Привода система – Типы приводов и систем полного привода: конструктивные особенности, преимущества и недостатки каждого типа

Содержание

Что такое система полного привода. Принцип работы и разновидности

ЧТО ТАКОЕ СИСТЕМА ПОЛНОГО ПРИВОДА. ПРИНЦИП РАБОТЫ И РАЗНОВИДНОСТИ

Добрый день, сегодня мы узнаем, что называется автомобильной системой полного привода, каков ее принцип работы, какие существуют разновидности и чем они отличаются друг от друга. Кроме того, расскажем про то, какая система полного привода наиболее эффективна в той или иной ситуации и почему не каждое транспортное средство обладающее этим механизмом можно назвать полноправным внедорожником. В заключении мы поговорим о преимуществах и недостатках того или иного вида системы полного привода автомобиля, а также определимся, машина с каким оснащением наиболее экономична.


Большинство автолюбителей уверены в том, что любой внедорожник в любой ситуации и всегда обладает постоянным полным приводом. Однако придется немного расстроить, чье мнение именно такое, потому что не каждое транспортное средство

оснащенное системой полного привода способно постоянно его использовать. Полный привод или в аббревиатуре 4WD, то есть привод на все колеса или в народе говоря четыре управляемых колеса, не гарантируют, что у транспортного средства имеется постоянное и систематическое управление всеми колесами. Заметим, что на сегодняшний день существует большое множество различных схем приводов



Для того, чтобы отличить полноценный внедорожник с полным приводом от обычного паркетника, а также понять какие преимущества и недостатки существуют у каждой системы, необходимо знать, какие разновидности механизмов полного привода транспортных средств существуют, и как они обозначаются у автомобильных производителей. Данные вопросы мы и обсудим в нашем рассказе, чтобы получить исчерпывающее представление об автомобильных

 системах полного привода, а также плюсах и минусах каждого механизма в отдельности. Кроме того, рассмотрим часто задаваемый вопрос многими автовладельцами: «Какой автомобиль называется полноценным внедорожником?».

1. Понятие и принцип работы частично-включенной системы полного привода «Part-Time»

На сегодняшний день быстрое распространение получает система полного привода под названием «Part-Time«, которая подразумевает наличие механизма управления всеми колесами. Однако контроль над колесами у такой разновидности привода имеется не всегда. Например в обычном режиме, когда автомобиль двигается по городской дороге или по загородной трассе, наше транспортное средство функционирует в заднеприводном режиме

, то есть привод колес осуществляется только на задние колеса. В принципе и так все понятно с самого названия такой системы «Part-Time«, которая в переводе с английского языка означает, как «частичное подключение«. Для того, чтобы подключить полный привод в таком механизме, нужно будет осуществить перевод рычага селектора раздаточной коробки в определенное положение.



Система полного привода данного вида была сделана именно с такой настройкой узлов из соображений, в первую очередь безопасности, а во-вторых, чтобы сделать автомобиль более экономичным. Справочно отметим, что подключать полный привод на таком транспортном средстве можно только на
короткий промежуток времени
, когда в этом есть крайняя необходимость. Если мы систематически эксплуатируем автомобиль в городском цикле, то подключение системы полного привода данного вида просто бессмысленно, так как это может вызвать разрушение деталей коробки передач, а также высока вероятность того, что в дальнейшем нарушится управляемость машины. Как правило, нарушение управляемости автомобиля может вызвать его занос, который создаст аварийную ситуацию на дороге.

Почему же нельзя включать полный привод с системой «Part-Time» на длительный период времени? Основная причина ответа на данный вопрос кроется в том, что такая система не оснащается межосевым дифференциалом
. Этот недостаток намного снижает проходимость автомобиля, но при этом увеличивает срок эксплуатации и удешевляет стоимость обслуживания транспортного средства. Хотя стоит заметить, что легкое и даже среднее бездорожье автомобили с такой системой покоряют практически без усилий, а больше от них ожидать не нужно.

Перед покупкой автомобиля с системой полного привода самое главное решить для себя, для каких целей мы приобретаем транспортное средство. Если мы не собираемся покидать асфальтированное дорожное полотно, то машина с системой полного привода под названием «Part-Time» быстрее всего нам не понадобится. Для городского цикла такой внедорожник будет являться просто большим универсалом с
задним приводом
с немалым расходом топлива.

2. Понятие и принцип работы автоматически подключаемой системы полного привода «On Demand»

Следующий вид системы полного привода под названием «On Demand» практически аналогична ранее описанной «Part-Time«. В обычном режиме такой механизм автомобиля также главным приводом делает задние колеса транспортного средства. Однако основное отличие системы «On Demand» состоит в том, что подключение полного привода происходит по разному. В данной системе полный привод приходит в действие автоматически, то есть в том случае, когда электроника машины замечает, что колеса внедорожника или кроссовера начинают проскальзывать (буксовать), то она сама без нашего участия подключит передние колеса. И в тот момент, когда это произойдет, автомобиль

автоматически становится полноприводным на 4 колеса. Сделано это не в угоду проходимости. Главное преимущество такой технологии заключается в том, что повышается уровень управляемости и улучшается удержание машины на дорожном полотне. 



Когда происходит подключение полного привода системы «On Demand«, то механизм отбирает часть крутящего момента от задних колес и перераспределяет его между передней и задней осью. Как правило, соотношение крутящего момента на большинстве современных кроссоверах составляет, 60 процентов на заднюю ось и 40 процентов на переднюю. В некоторых случаях оно может быть в соотношении 50% к 50%. Вариантов
распределения крутящего момента
довольно много, как правило, все зависит от настроек и установленных систем той или иной модели транспортного средства. Бывают такие машины, когда в обычных дорожных условиях он имеет передний привод, а подключаться может и задний.

Отметим, что система полного привода «On Demand» производит подключение дополнительного, как правило, заднего моста только в случае необходимости. Кроме того, подключение заднего моста происходит не пожеланию водителя автомобиля, а по решению и требованию электроники. Такая система очень хорошо себя зарекомендовала в заснеженных регионах планеты и в странах с горной местностью. На сегодняшний день эта система активно применяется на 25 процентах
паркетниках 
от общего количества произведенных на Земле.

3. Понятие и принцип работы системы постоянного полного привода «Full-Time»

Следующим видом системы полного привода является устройство с названием «Full-Time«, что в переводе с английского языка означает «полное время«. Таким образом, транспортное средство оснащенное данной системой всегда имеет постоянный привод на все свои четыре колеса. Справочно отметим, что система «Full-Time» имеет два режима работы, такие как: городской и внедорожный. Каждый режим имеет свои определенные настройки подвески и по разному реагирует на те или иные препятствия.


Транспортное средство оснащенное системой постоянного полного привода для городского цикла имеет в своем наличии специальный межосевой дифференциал, который дает возможность автомобилю постоянно передвигаться на полном приводе. Однако для серьезных препятствий на бездорожье эта система не годна, так как у нее отсутствует такой важный элемент трансмиссии, как блокировка межколесного дифференциала. В связи с отсутствием данной блокировки, процесс соединения мостов, переднего с задним не осуществляется должным образом, потому что происходит их проскальзывание. Это является большим недостатком для езды по бездорожью, но для городского цикла, наоборот является преимуществом.



Автомобили оснащенные системой внедорожника «Full-Time» являются полноценными джипами, которым не страшны практически любые преграды на пути. Такая система отлично подходит для тех, кто систематически ездит по ухабистым и разбитым дорогам или наоборот для того, чтобы часто преодолевать внедорожные препятствия на своем пути. Система полного привода для внедорожного режима оснащена специальной блокировкой межколесного дифференциала. Не зря большинство специалистов по обслуживанию и ремонту транспортных средств утверждают, что решение о приобретении в пользу автомобилей с установленной системой «Full-Time» для внедорожного режима является оптимальным выбором. Однако перед покупкой такой машину, необходимо учитывать тот факт, что по цене они стоят намного дороже тех автомобилей, которых в народе называют кроссоверами, паркетниками 

или даже полноприводниками.


Видео обзор: «Что такое система полного привода. Принцип работы и разновидности»

В заключении отметим, что большинство современных внедорожников, которые мы каждый день видим на улицах своего города, ими не являются. Да их можно назвать большими универсалами с неплохой геометрической проходимостью для преодоления небольших препятствий в виде бордюров, сугробов и ухабов на дороге. В том случае, когда мы постоянно ездим в режиме городского цикла и нам не требуется преодолевать бездорожье, то лучше для себя выбрать простой и довольно надежный паркетник. Тем самым мы сможем неплохо сэкономить на топливе и совсем не потеряем в

управляемости на дорожном полотне.

БОЛЬШОЕ СПАСИБО ЗА ВНИМАНИЕ. ОСТАВЛЯЙТЕ СВОИ КОММЕНТАРИИ, ДЕЛИТЕСЬ С ДРУЗЬЯМИ. 
ЖДЕМ ВАШИХ ОТЗЫВОВ И ПРЕДЛОЖЕНИЙ.

Система верхнего привода — Википедия

Материал из Википедии — свободной энциклопедии


Система Верхнего Привода (СВП) — важный элемент буровой установки, который представляет собой подвижный вращатель, совмещающий функции вертлюга и ротора, оснащённый комплексом средств для работы с бурильными трубами при выполнении спуско-подъёмных операций. СВП предназначена для быстрой и безаварийной проводки вертикальных, наклонно-направленных и горизонтальных скважин при бурении.

Подвижная часть системы верхнего привода состоит из вертлюга-редуктора, подвешенного на штропах на траверсе талевого блока.

На верхней крышке вертлюга-редуктора предусмотрен взрывозащищённый электродвигатель постоянного тока. Один конец вала электродвигателя посредством эластичной муфты присоединён к быстроходному валу редуктора. На противоположном конце — диско-колодочный тормоз. К корпусу вертлюга-редуктора крепится рама, через неё блоком роликов передаётся крутящий момент на направляющие и с них — на вышку. Между талевым блоком и вертлюгом-редуктором установлена система разгрузки резьбы, она обеспечивает автоматический вывод резьбовой части ниппеля замка бурильной трубы из муфты при развинчивании и ход ниппеля при свинчивании замка. Повреждение резьбы при этом исключается.

Трубный манипулятор под действием зубчатой пары с приводом от гидромотора может поворачивать элеватор в любую необходимую сторону: на мостки, на шурф для наращивания и т. д.

Трубный зажим нужен для захвата и удержания от вращения верхней муфты трубы во время свинчивания/развинчивания с ней ствола вертлюга.

Между ниппелем и стволом вертлюга навернут ручной шаровой кран для неоперативного перекрытия внутреннего отверстия ствола вертлюга. Для оперативного перекрытия отверстия ствола вертлюга перед отводом установлен внутренний превентор (двойной шаровой кран), который также служит для удержания остатков промывочной жидкости после отвинчивания бурильной колонны.

Вертлюжная головка служит для передачи рабочей жидкости с невращающейся части СВП на вращающуюся часть и позволяет не отсоединять гидравлические линии, когда трубный манипулятор вращается с бурильной колонной при бурении, при проработке скважины или позиционировании механизма отклонения штропов элеватора.

Система отклонения штропов предназначена для отвода/подвода элеватора к центру скважины. Система отклонения штропов представляет собой штропы, подвешенные на боковых рогах траверсы. К штропам крепятся гидроцилиндры отклонения штропов.

  • Вращение бурильной колонны с регулированием частоты при бурении, проработке и расширении ствола скважины, при подъёме/спуске бурильной колонны.
  • Торможение бурильной колонны и её удержание в заданном положении.
  • Обеспечение проведения спуско-подъёмных операций в том числе:
    • наращивание/разборка бурильной колонны свечами и одиночными трубами;
    • свинчивание/развинчивание бурильных труб, докрепление/раскрепление резьбовых соединений переводников и шаровых кранов;
    • подача бурильных труб к стволу/удаление от ствола вертлюга.
  • Проведение операций по спуску обсадных колонн в скважину.
  • Промывка скважины и одновременное проворачивание бурильной колонны.
  • Задание и обеспечение величин крутящего момента и частоты вращения, их измерение и вывод показаний на дисплей шкафа управления, выносной дисплей, пульт управления и на станцию геолого-технических исследований.
  • Дистанционное управление.
  • Герметизация внутритрубного пространства шаровыми кранами.
  • экономия времени в процессе наращивания труб при бурении;
  • уменьшение вероятности прихватов бурового инструмента;
  • расширение/проработка ствола скважины при спуске и подъёме инструмента;
  • повышение точности проводки скважин при направленном бурении;
  • повышение безопасности буровой бригады;
  • снижение вероятности выброса флюида из скважины через бурильную колонну;
  • облегчение спуска обсадных труб в зонах осложнений за счёт вращения и промывки;
  • повышение качества керна.

Первый верхний привод был разработан и произведён компанией Varco International (ныне National Oilwell Varco). Модель TDS-1 была пущена в эксплуатацию 1 апреля 1982 года на буровой установке Sedco 201 в Арабском заливе.

К 1996 году способ бурения верхним приводом стал основным методом бурения морских скважин. Также очевидно, что значительная часть скважин на суше сейчас бурится с применением СВП.

Для продвижения СВП на новые рынки по всему миру компанией Maritime Hydraulics была разработана портативная СВП. Для малогабаритных скважин («slim-hole») разработана портативная СВП, обеспечивающий высокоскоростное (600 об./мин.) бурение.

В начале 2000-х годов в России стали предприниматься попытки создания СВП. В 2003 году петербургская промышленная группа в составе ПромТехИнвест и ОАО «Электромеханика» выпустила первый в России верхний привод, также выпускаются СВП компанией ООО «Уралмаш НГО Холдинг».ООО «Снежинский завод специальных электрических машин» производит низковольтные асинхронные электродвигатели серии ТD250 для систем СВП.

Электрический[править | править код]

Постоянный ток[править | править код]
Переменный ток[править | править код]

Гидравлический[править | править код]

Морские[править | править код]

Сухопутные[править | править код]

Стационарные[править | править код]
Мобильные[править | править код]

Система полного привода автомобилей

Автомобили повышенной проходимости пользуются довольно большим спросом у водителей. Далеко не все они являются внедорожниками, однако практически любая система полного привода (AWD или 4WD) позволит владельцу без особых проблем выбраться на загородный пикник или на дачу.

Full-time и part-time AWD

Разновидностей систем существует немало, практически каждый автопроизводитель дает им свои названия:

  • xDrive система полного привода BMW;
  • Quattro – Audi;
  • 4motion – Volkswagen;
  • TOD (ATT) – Ssang Yong и Hyundai;
  • Super Select (Easy Select) – Mitsubishi;
  • Active Select – Chevrolet и другие.

Между тем все они делятся на две основных категории: full-time и part-time AWD. К первой группе относятся системы, в которых полный привод задействован постоянно, деля крутящий момент между осями в равных пропорциях. Full-time полный привод имеют классические вездеходы, такие как Land Rover Defender, отечественная Нива и Шевроле-Нива, а также легковые автомобили, такие как Audi A6 Quattro, BMW X5 и многие другие, но устройство AWD-трансмиссии легковушек полностью отличается от автомобилей, предназначенных для бездорожья.

системы полного привода

системы полного привода

Внедорожники, имея постоянный полный привод, способны достаточно легко преодолевать труднопроходимые участки, а легковым машинам постоянный полный привод нужен для лучшей динамики и управляемости, т.к. значительно уменьшаются пробуксовки ведущих колес. Правда, и тем, и другим приходится расплачиваться высоким расходом горючего при езде по асфальтированным дорогам, кроме того, устройство системы постоянного полного привода намного сложнее.

Вторая группа систем полного привода автомобилей – part-time. Машина, оснащенная такой системой, в обычных условиях является моноприводной, а вторая ось подключается при необходимости вручную или автоматически в определенных условиях.
Типичные part-time-полноприводные автомобили:

  1. все модели УАЗ;
  2. Mitsubishi Pajero с системой Super Select;
  3. Nissan Patrol.

Эти машины прекрасно подходят для активного отдыха в условиях бездорожья. Водитель в них самостоятельно подключает вторую ось для преодоления труднопроходимых мест.

Full-time и part-time

Full-time и part-time

Схема part-time AWD имеет свои недостатки. Одним из главных является то, что неопытный водитель, не всегда может правильно оценить дорожную обстановку и вовремя перевести трансмиссию автомобиля в полноприводный режим. Вторым недостатком является то, что с включенным полным приводом можно передвигаться только с небольшой скоростью, а трансмиссия при этом усиленно изнашивается. Третий минус заключается в том, что классическая ручная part-time-система не имеет межосевого дифференциала, что сильно ухудшает управляемость таких автомобилей на сухих дорогах, особенно это заметно в поворотах.

Системами автоматического полного привода оснащают кроссоверы, а так же универсалы с повышенной проходимостью. Они не предназначены для езды по зимникам и летникам, однако возможностей этих автомобилей вполне достаточно, чтобы не ограничиваться ездой только по асфальтированным дорогам. AWD в них реализуется при помощи вискомуфты, самоблокирующегося дифференциала Torsen, или многодисковой фрикционной муфты.

4 motion

Одной из самых известных автоматических AWD-трансмиссий можно назвать 4motion от компании Фольксваген. Она состоит из следующих узлов:

  • сцепления;
  • коробки передач;
  • главных передач передней и задней оси;
  • межколесных дифференциалов передней и задней оси;
  • раздаточной коробки;
  • карданной передачи;
  • многодисковой фрикционной муфты Haldex;
  • полуосей.

4motion

4motion

В обычных условиях 90 % крутящего момента передается передней оси. При пробуксовке передних колес блок управления посылает соответствующий сигнал, муфта блокируется, и крутящий момент подается на заднюю ось. Его величина не является постоянной. Соотношение крутящего момента передней и задней осей в AWD-трансмиссии 4motion может изменяться от 90:10 до 60:40.

Система полного привода TOD

AWD-трансмиссия Torque-on-Demand, или TOD, относится к категории full-time AWD, применяющая распределение крутящего момента между осями по переменному принципу. Задний мост в системе TOD подключен постоянно, передний подключается через многодисковую фрикционную муфту автоматически или принудительно при помощи переключателя.

В автоматическом режиме, являющемся основным для TOD, крутящий момент перераспределяется между осями (передней и задней) в соотношениях от 0:100 до 50:50, все зависит от различных дорожных условий. До начала преодоления труднопроходимых участков, производитель рекомендует принудительно подключить переднюю ось, тем самым деля поровну крутящий момент между осями.

Аналогичным образом устроена интеллектуальная система xDrive у автомобилей BMW, однако работает она полностью в автоматическом режиме, а соотношение крутящего момента между осями составляет от 0:100 до 40:60.

Система полного привода Quattro

AWD-система Quattro, применяемая на автомобилях Audi, также относится к категории full-time AWD. Роль межосевого дифференциала в последнем, четвертом поколении трансмиссии Quattro, выполняет самоблокирующийся асимметричный дифференциал с коронными шестернями. В нормальных условиях, на переднюю ось, он направляет 40% мощности, а оставшиеся 60 – на заднюю. При пробуксовке колес основная доля момента перебрасывается на ту ось, которая имеет наилучшее сцепление с дорогой. При этом на передние колеса может быть передано до 70%, а на задние – до 85.

система quattro

система quattro

На чем остановить свой выбор?

Вопрос, какая система полного привода лучше, мучает многих автолюбителей. Многие будут удивлены, но ответить на него невозможно в силу некорректности самой формулировки. Можно сказать, что лучше подойдет в конкретной ситуации, но не в целом.

Ведь автомобиль Mitsubishi Pajero с part-time системой полного привода Super Select, будучи прекрасным внедорожником, на асфальтированной трассе показывает весьма посредственную управляемость, свойственную практически всем «джипам». Равно как и Audi Allroad с AWD-трансмиссией Quattro, прекрасно ведущая себя на шоссе и способная проехать по укатанной грунтовке, окажется полностью бессильной в условиях Карелии.

При выборе необходимо учитывать различия в системах полного привода и понимать, для чего приобретается автомобиль, и в этом случае покупатель получит именно то, что ему нужно – либо вместительную семейную машину, на которой можно отправиться хоть на море, хоть на дачу, либо внедорожник, способный покорить сибирскую тайгу.

Электрический привод — Википедия

Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.

Современный электропривод — совокупность множества электромашин, аппаратов и систем управления ими. Он является основным потребителем электрической энергии (до 60 %)[1] и главным источником механической энергии в промышленности.

В ГОСТ Р 50369-92 электропривод определён как электромеханическая система, состоящая из преобразователей электроэнергии, электромеханических и механических преобразователей, управляющих и информационных устройств и устройств сопряжения с внешними электрическими, механическими, управляющими и информационными системами, предназначенная для приведения в движение исполнительных органов рабочей машины и управления этим движением в целях осуществления технологического процесса[2].

Как видно из определения, исполнительный орган в состав привода не входит. Однако авторы авторитетных учебников[1][3] включают исполнительный орган в состав электропривода. Это противоречие объясняется тем, что при проектировании электропривода необходимо учитывать величину и характер изменения механической нагрузки на валу электродвигателя, которые определяются параметрами исполнительного органа. При невозможности реализации прямого привода электродвигатель приводит исполнительный орган в движение через кинематическую передачу. КПД, передаточное число и пульсации, вносимые кинематической передачей, также учитываются при проектировании электропривода.

Электропривод Elprivod.svg

Функциональные элементы:

  • Регулятор (Р) предназначен для управления процессами, протекающими в электроприводе.
  • Электрический преобразователь (ЭП) предназначен для преобразования электрической энергии сети в регулируемое напряжение постоянного или переменного тока.
  • Электромеханический преобразователь (ЭМП) — двигатель, предназначен для преобразования электрической энергии в механическую.
  • Механический преобразователь (МП) может изменять скорость вращения двигателя.
  • Упр — управляющее воздействие.
  • ИО — исполнительный орган.

Функциональные части:

  • Силовая часть или электропривод с разомкнутой системой регулирования.
  • Механическая часть.
  • Система управления электропривода[4].

Статические характеристики[править | править код]

Под статическими характеристиками чаще всего подразумеваются электромеханическая и механическая характеристика.

Механическая характеристика[править | править код]

Механическая характеристика — это зависимость угловой скорости вращения вала от электромагнитного момента M (или от момента сопротивления Mc). Механические характеристики являются очень удобным и полезным инструментом при анализе статических и динамических режимов электропривода.[1]

Электромеханическая характеристика двигателя[править | править код]

Электромеханическая характеристика — это зависимость угловой скорости вращения вала ω от тока I.

Динамическая характеристика[править | править код]

Динамическая характеристика электропривода — это зависимость между мгновенными значениями двух координат электропривода для одного и того же момента времени переходного режима работы.

По количеству и связи исполнительных, рабочих органов:

Классификация электроприводов по степени их автоматизации рабочих машин и механизмов и качеству выполняемых операций
  • Индивидуальный, в котором рабочий исполнительный орган приводится в движение одним самостоятельным двигателем, приводом.
  • Групповой, в котором один двигатель приводит в действие исполнительные органы РМ или несколько органов одной РМ.
  • Взаимосвязанный, в котором два или несколько ЭМП или ЭП электрически или механически связаны между собой с целью поддержания заданного соотношения или равенства скоростей, или нагрузок, или положения исполнительных органов РМ.
  • Многодвигательный, в котором взаимосвязанные ЭП, ЭМП обеспечивают работу сложного механизма или работу на общий вал.
  • Электрический вал, взаимосвязанный ЭП, в котором для постоянства скоростей РМ, не имеющих механических связей, используется электрическая связь двух или нескольких ЭМП.

По типу управления и задаче управления:

  • Автоматизированный ЭП, управляемый путём автоматического регулирования параметров и величин.
  • Программно-управляемый ЭП, функционирующий через посредство специализированной управляющей вычислительной машины в соответствии с заданной программой.
  • Следящий ЭП, автоматически отрабатывающий перемещение исполнительного органа РМ с заданной точностью в соответствии с произвольно меняющимся сигналом управления.
  • Позиционный ЭП, автоматически регулирующий положение исполнительного органа РМ.
  • Адаптивный ЭП, автоматически избирающий структуру или параметры устройства управления с целью установления оптимального режима работы.

По характеру движения:

  • ЭП с вращательным движением.
  • Линейный ЭП с линейными двигателями.
  • Дискретный ЭП с ЭМП, подвижные части которого в установившемся режиме находятся в состоянии дискретного движения.

По наличию и характеру передаточного устройства:

  • Редукторный ЭП с редуктором или мультипликатором.
  • Электрогидравлический с передаточным гидравлическим устройством.
  • Магнитогидродинамический ЭП с преобразованием электрической энергии в энергию движения токопроводящей жидкости.

По роду тока:

  • Переменного тока.
  • Постоянного тока.

По степени важности выполняемых операций:

  • Главный ЭП, обеспечивающий главное движение или главную операцию (в многодвигательных ЭП).
  • Вспомогательный ЭП.
  • Привод передач.

Автоматизированные электроприводы подразделяются еще на две подгруппы — разомкнутые и замкнутые. Работа разомкнутого привода заключается в том, что все внешние возмущения (для электрических приводов самым характерным из них является момент нагрузки) оказывают влияние на выходную переменную электрического привода, как пример — на его скорость. Иными словами, разомкнутый электрический привод не изолирован от влияния внешних возмущений, все изменения которых отражаются на его рабочих показателях. В разомкнутом приводе по этой причине не может обеспечиться высокий уровень качества регулирования переменных, хотя данный привод отличается простой схемой.

Основным отличием замкнутых электрических приводов является их общее или локальное удаление воздействий внешних возмущений на управляемую переменную электрического привода. В качестве примера можно привести тот факт что, скорость таких электрических приводов может оставаться практически неизменной при возможных колебаниях момента нагрузки. В силу этого обстоятельства замкнутый привод обеспечивает более качественное управление движением исполнительных органов, хотя его схемы являются более сложными и требуют, зачастую, применения силовых преобразователей энергии.

Замкнутый электропривод[править | править код]
Структура замкнутых электроприводов: а — с компенсацией возмущения; б — с обратной связью.

Замкнутый электрический привод может быть построен по принципам отклонения с использованием обратных связей или компенсации внешнего возмущения.

Принцип компенсации мы можем рассмотреть на примере компенсации наиболее явно выраженного внешнего возмущения электропривода — момента нагрузки Мс при регулировании его скорости (рис.а).Основным признаком такой замкнутой структуры электрического привода является наличие цепи, по которой на вход привода вместе с задающим сигналом скорости подается сигнал UM = kMMQ, пропорциональный моменту нагрузки Мс. В результате этого управление ЭП осуществляется суммарным сигналом ошибки, который автоматически изменяется в нужную сторону при колебаниях момента нагрузки, обеспечивая с помощью системы управления поддержание скорости ЭП на заданном уровне.

Несмотря на свою высокую эффективность, электрические приводы по данной схеме выполняются крайне редко из-за отсутствия простых и надежных датчиков момента нагрузки Мс (возмущающего воздействия).В связи с данным фактом подавляющее количество замкнутых структур электроприводов используют принцип обратной связи (отклонения). Он характеризуется тем что имеет цепь обратной связи, соединяющую выход электрического привода с его входом, отсюда и пошло название замкнутых схем.

Все виды применяемых в замкнутых электрических приводах обратных связей делятся на положительные и отрицательные, жесткие и гибкие, линейные и нелинейные.

