Рабочий процесс двс: Рабочие процессы и характеристики двигателей – 403 — Доступ запрещён

Рабочие процессы в двигателях внутреннего сгорания

Работа большинства современных двигателей внутреннего сгорания (ДВС) как карбюраторных, так и дизельных основана на способе, включающем впуск свежего заряда рабочего тела в рабочие камеры циклически изменяющегося объема, сжатие, воспламенение и сгорание рабочей смеси, последующее расширение рабочего тела и выпуск отработавших газов (ОГ) из рабочих камер.

Данный способ реализуется в четырехтактных поршневых ДВС, а также практически во всех известных роторных двигателях.

Рисунок 1.

Индикаторная диаграмма осуществления рабочих процессов описанным способом показана на Рисунке 1, где обозначено:

V  –  текущий объем рабочей камеры;
p  –  давление в рабочей камере;
po  –  давление на входе в рабочую камеру;
r  –  точка начала впуска свежего заряда рабочего тела в рабочую камеру;
a  –  точка окончания впуска свежего заряда;
f  –  точка воспламенения рабочего тела;
c  –  точка окончания сжатия;
z  –  точка достижения максимального давления;
b  –  точка начала выпуска отработавших газов.

Основными показателями эффективности осуществления рабочих процессов в ДВС являются среднее индикаторное давление (pi) и индикаторный КПД (ηi) /1/.

Среднее индикаторное давление определяет мощность, которую может развить ДВС на том или ином режиме работы (при постоянной угловой скорости вращения вала двигателя), а индикаторный КПД – его экономичность.

Указанные показатели зависят от большого количества различных факторов, которые условно можно разделить на основные и второстепенные.

К группе основных факторов целесообразно отнести те, изменения которых оказывают непосредственное влияние на изменения pi и ηi.

К ним можно отнести следующие:

  • степень сжатия рабочего тела;
  • состав рабочей смеси;
  • степень наполнения рабочего объема свежим зарядом;
  • момент воспламенения рабочей смеси, скорость и длительность ее сгорания;
  • давление и температура свежего заряда рабочего тела в момент его впуска в рабочие камеры;
  • степень потерь теплоты в охлаждающую среду через стенки рабочих камер.

Все остальные факторы относятся к второстепенным, поскольку влияют на изменения pi и ηi не непосредственно, а через изменения основных.

Использование влияния основных факторов на индикаторные показатели ДВС лежит в основе большинства известных способов выбора их конструктивных характеристик и регулирования на различных режимах работы.

Наиболее благоприятно на индикаторные показатели ДВС (pi и ηi) влияет увеличение степени сжатия рабочего тела (ε), так как при этом одновременно увеличиваются как среднее индикаторное давление, так и индикаторный КПД.

Однако возможности увеличения степени сжатия в современных ДВС ограничены. Это связано с тем, что в двигателях с искровым зажиганием при больших степенях сжатия происходит преждевременное самовоспламенение рабочей смеси, и возникают детонационные явления, которые состоят в нарушении процесса горения и распространении ударных волн, что крайне отрицательно сказывается на работе двигателя. Вследствие отмеченного, степень сжатия в ДВС с искровым зажиганием не может превышать (6-10) единиц. Важнейшим преимуществом дизельных ДВС по сравнению с двигателями с искровым зажиганием является возможность увеличения в них степени сжатия рабочего тела (воздуха) до значительно больших значений – до (14-23) единиц. Однако дальнейшее ее увеличение малоэффективно, так как уже не дает заметного повышения pi и ηi и приводит лишь к недопустимому росту тепловых и механических нагрузок на детали двигателя, повышению потерь теплоты в охлаждающую среду, ухудшению условий смесеобразования и т.д.

Состав смеси характеризуется коэффициентом избытка воздуха (α) и оказывает весьма существенное влияние на индикаторные показатели ДВС. Зависимости pi(α) и ηi(α) при этом имеют максимальные значения, которые достигаются при разных составах рабочей смеси (разных значениях α). У дизелей максимум pi имеет место при слабо обедненной смеси (α ≈ 1), а максимум ηi – при сильно обедненной смеси (при α от 3 до 5). У двигателей с искровым зажиганием максимум pi достигается при обогащенной смеси (при α от 0,7 до 0,9), а максимум ηi – при α от 1,3 до 1,5 /1/.

Изменение состава смеси является основным способом регулирования мощности дизельных ДВС на различных режимах работы и осуществляется изменением подачи топлива через форсунки. При уменьшении подачи топлива коэффициент избытка воздуха (α) увеличивается, а мощность ДВС уменьшается. С увеличением подачи топлива коэффициент α уменьшается, а мощность ДВС увеличивается. Максимальный индикаторный КПД при этом достигается при малых нагрузках, а при нагрузках, близких к максимальным, индикаторный КПД дизельных ДВС существенно меньше максимального.

Регулирование состава смеси применяется также и в двигателях с искровым зажиганием и осуществляется специальными дозирующими устройствами. Целью такого регулирования является автоматическое изменение α в соответствии с наивыгоднейшей характеристикой, которая предусматривает увеличение α (обеднение смеси) при частичных нагрузках и его уменьшение (обогащение смеси) на режимах максимальных нагрузок. При таком регулировании максимальный индикаторный КПД ДВС с искровым зажиганием, также как и у дизелей, достигается при малых нагрузках, а при максимальных нагрузках их индикаторный КПД существенно меньше максимального.

Степень наполнения рабочего объема ДВС свежим зарядом количественно оценивается коэффициентом наполнения (0 < ηv < 1) и оказывает сильное влияние, в основном, на среднее индикаторное давление, которое быстро уменьшается с уменьшением ηv. Индикаторный КПД с изменением ηv изменяется очень мало и остается практически постоянным. Изменение степени наполнения рабочего объема свежим зарядом посредством открытия и закрытия дроссельной заслонки является основным способом регулирования мощности ДВС с искровым зажиганием на различных режимах работы. На режимах максимальной мощности дроссельная заслонка полностью открыта (ηv = ηvmax), а для уменьшения мощности ДВС при уменьшении нагрузки дроссельную заслонку прикрывают (уменьшают ηv). С учетом упомянутого выше регулирования состава смеси максимальный индикаторный КПД двигателей с искровым зажиганием также, как и у дизелей, достигается при малых нагрузках, а при увеличении нагрузки индикаторный КПД уменьшается.

В дизельных ДВС степень наполнения рабочего объема воздухом не регулируется и остается практически постоянной.

Момент воспламенения рабочей смеси определяется углом опережения воспламенения (θвоспл) относительно верхней мертвой точки (ВМТ) и весьма сильно влияет на индикаторные показатели ДВС.

При увеличении θвоспл увеличиваются:

  • отрицательная работа сжатия;
  • отрицательное влияние на ηi увеличения теплоемкости рабочего тела от температуры в связи с возрастанием максимальной температуры цикла;
  • потери теплоты в среду охлаждения вследствие увеличения температурного напора и интенсивности теплоотдачи;
  • степень расширения рабочего тела вследствие завершения горения топлива и тепловыделения ближе в ВМТ.

Первые три фактора способствуют уменьшению pi и ηi, а четвертый – их увеличению. Противоположное влияние указанных факторов определяет существование оптимальных значений угла опережения воспламенения, при которых pi и ηi имеют максимальные значения. Каждому режиму работы двигателя соответствует свой оптимальный угол опережения воспламенения, на чем основаны способы управления работой ДВС посредством изменения моментов подачи управляющих воздействий на свечи зажигания в двигателях с искровым зажиганием и на форсунки для впрыска топлива в дизельных ДВС.

Скорость и длительность сгорания рабочей смеси в двигателях с искровым зажиганием какого-либо существенного влияния на их индикаторные показатели не оказывают, так как сгорание заранее подготовленной смеси в них происходит практически мгновенно и при практически неизменном объеме рабочих камер.

В отличие от карбюраторных двигателей с искровым зажиганием в дизельных ДВС впрыск топлива в рабочие камеры производится через форсунки и продолжается некоторое время уже после воспламенения рабочей смеси, вследствие чего скорость и длительность ее сгорания оказывают определенное влияние на характер тепловыделения и, соответственно, на индикаторные показатели ДВС. Это влияние выражается в том, что тепловыделение при малоизменяющемся (постоянном) объеме рабочих камер осуществляется не полностью и завершается тогда, когда их объем изменяется уже достаточно быстро, в результате чего индикаторный КПД и среднее индикаторное давление оказываются меньше тех, которыми они могли бы быть в случае полного завершения тепловыделения при постоянном (малоизменяющемся) объеме рабочих камер.

Увеличить скорость и уменьшить длительность сгорания топлива в дизельных ДВС и добиться за счет этого повышения индикаторного КПД и среднего индикаторного давления возможно при использовании различных способов улучшения характеристик впрыскивания и распыливания топлива, однако оно очень незначительно.

Увеличение давления свежего заряда рабочего тела в момент его впуска в рабочие камеры (pк) является одним из основных способов повышения среднего индикаторного давления ДВС и их мощностных характеристик, которые увеличиваются пропорционально степени повышения pк, и осуществляется путем наддува.

Поскольку при наддуве существенно возрастают максимальные значения давления (pz) и температуры (Тz) рабочего тела в рабочих камерах, то его применение возможно, в основном, в дизельных ДВС. Применение наддува в двигателях с искровым зажиганием в связи с опасностью возникновения детонации при увеличении pz и Тz весьма проблематично и требует принятия специальных мер по ее предотвращению.

Различают механический, газотурбинный, комбинированный и динамический наддувы.

Механический наддув осуществляется компрессором, привод которого соединен с валом двигателя. Существенным недостатком такой системы является снижение КПД двигателя, обусловленное необходимостью отбора части его мощности на привод компрессора.

При газотурбинном наддуве в качестве привода компрессора применяется газовая турбина, использующая энергию отработавших газов (ОГ), которые объединяются в единый агрегат (турбокомпрессор), что позволяет избежать отбора мощности с вала двигателя на привод компрессора и снижения КПД двигателя. Недостатками такой системы наддува являются ух

Фактический рабочий процесс двигателя | Двигатель автомобиля

Рабочий процесс двигателя внутреннего сгорания заключается в том, что поступившая в рабочий цилиндр топливо-воздушная смесь сгорает выделяя при этом тепло, часть которого преобразуется в механическую работу. Эта работа вращает коленвал двигателя и используется далее для передвижения автомобиля и привода его рабочих органов.

Рабочий процесс реального двигателя в значительной степени отличается от идеального двигателя благодаря следующим причинам:

  • в цилиндре находится не только чистый заряд топливовоздушной смеси, но и отработавшие газы от предыдущего рабочего цикла;
  • смесь сгорает не полностью;
  • сгорание обеспечивается только при постоянном давлении или только при постоянном объеме;
  • происходит теплообмен между газами и поверхностью камеры сгорания;
  • при впуске и выпуске возникают гидравлические потери;
  • часть газов проникает из камеры сгорания в картер двигателя через недостаточно герметичные поршневые кольца;
  • существуют потери на трение в кривошипно-шатунном механизме.

Изменение давления во время фактического рабочего процесса в двигателе обычно показывается с помощью так называемой индикаторной диаграммы, которая графически изображает зависимость давления в цилиндре двигателя от величины перемещения поршня или изменения объема, занимаемого газами. С помощью индикаторной диаграммы можно определить отклонения от рабочего процесса всего двигателя.

Индикаторная диаграмма четырехтактного бензинового двигателя

Рис. Индикаторная диаграмма четырехтактного бензинового двигателя и диаграмма подвода теплоты при постоянном объеме

На рисунке представлена индикаторная диаграмма вместе с диаграммой подвода теплоты при постоянном объеме. Изменения в давлении или объеме, обозначенные красной цифрой 1, способствуют газообмену, т.е. подаче свежей смеси в камеру сгорания и выпуску из цилиндра отработавших газов. Изображение на диаграмме p-V называется циклом смены заряда смеси. При впуске и выпуске гидравлические потери и потери теплоты через стенки ведут к сильному отклонению от идеального циклического процесса.

В особенности это характерно для обычных безнаддувных бензиновых двигателей, так как нагрузка на двигатель меняется в зависимости от массы свежего заряда смеси (регулирование количества рабочей смеси). Для изменения количества смеси в системе впуска используется дроссельная заслонка. В закрытом положении она снижает давление в системе впуска, меняя, соответственно, плотность свежего заряда смеси, вследствие чего при данном рабочем объеме количество рабочей смеси в камере сгорания снижается. С дросселированием связано повышение эффективности при смене заряда, характеризуемое увеличением замкнутой площади на диаграмме в координатах p-V, так как давление в цилиндре во время впуска продолжает понижаться.

Поскольку в дизельном двигателе нагрузка регулируется с помощью изменения подачи количества топлива в сжатый воздух в цилиндре (регулирование качества рабочей смеси), дроссельная заслонка в этом случае не нужна, а потери на входе здесь значительно меньше.

Цикл смены заряда топливо-воздушной смеси в четырехтактном бензиновом двигателе

Рис. Цикл смены заряда топливо-воздушной смеси в четырехтактном бензиновом двигателе с управлением нагрузкой с помощью дроссельной заслонки

На рисунке детально представлен цикл смены заряда топливовоздушной смеси. Кроме того, указаны моменты открытия и закрытия впускного и выпускного клапанов.

Согласно уравнению для расчета работы по изменению объема:

f

представленная на рисунке площадь замкнутого участка, ограниченного кривыми, представляет собой работу, выполненную для смены заряда рабочей смеси. Можно увидеть, что повышение давления во время впуска свежего заряда приводит к снижению величины работы по смене заряда. Это возможно только тогда, когда количество свежего заряда управляется не посредством плотности или дросселирования, а закрытием впускного клапана только при наличии достаточной массы свежей смеси в цилиндре. Для этого необходима возможность регулировать момент закрытия впускного клапана, то есть менять фазы газораспределения. В этом случае речь идет об управлении нагрузкой без дросселя. При этом дозирование свежего заряда смеси происходит непосредственно на клапане, соответственно, характеристики хода впускного клапана должны зависеть от нагрузки, то есть быть бесступенчатыми и изменяющимися.

Цикл смены заряда топливовоздушной смеси в четырехтактном бензиновом двигателе

Рис. Цикл смены заряда топливовоздушной смеси в четырехтактном бензиновом двигателе с управлением нагрузкой без дроссельной заслонки

На рисунке представлен полученный цикл смены заряда смеси для раннего закрытия впускного клапана, что, например, необходимо при частичной нагрузке. Можно увидеть, что площадь замкнутого участка, ограниченного кривыми, в цикле смены заряда, то есть совершенная работа при смене заряда, становится меньше.

К другой возможности управления нагрузкой без дросселя в бензиновом двигателе относится переход к управлению качеством смеси с помощью непосредственного впрыска топлива. В этом случае добавляются термодинамические преимущества непосредственного впрыска топлива в циклическом процессе и снижение отношения потерь при смене заряда к экономии топлива более, чем на 20% в некоторых рабочих областях по сравнению с традиционным карбюраторным бензиновым двигателем.

Дисциплина Силовые агрегаты Лекция 1 Принцип действия и рабочий цикл поршневого двигателя

Учебные вопросы:

  1. Функциональная схема поршневого двигателя внутреннего сгорания. Основные понятия и определения.

  2. Рабочие процессы четырехтактного двигателя с искровым зажиганием.

  3. Рабочие процессы двухтактного двигателя с искровым зажиганием.

  4. Показатели эффективности двигателей. Среднее индикаторное давление и инди­каторная мощность.

  1. Функциональная схема поршневого двигателя внутреннего сгорания. Основные понятия и определения.

Рассмотрим поршневой двигатель внутреннего сгорания. Для описания и анализа его работы воспользуемся упрощенной функциональной схемой, представленной на рисунке 1.

Рисунок 1 Упрощенная функциональная схема поршневого двигателя внутреннего сгорания:

1 — цилиндр; 2 поршень; 3 шатун; 4 кривошип

Двигатель содержит кривошипно-шатунный механизм (к.ш.м.), состоящий из неподвижного элемента − остова двигателя 1 и подвижных — поршня 2, шатуна 3 и кривошипа 4.

Поршень − основной силовой элемент к.ш.м., совершающий возвратно-поступательное движение, непосредственно участвующий в преобразовании теплоты в работу путем изменения надпоршневого объема, воспринимающий давление газов и передающий силу этого давления кривошипу.

Кривошип − силовой элемент к.ш.м., совершающий вращательное движение, определяющий закон движения поршня, воспринимающий силу давления газов на поршень и передающий ее потребителю.

Шатун — связующий силовой элемент к.ш.м., совершающий сложное плоскопараллельное движение, участвующий в преобразовании возвратно-поступательного движения поршня во вращательное кривошипа (и наоборот), передающий силу давления газов от поршня к кривошипу.

Кривошипно-шатунный механизм решает две задачи:

  1. Основная − преобразования теплоты в работу.

  2. Вспомогательная − преобразования возвратно-поступательного движения поршня во вращательное движение кривошипа.

При решении основной задачи поршень совершает возвратно — поступательное движение, и сгорание топлива происходит последовательными порциями после ряда подготовительных процессов. Совокупность этих процессов, происходящих в определенной последовательности, называется рабочим циклом. Во время работы ДВС рабочий цикл периодически повторяется.

Рабочий цикл любого ДВС может быть выполнен по одной из двух схем (рисунок 2):

  1. По схеме с внешним смесеобразованием.

  2. По схеме с внутренним смесеобразованием.

По первой схеме работают карбюраторные бензиновые, газовые и ДВС с впрыскиванием топлива во впускной трубопровод. По второму – дизели и ДВС с впрыскиванием бензина в цилиндр и воспламенением от искры.

При внешнем смесеобразовании рабочий цикл осуще­ствляется следующим образом. Топливо и воздух в определенных соотношениях, необходимых для полного сгорания топли­ва, хорошо перемешиваются вне цилиндра двигателя и образуют горючую смесь. По­лученная смесь поступает в цилиндр (впуск), после чего подвергается сжатию. При сжатии смеси в цилиндре создаются условия, необходимые для сгорания топ­лива. Во время впуска и сжатия смеси в цилиндре происходят дополнительное перемешивание топлива с воздухом и их нагрев.

Рисунок 2 Схемы рабочих циклов ДВС

а) Внешнее смесеобразование б) Внутреннее смесеобразование

Общее устройство и рабочий процесс двигателя

Категория:

   Техническое обслуживание автомобилей

Публикация:

   Общее устройство и рабочий процесс двигателя

Читать далее:



Общее устройство и рабочий процесс двигателя

Механизм газораспределения обеспечивает своевременный впуск горючей смеси в цилиндр и удаление из него продуктов сгорания. Этот механизм приводится в действие от коленчатого вала через зубчатые колеса. При этом распределительный вал, воздействуя на толкатели, штанги и коромысла, открывает впускной или выпускной клапаны, закрытие которых происходит под действием пружин.

Система питания предназначена для приготовления и подачи горючей смеси в цилиндр, а также для отвода продуктов сгорания из цилиндра. При помощи насоса топливо из топливного бака подается в карбюратор, где оно в необходимом соотношении смешивается с воздухом, образуя горючую смесь, которая затем по впускному газопроводу поступает (показано стрелкой) в цилиндр двигателя. В систему питания также входят фильтры для очистки воздуха и топлива, выпускной газопровод с глушителем шума выпуска.

Смазочная система обеспечивает подачу масла к взаимодействующим деталям и состоит из насоса, масло-подводящих каналов, фильтров для очистки масла и радиатора для его охлаждения.

Рекламные предложения на основе ваших интересов:

Система охлаждения поддерживает нормальный температурный режим работы двигателя, обеспечивая отвод тепла от сильно нагревающихся при сгорании рабочей смеси деталей цилиндропоршневой группы и клапанного механизма. Система охлаждения бывает жидкостная или воздушная. Жидкостная система охлаждения состоит из рубашки-полости 15, внутри которой циркулирует охлаждающая жидкость, жидкостного насоса, термостата, вентилятора и радиатора.

При воздушной системе охлаждения заданный температурный режим достигается удалением тепла от наружных ребер, имеющихся на цилиндре и его головке, которые при движении автомобиля обвеваются встречным потоком воздуха.

Система зажигания предназначена для воспламенения рабочей смеси в цилиндре двигателя. Она включает в себя источники электрической энергии (аккумуляторную батарею, генератор), приборы, преобразующие ток низкого напряжения в ток высокого напряжения, и провода, подводящие ток высокого напряжения к свече зажигания, электрическая искра от которой воспламеняет рабочую смесь.

Рис. 1.1. Четырехтактный одноцилиндровый карбюраторный двигатель

Рис. 1.2. Схема для определения основных параметров двигателя

Взаимодействие механизмов и систем двигателя происходит следующим образом. Когда поршень опускается вниз, горючая смесь через открытый впускной клапан поступает в цилиндр. При движении поршня вверх она сжимается и, когда поршень доходит до крайнего верхнего положения, воспламеняется от электрической искры и сгорает. В процессе сгорания образуются газы, имеющие высокую температуру и большое давление. Под действием давления расширяющихся газов поршень опускается вниз и через шатун приводит во вращение коленчатый вал. Таким образом происходит преобразование возврат-но-поступательного движения поршня во вращательное движение коленчатого вала. Затем поршень движется вверх и выталкивает отработавшие газы через открывающийся клапан.

Основными конструктивными параметрами двигателя являются диаметр цилиндра, ход поршня и число цилиндров.

При одном обороте коленчатого вала двигателя (рис. 1.2) поршень делает один ход вниз и один ход вверх. Изменение направления движения поршня в цилиндре происходит в двух крайних точках, называемых мертвыми, так как в них скорость поршня равна нулю.

Крайнее верхнее положение поршня называется верхней мертвой точкой (в.м.т), крайнее нижнее его положение — нижней мертвой точкой (н.м.т).

Следовательно, при перемещении поршня от одной мертвой точки до другой коленчатый вал поворачивается на 180°, т. е. совершает половину оборота.

Степень сжатия — безразмерная величина, она показывает, во сколько раз уменьшается объем рабочей смеси или воздуха, находящихся в цилиндре, при перемещении поршня от н.м.т. к в.м.т. Чем выше степень сжатия, тем больше температура и давление рабочей смеси при подходе поршня к в.м.т.

С увеличением степени сжатия повышается мощность и топливная экономичность двигателя. Однако повышение степени сжатия карбюраторных двигателей возможно лишь до определенных пределов, после достижения которых увеличение степени сжатия приводит к преждевременному самовоспламенению рабочей смеси и вызывает взрывное сгорание — детонацию топлива, что снижает работоспособность двигателя.

Различные виды жидких и газообразных топлив имеют разные температуры самовоспламенения, поэтому вид топлива, на котором работает двигатель, определяет пределы его степени сжатия. Автомобильные двигатели, работающие на бензине (карбюраторные двигатели), имеют степень сжатия 6—10, на газе — 7—9, а дизели — 15—20.

Рекламные предложения:


Читать далее: Рабочие циклы четырехтактных двигателей и показатели их работы

Категория: — Техническое обслуживание автомобилей

Главная → Справочник → Статьи → Форум


Дисциплина Силовые агрегаты Лекция 1 Принцип действия и рабочий цикл поршневого двигателя

Учебные вопросы:

  1. Функциональная схема поршневого двигателя внутреннего сгорания. Основные понятия и определения.

  2. Рабочие процессы четырехтактного двигателя с искровым зажиганием.

  3. Рабочие процессы двухтактного двигателя с искровым зажиганием.

  4. Показатели эффективности двигателей. Среднее индикаторное давление и инди­каторная мощность.

  1. Функциональная схема поршневого двигателя внутреннего сгорания. Основные понятия и определения.

Рассмотрим поршневой двигатель внутреннего сгорания. Для описания и анализа его работы воспользуемся упрощенной функциональной схемой, представленной на рисунке 1.

Рисунок 1 Упрощенная функциональная схема поршневого двигателя внутреннего сгорания:

1 — цилиндр; 2 поршень; 3 шатун; 4 кривошип

Двигатель содержит кривошипно-шатунный механизм (к.ш.м.), состоящий из неподвижного элемента − остова двигателя 1 и подвижных — поршня 2, шатуна 3 и кривошипа 4.

Поршень − основной силовой элемент к.ш.м., совершающий возвратно-поступательное движение, непосредственно участвующий в преобразовании теплоты в работу путем изменения надпоршневого объема, воспринимающий давление газов и передающий силу этого давления кривошипу.

Кривошип − силовой элемент к.ш.м., совершающий вращательное движение, определяющий закон движения поршня, воспринимающий силу давления газов на поршень и передающий ее потребителю.

Шатун — связующий силовой элемент к.ш.м., совершающий сложное плоскопараллельное движение, участвующий в преобразовании возвратно-поступательного движения поршня во вращательное кривошипа (и наоборот), передающий силу давления газов от поршня к кривошипу.

Кривошипно-шатунный механизм решает две задачи:

  1. Основная − преобразования теплоты в работу.

  2. Вспомогательная − преобразования возвратно-поступательного движения поршня во вращательное движение кривошипа.

При решении основной задачи поршень совершает возвратно — поступательное движение, и сгорание топлива происходит последовательными порциями после ряда подготовительных процессов. Совокупность этих процессов, происходящих в определенной последовательности, называется рабочим циклом. Во время работы ДВС рабочий цикл периодически повторяется.

Рабочий цикл любого ДВС может быть выполнен по одной из двух схем (рисунок 2):

  1. По схеме с внешним смесеобразованием.

  2. По схеме с внутренним смесеобразованием.

По первой схеме работают карбюраторные бензиновые, газовые и ДВС с впрыскиванием топлива во впускной трубопровод. По второму – дизели и ДВС с впрыскиванием бензина в цилиндр и воспламенением от искры.

При внешнем смесеобразовании рабочий цикл осуще­ствляется следующим образом. Топливо и воздух в определенных соотношениях, необходимых для полного сгорания топли­ва, хорошо перемешиваются вне цилиндра двигателя и образуют горючую смесь. По­лученная смесь поступает в цилиндр (впуск), после чего подвергается сжатию. При сжатии смеси в цилиндре создаются условия, необходимые для сгорания топ­лива. Во время впуска и сжатия смеси в цилиндре происходят дополнительное перемешивание топлива с воздухом и их нагрев.

Рисунок 2 Схемы рабочих циклов ДВС

а) Внешнее смесеобразование б) Внутреннее смесеобразование

Отправить ответ

avatar
  Подписаться  
Уведомление о