Гораздо лучше сделать 2 независимых контура, например на процессор и видеочип+чипсет материнской платы.

Насос омывателя стекла, бензонасос, насос от стиральной машины и т.п.

Не стоит применять подобные вещи в СВО. В большинстве своем они имеют небольшой ресурс, так как они не предназначены для непрерывной работы. Шумовые характеристики также оставляют желать лучшего. Обычно идеи применения подобных вещей возникают от желания сэкономить. Не стоит экономить «на спичках».

Применение циркуляционных насосов в СВО

Циркуляционные насосы систем отопления применяются в СВО относительно часто. По конструкции они подобны помпам (что, собственно, в переводе означает «насос»), только могут развивать несравнимо большее давление — именно это и важно для целей СВО. Имеют относительно большие размеры, с литровую банку. Стоимость на младшие модели сравнима с дорогими топовыми помпами от известных брендов, как Eheim например. Циркуляционные насосы выпускают множество компаний. К сожалению, у многих моделей корпус выполнен из чугуна, который ржавеет при использовании воды без ингибиторов коррозии. Редко можно найти исполнение насоса из латуни или бронзы. Работают по заверениям владельцев абсолютно бесшумно. Хотя, повторюсь, обычных аквариумных и фонтанных помп хватает для целей СВО. Итог: если размер и цена не определяющие факторы, то «must have».

На старт, внимание, марш!

Многие пользователи СВО сталкиваются с проблемой необходимости включения помпы одновременно с компьютером. Другие, как автор этих строк, не выключают помпу вообще. Оставшиеся являются пользователями помп с 12в питанием постоянного тока, которые коммутируются к БП компьютера, таким образом, стартуют одновременно с его включением.

Но вернемся к первой группе пользователей. Да, довольно тяжело постоянно помнить о том, что необходимо включать помпу. Можно пойти по простому пути и включать помпу и ПК через выключатель сетевого фильтра, синхронность обеспечена. Дополнительные проблемы никому не нравятся, поэтому применяют также реле на 12в. При включении компьютера срабатывает реле и помпа запускается. Реле впаивается в шнур питания помпы, для этого его нужно разрезать, и подключается к любому источнику 12в, будь то molex коннектор БП или разъем для вентилятора на материнской плате. Такую помпу в аквариумах и фонтанах уже использовать нельзя, так как во всех инструкциях есть предупреждение «с поврежденным проводом эксплуатация изделия запрещена!». Ну, я думаю, читатель сам понимает почему. На просторах сети существует множество схем по воплощению подобного «мода» помпы.

Помпы хотя бы по устройству надежнее вентиляторов, поскольку в них меньше механики. У них невозможны проблемы с высыханием смазки, так как в качестве смазки выступает вода. Практика аквариумистов говорит о том, что помпы как раз рассчитаны на бесперебойную работу в течение многих лет. Разрешите процитировать еще одного многоуважаемого человека — «У меня было две помпы — одна из них уже перешагнула 6-летний рубеж бесперебойной работы. То есть они конечно периодически обесточиваются, но только на время чистки фильтров. Вторая эксплуатируется также, но только три года. Люди пользуют помпы уже лет по 12. Более старых помп я не встречал, но лишь потому, что это первые помпы, появившиеся в России в то время».

Конечно, помпы, как и любая механика, могут сломаться. Но чаще это случается именно в момент старта. Иногда помпа ломается и в процессе работы, у нее может заклинить крыльчатка. Такое происходит при низком качестве помпы. Разбивается отверстие на крыльчатке и помпа начинает тарахтеть как трактор. В этот момент следует принять меры: либо зафиксировать крыльчатку дополнительным кольцом, вставив его в разбитое отверстие, либо сменить помпу. Уж при таком грохоте момент остановки помпы никак пропустить не удастся.

Желание обеспечить помпе синхронный старт с компьютером больше проистекают из области вкуса, чем необходимости. В одном случае можно рекомендовать обеспечить синхронный старт — когда помпа достаточно шумная.

Пара мифов водяного охлаждения

МИФ: Большая скорость жидкости не нужна. Она быстро заберет тепло в ватерблоке, это хорошо. Но она также не успеет толком охлаждаться в радиаторе, так как слишком быстро будет через него проходить.

Реальность: Физический закон обратим. Если вода быстро забирает тепло, то она отдает его с той же скоростью. Притом вода находится одинаковое время в ватерблоках и радиаторе независимо от расхода. Давайте рассмотрим это на примере.

У нас имеется контур, где 5% жидкости находится в ватерблоке, 40% в радиаторе, а остальная жидкость — в шлангах, бачке и т.д. Помпа выключена, расход нулевой. Теперь включаем помпу и пусть она прокачивает через контур 300 л/ч. Все еще 5% воды находится в ватерблоке и 40% в радиаторе, и это соотношение не изменится никогда. Теперь пусть помпа начнет прокачивать через контур 600 л/ч вместо 300л/ч. Скорость жидкости увеличилось в 2 раза, она в 2 раза быстрее проходит через ватерблок и через радиатор, но скорость теплопередачи как физическая величина неизменна. Во втором случае вода хоть и течет в 2 раза быстрее, но и «кругов» по контуру сделает в 2 раза больше. Тем самым достигается равновесие. Расход в контуре на количество переносимого и рассеиваемого тепла не влияет. СВО рассеет столько тепла, сколько ей обеспечат процессор, видеокарта и т.д. Расход (но, не только он один) определит только конечную температуру «точек» охлаждения.

МИФ: Потребляемая мощность помпы очень сильно влияет на температуры элементов в контуре. Это еще один источник нагрева в системе. Лучше поставить помпу в 6 ватт, чем 15 ватт.