Положительной называется обратная связь, в которой сигнал направлен согласно и складывается, с управляющим сигналом, в то время как сигнал отрицательной связи направлен в противоположную сторону (знак «минус» на рис. б).Жесткая обратная связь охарактеризована тем, что данная связь действует как в установившемся режиме, так и в переходном режиме электрического привода. Сигнал гибкой обратной связи производится только в переходных режимах электропривода и используется для обеспечения требуемого им качества, как пример устойчивости движения, допустимого перерегулирования и т.д.

Линейная обратная связь охарактеризована своей пропорциональной зависимостью между управляемой координатой и сигналом обратной свﮦязﮦи, в то время как при производстве нелинейной связи эта зависимость не будет пропорциональной.

Для регулирования движения исполнительных органов эксплуатируемых машин иногда требуется изменять несколько переменных электрического привода, например ток, момент и скорость. В таком случае замкнутые приводы создаются по одной из следующих структурных схем.

Электропривод с общим усилителем[править | править код]
Схема электропривода с общим усилителем.

Схема с общим усилителем представлена на рисунке справа в качестве примера, данная схема является схемой регулирования двух переменных двигателя, где Д — скорости тока I. Схема содержит в себе силовой преобразователь электроэнергии П, устройство управления УУ, механическую передачу МП и датчики тока ДТ, скорости ДС и устройство токоограничения (токовой отсечки) УТО. Данная схема обеспечивает хорошую характеристику двигателя. На интервале скорости 0 — СOj за счет действия обратной связи по току (сигнал U) обеспечивается ограничение тока и момента двигателя и характеристика имеет близкий к вертикальному участок. При скорости Со > 00j узел УТО заканчивает действие связи по току и за счет наличия обратной связи по скорости (ОСС) (сигнал U ОCC) характеристика двигателя становится жестче ,что обеспечивает регулирование скорости.

Совокупность обратных связей, число которых может быть от двух и более, в схеме с единым усилителем образует своего рода модальный регулятор, а переменные при этом называются переменными состояния электропривода. Главной задачей модального регулятора можно считать обеспечение заданного качества динамических процессов в электроприводе — быстродействия, устойчивости и степени затухания переходных процессов. Это достигается выбором видов и соответствующим исследованием коэффициентов обратных связей по переменным электрического привода. Следует отметить, что система с суммирующим усилителем относится к системам управления с так называемой параллельной коррекцией.

Электропривод с наблюдающим устройством[править | править код]
Схема электропривода с наблюдающим устройством

В сложных системах электроприводов, имеющих, в частных случаях, разветвленные кинематические цепи с упругими элементами, множество регулируемых переменных может оказаться весьма высоким. При данном факте измерение некоторых из них имеет некоторые затруднения по тем или иным причинам. В таких случаях прибегают к использованию так называемых наблюдающих устройств (наблюдателей).

Основную часть наблюдателя формируют совокупности моделей звеньев электрического привода, выполненных на основе операционных усилителей или элементов микропроцессорной техники. Выходные сигналы (напряжения) этих моделей, параметры которых соответствуют реально существующим звеньям электропривода, отображают близкие значения переменных.

Эксплуатация с применением наблюдателя на примере регулирования угла поворота вала двигателя поясняет структурная схема на рисунке 6, на которой приняты следующие обозначения: Д — двигатель, П — преобразователь, УУ — управляющее устройство, МП — механическая передача, НУ — наблюдающее устройство.

Электрический привод применяется для управления положением исполнительного органа φио. Это достигается соответствующим регулированием угла поворота φ вала двигателя, при котором необходимо также регулирование и других переменных — тока I, момента М и скорости двигателя.

Для применения рассматриваемого принципа управления, сигнал задания угла поворота фз подается на устройство управления УУ и одновременно на вход наблюдающего устройства НУ. Наблюдающее устройство НУ вырабатывает с помощью моделей звеньев привода сигналы, пропорциональные току, моменту и скорости, и направляет их устройству управления УУ.

Так же следует отметить, что модели звеньев не в состоянии учесть всех реальных возмущений, воздействующих на электрический привод и электрическую машину, и нестабильности параметров ЭП, НУ выдает в управляющее устройство не точные выражения переменных, а их оценки, что обозначено на схеме звездочкой «*».

Электропривод с подчиненной системой координат[править | править код]
Схема электропривода с подчиненным регулированием координат

Для увеличения точности получаемых оценок переменных состояния может применяться корректирующая обратная связь по управляемой переменной, показанная выше штриховой линией. В данном случае значение выходной управляемой переменной ф сравнивают при помощи обратной связи с ее оценкой ф* и только затем в функции ошибки (выявленного отклонения) Дф корректируют показания отдельных моделей.

Структура с подчиненным управлением координат отличается тем, что в данной структуре регулирование каждой отдельной координаты осуществляется отдельными регуляторами — тока РТ и скорости PC, которые в свою очередь совместно с соответствующими обратными связями формируют замкнутые контуры. Они встраиваются таким образом, что входным, задающим сигналом для внутреннего контура тока U является выходной сигнал внешнего по отношению к нему контура скорости. Исходя из этого, внутренний контур тока зависит от внешнего контура скорости — основной управляемой координате электрического привода.

Главное достоинство схемы изображенной на рисунке заключается в возможности эффективной настройки управления каждой переменной как в статичном, так и в динамичном режимах, в силу чего она представляет из себя в настоящее время основу применение в электроприводе. Кроме того, зависимость контура тока от контура скорости позволяет простыми методами осуществлять ограничение тока и момента, для чего достаточно ограничить на соответствующем уровне сигнал на выходе регулятора скорости (он же — сигнал задания тока)

Качество работы современного электропривода во многом определяется правильным выбором используемого электрического двигателя, что в свою очередь обеспечивает продолжительную надёжную работу электропривода и высокую эффективность технологических и производственных процессов в промышленности, на транспорте, в строительстве и других областях.

При выборе электрического двигателя для привода производственного механизма руководствуются следующими рекомендациями:

  • Исходя из технологических требований, производят выбор электрического двигателя по его техническим характеристикам (по роду тока, номинальным напряжению и мощности, частоте вращения, виду механической характеристики, продолжительности включения, перегрузочной способности, пусковым, регулировочным и тормозным свойствами др.), а также конструктивное исполнение двигателя по способу монтажа и крепления.
  • Исходя из экономических соображений, выбирают наиболее простой, экономичный и надёжный в эксплуатации двигатель, не требующий высоких эксплуатационных расходов и имеющий наименьшие габариты, массу и стоимость.
  • Исходя из условий окружающей среды, в которых будет работать двигатель, а также из требований безопасности работы во взрывоопасной среде, выбирают конструктивное исполнение двигателя по способу защиты.

Правильный выбор типа, исполнения и мощности электрического двигателя определяет не только безопасность, надёжность и экономичность работы и длительность срока службы двигателя, но и технико-экономические показатели всего электропривода в целом.

  1. 1 2 3 Ильинский Н. Ф. Основы электропривода: Учебное пособие для вузов. — 2-е изд., перераб. и доп. — М.: Издательство МЭИ, 2003. — С. 220. — ISBN 5-7046-0874-4.
  2. ↑ Электроприводы. Термины и определения.-М.- Издательство стандартов. −1993 [1]
  3. Онищенко Г.Б. Электрический привод. — М.: Академия, 2003.
  4. Анучин А.С. Системы управления электроприводов. — Москва: Издательский дом МЭИ, 2015. — 373 с. — ISBN 978-5-383-00918-5.
  • Соколовский Г. Г. Электроприводы переменного тока с частотным регулированием. — М.: «Академия», 2006. — ISBN 5-7695-2306-9.
  • Москаленко, В.В. Электрический привод. — 2-е изд. — М.: Академия, 2007. — ISBN 978-5-7695-2998-6.
  • Зимин Е. Н. и др. Электроприводы постоянного тока с вентильными преобразователями. Ленинград, Издательство «Энергоиздат», Ленинградское отделение, 1982
  • Чиликин М. Г., Сандлер А. С. Общий курс электропривода. — 6-е изд. — М.: Энергоиздат, 1981. — 576 с.
  • Тищенко О. Ф. Элементы приборных устройств. — М.: Высшая школа, 1982. — 263 с.

Электрические приводы. Виды и устройство. Применение и работа

Электропривод – электромеханическая система, служащая для привода в движение функциональных органов машин и агрегатов для выполнения определенного технологического процесса. Электрические приводы состоят из электродвигателя, устройства преобразования, управления и передачи.

С прогрессом промышленного производства электрические приводы заняли в быту и на производстве лидирующую позицию по числу электродвигателей и общей мощности. Рассмотрим структуру, типы, классификацию электроприводов, и предъявляемые к нему требования.

Устройство
 

1 — Передний крепеж
2 — Винтовая передача
3 — Концевой датчик
4 — Электродвигатель
5 — Зубчатая передача
6 — Задний крепеж

Функциональные компоненты

  • Р – регулятор служит для управления электроприводом.
  • ЭП – электрический преобразователь служит для преобразования электроэнергии в регулируемую величину напряжения.
  • ЭМП – электромеханический преобразователь электричества в механическую энергию.
  • МП – механический преобразователь способен изменять быстродействие и характер движения двигателя.
  • Упр – управляющее действие.
  • ИО – исполнительный орган.
Функциональные части
  • Электропривод.
  • Механическая часть.
  • Система управления.

Исполнительный механизм является устройством, которое смещает рабочую деталь по поступающему сигналу от управляющего механизма. Рабочими деталями могут быть шиберы, клапаны, задвижки, заслонки. Они изменяют количество поступающего вещества на объект.

Рабочие органы могут двигаться поступательно, вращательно в определенных пределах. С их участием производится воздействие на объект. Чаще всего электропривод с исполнительным механизмом состоят из электропривода, редуктора, датчиков положения и узла обратной связи.

Сегодня электрические приводы модернизируются по их снижению веса, эффективности действия, экономичности, долговечности и надежности.

Свойства привода
  • Статические. Механическая и электромеханическая характеристика.
  • Механические. Это зависимость скорости вращения от момента сопротивления. При анализе динамических режимов механические характеристики полезны и удобны.
  • Электромеханические. Это зависимость скорости вращения от тока.
  • Динамические. Это зависимость координат электропривода в определенный момент времени при переходном режиме.
Классификация

Электрические приводы обычно классифицируются по различным параметрам и свойствам, присущим им. Рассмотрим основные из них.

По виду движения:
  • Вращательные.
  • Поступательные.
  • Реверсивные.
  • Возвратно-поступательные.
По принципу регулирования:
  • Нерегулируемый.
  • Регулируемый.
  • Следящий.
  • Программно управляемый.
  • Адаптивный. Автоматически создает оптимальный режим при изменении условий.
  • Позиционный.
По виду передаточного устройства:
  • Редукторный.
  • Безредукторный.
  • Электрогидравлический.
  • Магнитогидродинамический.
По виду преобразовательного устройства:
  • Вентильный. Преобразователем является транзистор или тиристор.
  • Выпрямитель-двигатель. Преобразователем является выпрямитель напряжения.
  • Частотный преобразователь-двигатель. Преобразователем является регулируемый частотник.
  • Генератор-двигатель.
  • Магнитный усилитель-двигатель.
По методу передачи энергии:
  • Групповой. От одного мотора через трансмиссию приводятся в движение другие исполнительные органы рабочих машин. В таком приводе очень сложное устройство кинематической цепи. Электрические приводы такого вида являются неэкономичными из-за их сложной эксплуатации и автоматизации. Поэтому такой привод сегодня не нашел широкого применения.
  • Индивидуальный. Он характерен наличием у каждого исполнительного органа отдельного электродвигателя. Такой привод является одним из основных на сегодняшний день, так как кинематическая передача имеет простое устройство, улучшены условия техобслуживания и автоматизации. Индивидуальный привод нашел популярность в современных механизмах: сложных станках, роботах-манипуляторах, подъемных машинах.
  • Взаимосвязанный. Такой привод имеет несколько связанных электроприводов. При их функционировании поддерживается соотношение скоростей и нагрузок, а также положение органов машин. Взаимосвязанные электрические приводы необходимы по соображениям технологии и устройству. Для примера можно назвать привод ленточного конвейера, механизма поворота экскаватора, или шестерни винтового пресса большой мощности. Для постоянного соотношения скоростей без механической связи применяется схема электрической связи нескольких двигателей. Такая схема получила название схемы электрического вала. Такой привод используется в сложных станках, устройствах разводных мостов.
По уровню автоматизации:
  • Автоматизированные.
  • Неавтоматизированные.
  • Автоматические.
По роду тока:
  • Постоянного тока.
  • Переменного тока.
По важности операций:
  • Главный привод.
  • Вспомогательный привод.
Подбор электродвигателя

Чтобы приводы производили качественную работу, необходимо правильно выбрать электрический двигатель. Это создаст условия долгой и надежной работы, а также повысит эффективность производства.

При подборе электродвигателя для привода агрегатов целесообразно следовать некоторым советам по:
  • Требованиям технологического процесса выбирают двигатель с соответствующими характеристиками, конструктивного исполнения, а также метода фиксации и монтажа.
  • Соображениям экономии подбирают надежный, экономичный и простой двигатель, который не нуждается в больших расходах на эксплуатацию, имеет малый вес, низкую цену и небольшие размеры.
  • Условиям внешней среды и безопасности подбирают соответствующее исполнение мотора.

Правильный подбор электродвигателя обуславливает технико-экономические свойства всего привода, его надежность и длительный срок работы.

Преимущества
  • Возможность более точного подбора мощности двигателя для электропривода.
  • Электрический мотор менее пожароопасен в отличие от других типов двигателей.
  • Приводы дают возможность быстрого пуска и остановки механизма, его плавного торможения.
  • Нет необходимости в специальных регуляторах питания для электродвигателя. Все процессы происходят в автоматическом режиме.
  • Приводы дают возможность подбора мотора, свойства которого лучше других моделей сочетаются с характеристиками агрегата.
  • С помощью электрического привода можно плавно регулировать обороты механизма в определенных пределах.
  • Электродвигатель может преодолеть большие и долговременные перегрузки.
  • Электропривод дает возможность получения максимальной скорости и производительности рабочего механизма.
  • Электродвигатель дает возможность экономить электричество, а при определенных условиях даже генерировать ее в сеть.
  • Полная и простая автоматизация установок и механизмов возможна только с помощью электроприводов.
  • КПД электромоторов имеет наибольший показатель по сравнения с другими моделями двигателей.
  • Моторы производят с повышенной уравновешенностью. Это дает возможность встраивания их в механизмы машин, делать менее массивным фундамент.

Инновационные электрические приводы все автоматизированы. Системы управления приводом дают возможность рационального построения технологических процессов, увеличить производительность и эффективность труда, оптимизировать качество продукции и уменьшить ее цену.

Технические требования

К любым техническим механизмам и агрегатам предъявляются определенные требования технического плана. Не стали исключением и электроприводы. Рассмотрим основные предъявляемые к ним требования.

Надежность

В соответствии с этим требованием привод должен исполнять определенные функции и заданных условиях в течение некоторого интервала времени, с расчетной вероятностью работы без возникновения неисправностей.

При невыполнении этих требований остальные свойства оказываются бесполезными. Надежность может значительно отличаться в зависимости от характера работы. В некоторых механизмах не требуется долгого времени работы, однако отказ механизма не должен иметь место. Такой пример можно найти в военной промышленности. И другой пример, где наоборот, время службы должно быть большим, а отказ устройства вполне возможен, и не приведет к серьезным последствиям.

Точность

Это требование связано с отличием показателей от заданных. Они не могут превышать допустимые величины. Электроприводы должны обеспечивать перемещение рабочего элемента на определенный угол или за некоторое время, а также поддерживать на определенном уровне скорость, ускорение или момент вращения.

Быстродействие

Это качество привода обеспечивает быструю реакцию на разные воздействия управления. Быстродействие связано с точностью.

Качество

Такая характеристика обеспечивает качество процессов перехода, исполнение определенных закономерностей их выполнения. Качественные требования создаются вследствие особенностей работы машин с электроприводами.

Энергетическая эффективность

Любые производственные процессы преобразования и передачи имеют потери энергии. Наиболее важным это качество стало в применении электроприводов механизмов, приводах значительной мощности, долгим режимом эксплуатации. Эффективность использования энергии определяется КПД.

Совместимость

Электрические приводы должны совмещаться с работой аппаратуры, в которой они применяются, с их системой снабжения электроэнергией, информационными данными, а также с рабочими элементами. Наиболее остро стоит требование совместимости электроприводов для медицинской и бытовой техники, в радиотехнике.

Похожие темы:

Системы полного привода современных автомобилей

На сегодняшний день известно множество систем полного привода автомобилей. Рассмотрим две наиболее распространенные версии на примере автомобилей Субару, ведь некоторые из них имеют общее название и обозначение. Имеется несколько разных версий осуществления полного привода Subaru AWD.

Все подобные модели (кроме заднеприводных купе Subaru BRZ), имеют стандартный симметричный полный привод AWD. Название общее, но используются четыре его модификации полноприводных систем.

Стандартная система полного привода на основе межосевого самоблокирующегося дифференциала и вискомуфты (CDG)

Большинство людей полагают, что данная категория систем ассоциируется с полным приводом. Он очень распространён у машин подобной марки, обладающей механической коробкой передач. Данная модель представляет собой симметричную конфигурацию полного привода, в нормальных условиях крутящий момент находится в соотношении передней и задней оси 50 на 50.

При пробуксовке автомобиля дифференциал, который располагается между осями, способен отправить до 80% крутящего момента на переднюю ось, такая функция обеспечивает хорошее сцепление шин с дорожным полотном. Вискомуфта используется подобным дифференциалом для того, чтобы она умела реагировать на механическое различие в сцеплении шин с дорогой без участия компьютера.

Субару Forester

Тип полного привода cdg вы сможете увидеть на автомобиле Subaru  Forester, имеющем шестиступенчатую коробку передач.

Используется такой привод уже давно, и появление новой версии в следующем году означает лишь то, что пропадёт он далеко не скоро. Модель представляет собой надёжную и простую систему полного привода, которая может обеспечить весьма безопасное вождение при использовании доступной тяги.

Следует отметить, что тип полного привода cdg вы сможете увидеть на автомобилях  Subaru Impreza 2014 с двухлитровым двигателем, а также на XV Crosstrek, имеющей пятиступенчатую механическую трансмиссию, на Ouback и Forester, имеющие шестиступенчатую коробку передач.

Система полного привода с переменным распределением крутящего момента для автомобилей с автоматической трансмиссией (VTD)

Очень важно отметить, что концерн Subaru начал переводить большую часть своих транспортных средств со стандартной автоматической на бесступенчатую трансмиссию (CVT). В то же время, сейчас ещё можно встретить машины с такой системой.

Симметричный полный привод, который подразумевает использование переменного распределения крутящего момента, каждый сможет обнаружить на Tribeca (с двигателем 3,6i и обладающий 6-ю цилиндрами, а также 5-ступенчатой коробкой передач), Outback и Legacy. Здесь наблюдается смещение крутящего момента в сторону задней оси в пропорции 45 на 55. Вместо межосевого дифференциала с вискомуфтой, тут будет применяться многодисковое гидравлическое сцепление, которое будет сочетаться с дифференциалом планетарного варианта.

При обнаружении проскальзывания будут подаваться сигналы от датчиков, которые установлены для измерения пробуксовки колёс, а также тормозного усилия и положения заслонки, расположенной вблизи дросселя. В этом случае крутящий момент будет располагаться по осям равномерно (50 на 50) для обеспечения максимального сцепления колёс с поверхностью асфальта.

Полностью механическая вискомуфта намного проще и гибче. У системы VTD наблюдается преимущество в том, что она имеет активную, а не реактивную составляющую, этим достигается высокая скорость перемещения крутящего момента между осями, механическая система подобным похвастать не может.

Система полного привода с активным распределением крутящего момента (ACT)

Новые модели Subaru уже используют третий вариант систем полного привода. В частности, она имеет множество сходств с предыдущей версией – тоже подразумевает использование электронно-управляемой многодисковой системы в отношении 60 на 40 со смещением крутящего момента на переднюю ось.

Subaru Legacy 2014

Тип полного привода act применяют на моделях Subaru Legacy 2014

Также данная AWD в имеет активное распределение крутящего момента, называемой ACT. Благодаря оригинальной многодисковой муфте передачи такого момента с управлением при помощи электроники, распределение крутящего момента между осями в режиме реального течения времени соответствует условиям передвижения транспортного средства.

Подобная система полного привода позволяет увеличить как устойчивость, так и экономичность машины. Тип полного привода act применяют на моделях Subaru XV Crosstrek, Legacy 2014, Outback 2014, WRX и WRX STI 2015.

Система полного привода с многорежимным межосевым дифференциалом (DCCD)

Кроме описанных выше систем полного привода, на автомобилях Subaru использовались и другие варианты симметричного полного привода, которые теперь больше не применяются. Но последняя система, которую мы сегодня упомянем, это система, которая используется на WRX STI.

Эта система использует два межосевых дифференциала. Один управляется электронным образом и предоставляет бортовому компьютеру Subaru хороший контроль над распределением крутящего момента между осями. Другой — это механическое устройство, которое может более быстро реагировать на внешние воздействия, чем его электронный «коллега». Выгода водителя, в идеале, здесь в использовании наилучшего из электронного упреждающего и механического реагирующего «мира».

Говоря в целом, эти дифференциалы естественно используют свои различия — будучи гармонично объединены планетарной передачей — но водитель может сместить систему в сторону любого из межосевых дифференциалов с помощью электронной системы управления Driver Controlled Center Differential (DCCD) — «Межосевой Дифференциал, Управляемый Водителем».

Распределение крутящего момента для систем DCCD составляет 41:59 со смещением в сторону задней оси. Эта система полного привода, ориентированная на обеспечение максимальных ходовых характеристик, для серьезных спортивных состязаний.

Распределение крутящего момента по сторонам

Пока мы выяснили, как современные Субару распределяют крутящий момент между передней и задней осями, но как насчет распределения момента между колесами, между левой и правой стороной? Как на передней, так и на задней оси вы, как правило, обнаружите стандартный дифференциал открытого типа (т.е. не подверженный блокировке). Более мощные модели (такие как WRX и модели Legacy 3.6R) часто снабжаются дифференциалом повышенного трения на задней оси, чтобы улучшить сцепление колес с дорогой на задней оси при поворотах.

WRX STI также снабжаются дифференциалом повышенного трения на передней оси, для максимального сцепления всех колес с поверхностью. Новейшие WRX 2015 года и WRX STI 2015 также используют системы распределения момента на основе тормозов, которые притормаживают внутреннее колесо при повороте, чтобы обеспечить передачу мощности на наружную сторону при повороте и уменьшить радиус поворота.

Система верхнего привода — это… Что такое Система верхнего привода?

Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 14 мая 2011.
Первая российская СВП на «Нефтегазсервис»

Система верхнего привода (СВП) — важный элемент буровой установки, который представляет собой подвижный вращатель, совмещающий функции вертлюга и ротора, оснащенный комплексом средств для работы с бурильными трубами при выполнении спуско-подъемных операций. СВП предназначена для быстрой и безаварийной проводки вертикальных, наклонно-направленных и горизонтальных скважин при бурении.

Устройство

Подвижная часть системы верхнего привода состоит из вертлюга-редуктора, подвешенного на штропах на траверсе талевого блока.

На верхней крышке вертлюга-редуктора предусмотрен взрывозащищенный электродвигатель постоянного тока. Один конец вала электродвигателя посредством эластичной муфты присоединен к быстроходному валу редуктора. На противоположном конце — диско-колодочный тормоз. К корпусу вертлюга-редуктора крепится рама, через неё блоком роликов передается крутящий момент на направляющие и с них — на вышку. Между талевым блоком и вертлюгом-редуктором установлена система разгрузки резьбы, она обеспечивает автоматический вывод резьбовой части ниппеля замка бурильной трубы из муфты при развинчивании и ход ниппеля при свинчивании замка. Повреждение резьбы при этом исключается.

Трубный манипулятор под действием зубчатой пары с приводом от гидромотора может поворачивать элеватор в любую необходимую сторону: на мостки, на шурф для наращивания и т. д.

Трубный зажим нужен для захвата и удержания от вращения верхней муфты трубы во время свинчивания/развинчивания с ней ствола вертлюга.

Между ниппелем и стволом вертлюга навернут ручной шаровой кран для неоперативного перекрытия внутреннего отверстия ствола вертлюга. Для оперативного перекрытия отверстия ствола вертлюга перед отводом установлен внутренний превентор (двойной шаровой кран), который также служит для удержания остатков промывочной жидкости после отвинчивания бурильной колонны.

Вертлюжная головка служит для передачи рабочей жидкости с невращающейся части СВП на вращающуюся часть и позволяет не отсоединять гидравлические линии, когда трубный манипулятор вращается с бурильной колонной при бурении, при проработке скважины или позиционировании механизма отклонения штропов элеватора.

Система отклонения штропов предназначена для отвода/подвода элеватора к центру скважины. Система отклонения штропов представляет собой штропы, подвешенные на боковых рогах траверсы. К штропам крепятся гидроцилиндры отклонения штропов.

Функции

  • Вращение бурильной колонны с регулированием частоты при бурении, проработке и расширении ствола скважины, при подъеме/спуске бурильной колонны.
  • Торможение бурильной колонны и её удержание в заданном положении.
  • Обеспечение проведения спуско-подъемных операций в том числе:
    • наращивание/разборка бурильной колонны свечами и одиночными трубами;
    • свинчивание/развинчивание бурильных труб, докрепление/раскрепление резьбовых соединений переводников и шаровых кранов;
    • подача бурильных труб к стволу/удаление от ствола вертлюга.
  • Проведение операций по спуску обсадных колонн в скважину.
  • Промывка скважины и одновременное проворачивание бурильной колонны.
  • Задание и обеспечение величин крутящего момента и частоты вращения, их измерение и вывод показаний на дисплей шкафа управления, выносной дисплей, пульт управления и на станцию геолого-технических исследований.
  • Дистанционное управление.
  • Герметизация внутритрубного пространства шаровыми кранами.

Преимущества СВП

  • экономия времени в процессе наращивания труб при бурении;
  • уменьшение вероятности прихватов бурового инструмента;
  • расширение/проработка ствола скважины при спуске и подъеме инструмента;
  • повышение точности проводки скважин при направленном бурении;
  • повышение безопасности буровой бригады;
  • снижение вероятности выброса флюида из скважины через бурильную колонну;
  • облегчение спуска обсадных труб в зонах осложнений за счет вращения и промывки;
  • повышение качества керна.

Производители

История СВП

Первый верхний привод был разработан и произведен компанией Varco International (ныне National Oilwell Varco). Модель TDS-1 была пущена в эксплуатацию 1 апреля 1982 года на буровой установке Sedco 201 в Арабском заливе.

К 1996 году способ бурения верхним приводом стал основным методом бурения морских скважин. Также очевидно, что значительная часть скважин на суше сейчас бурится с применением СВП.

Для продвижения СВП на новые рынки по всему миру компанией Maritime Hydraulics была разработана портативная СВП. Для малогабаритных скважин («slim-hole») разработана портативная СВП, обеспечивающий высокоскоростное (600 об./мин.) бурение.

В начале 2000-х годов в России стали предприниматься попытки создания СВП. В 2003 году петербургская компания ПромТехИнвест выпустила первый в России верхний привод, также выпускаются СВП компанией ООО «Уралмаш НГО Холдинг».

Типы СВП по способу питания

Электрический

Постоянный ток
Переменный ток

Гидравлический

Типы СВП по способу применения

Морские

Сухопутные

Стационарные
Мобильные

См. также

Ссылки

Отправить ответ

avatar
  Подписаться  
Уведомление о