Реальность: В действительности сложно с точностью сказать, сколько же тепла помпа передает воде. Но в качестве ориентира можно использовать следующие цифры: внешние помпы отдают воде 70-90% тепла, в то время как погружные все 100%.

Радиатор на два вентилятора по 120мм обычно имеет 0.03 C/W, с установленными вентиляторами. Это значит, что температура воды поднимется на 1 градус при увеличении тепловыделения на 33 ватта. Таким образом, если ваша помпа выделяет 33 ватта, то вода нагреется на 1 градус. Таким образом, разница между помпой в 33 ватта и 16 ватт является 0,5 градуса. Мне не понятны сообщения некоторых пользователей СВО, в которых они говорят, что после замены помпы с 15 вт на 6 вт температура воды снизилась на 2 градуса. Чаще встречаются сообщения типа «использовал помпу на 1500л/ч, поменял на 500л/ч — ничего не изменилось». В последнем случае узким местом в системе являлась не помпа, и с ее заменой на менее производительную пользователь получил более сбалансированную систему.

Следует особенно заметить, что использование мощной помпы всегда окупается повышением давления, что непременно сказывается на производительности ватерблока и радиаторов типа Black Ice или от отопителя салона а/м «Газель». Для подобных радиаторов рекомендуется использовать помпу, которая может обеспечить 300л/ч в контуре. Расход для них играет заметно большую роль, нежели производительность обдувающих вентиляторов. В противовес можно привести пример конструкции радиатора, где обдув важнее, чем расход, который почти не приносит выгоды — это радиаторы типа Acuma CoolRiver, ThermalTake серия Aquarius, BigWater.

Хорошему ватерблоку необходима мощная помпа для раскрытия его потенциала, но для них обоих нужен хороший радиатор. Начните свой выбор с радиатора, тогда станет понятно, имеет ли смысл устанавливать в систему мощную помпу и ватерблок с большим гидросопротивлением.

Вот мы и закончили рассмотрение такой необъятной темы как помпа в СВО. К сожалению, нам не удалось дать ответ на вопрос «какую вам выбрать помпу». Но надеемся, что вам пригодится приведенная информация о том, как нужно выбирать помпу и как бороться с ее недостатками, если она вас чем-то не устраивает. Желаем вам успехов в деле создания собственной СВО.

Если Вы заметили ошибку — выделите ее мышью и нажмите CTRL+ENTER.

основные принципы и устройство насоса

Мотопомпа – это оборудование, которое используется для отвода жидкости с дачных участков и погребов, откачки воды из резервуаров и искусственных водоемов, ликвидации последствий таяния снега и наводнений. Перед покупкой агрегата необходимо разобраться,как работает мотопомпа для воды, чем отличаются разные модели и как правильно готовить оборудование к работе.

На практике используются разные типы агрегатов с двигателем, работающим на бензине,газе,электроэнергии или дизельном топливе. Последний вариант отличаются более высокой мощностью. По назначению они делятся на модели для откачки чистой, слабо- и сильнозагрязненной воды.

Основной принцип работы мотопомпы для откачки воды

Принцип функционирования агрегата основан на физическом законе Ньютона о центробежном ускорении. Жидкость, проходя через шланг, оказывается в насосном корпусе. Мотор агрегата заставляет вращаться колесо. На него воздействует центробежная сила, которая нагнетает поток жидкости.

В этот момент в отверстии на входе создается разреженное пространство и после открытия клапана жидкость направляется к центру рабочего колеса. Оттуда под давлением поток поступает в область с вращающимися лопастями, которые завернуты в обратную сторону от направления вращения колеса. За счет этого устройство может всасывать жидкость.

В процессе эксплуатации необходимо учитывать, что чем выше над точкой закачки находится оборудование, тем с меньшей эффективностью будет оно работать. Это объясняется сопротивлением жидкости. Поэтому следует использовать шланг с полированной внутренней поверхностью и гофрированной — снаружи.

Как работает бензиновая мотопомпа?

Бензиновая помпа является современным оборудованием, которое при своих компактных размерах обладает достаточно высоким показателем мощности. Оно способно стабильно функционировать в любое время года и погоду, эксплуатация не требует специальных навыков. Высоконапорные агрегаты устанавливаются на мобильную площадку и используются при тушении пожаров.

Перед применением агрегата необходимо изучить инструкцию по эксплуатации и правила техники безопасности. Мотопомпу следует установить на ровной, твердой поверхности вблизи от объекта, на котором будет производиться забор субстанции. Согласно инструкции подсоединяются патрубки и рукава. Шланг с фильтрующим элементом опускается в водоем или резервуар. В бак заливается топливо, а в насосную камеру – вода.

Чтобы запустить мотор, необходимо:

  • закрыть воздушную заслонку;
  • рычаг установить в среднюю позицию;
  • несколько раз нажать на рычаг подсоса;
  • плавно потянуть за рукоятку запуска;
  • после пуска мотора открыть заслонку;
  • установить двигатель на холостой ход;
  • подождать 15 секунд для прогрева двигателя;
  • установить необходимый рабочий режим.

Чтобы выключить оборудование, необходимо все действия выполнить в обратном порядке.

Устройство насоса

Состоит мотопомпа из прочной рамы, на которую крепится мотор, рукав для всасывания жидкости, насос и напорный рукав. Все элементы вместе с двигателем объединены в одну функциональную систему. Рама компактных моделей также используется и для их переноски, а крупногабаритное оборудование устанавливают на мобильную площадку.

Насос состоит из высокопрочной пустотелой оболочки с патрубками. В корпусе установлено колесо с лопастями. К штуцеру подсоединяется шланг, второй конец которого помещается в жидкость. Чтобы избежать попадания в шланг камней, растительности и твердого мусора, на него устанавливается фильтрующий элемент. Вода отводится посредством трубопровода или специального шланга.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *