Реферат свечи зажигания – «Лекция Автомобильные свечи зажигания Автор Бондаренко В.А. ОГТИ.». Скачать бесплатно и без регистрации.

Содержание

Свеча зажигания

Содержание

Введение                                                                                                      3    

Глава 1. Свеча зажигания                                                                     4

             1.1. Немного истории                                                                 4                                                              

             1.2. Свеча зажигания. Назначение. Устройство                   5

                   1.2.1. Свеча зажигания. Назначение                                5                        

                   1.2.2. Свеча зажигания. Устройство                                 6

             1.3. Принцип работы                                                              10

Глава 2. Свечи зажигания. Типы. Преимущества                        12                        

           2.1. Типы свечей зажигания                                                  12

              2.2. Маркировка                    

                                                      14

  Глава 3. Неисправности. Причины                                                     23

            3.1. Снятие и установка                                                           23

            3.2. Неисправности. Причины                                               25

            3.3. Рынок                                                                                   33

Заключение                                                                                             34

Список литературы                                                                               35

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Из «Искры возгорелась «Правда», из искры Божьей возгорается яркий талант, а из искры, проскакивающей между электродами свечи зажигания двигателя внутреннего сгорания с принудительным воспламенением горючей смеси, возгорается вспышка сжатых в цилиндре паров топлива, смешанных с атмосферным воздухом. Бензиновый двигатель давно отпраздновал столетие со дня рождения, а принцип искрового зажигания, запатентованный французским инженером Жаном Лену аром еще в 1860 году, по сей день остается неизменным. И, несмотря на угрозы со стороны турбодизелей и электромоторов, бензиновый двигатель жив, а значит, жива и свеча зажигания. Судя по всему, начало третьего тысячелетия не принесет нам ничего кардинально нового. Но это вовсе не значит, что свеча зажигания пребывает неизменной.

Мало кто из автолюбителей придает особое значение выбору свечей зажигания. Однако свечи являются важнейшим элементом системы зажигания, ведь от устойчивости и своевременности искрообразования зависит стабильность работы всего двигателя. Работа свечи являются заключительным этапом работы всей системы зажигания.

Свечи зажигания являются средством познания вашего двигателя, очевидцами процессов, происходящих в камере сгорания, и могут использоваться как полноценный диагностический инструмент. Как термометр для больного, свечи зажигания выявляют симптомы и условия эксплуатации двигателя. Опытный механик, анализируя эти симптомы, может обнаружить причину, вызывающую множество проблем, или определить соотношение топливовоздушной смеси.

Свечи зажигания – это такая деталь автомобиля, без которой машина просто не заведется и не поедет. Подобные изделия работают в самых экстремальных условиях. Они, то принимают на себя рабочую смесь, образовавшуюся из воздуха и паров бензина, то находятся прямо в раскаленных газах. И так десятки раз за секунду.

Какие требования предъявляются к изготовителям, какие виды свечей бывают, как образуется та самая искра, приводящая в работу двигатели автомобилей и многие другие вопросы будут рассмотрены в данной работе.

 

 

 

 

 

 

 

 

 

Глава 1. Свеча зажигания

1.1. Немного истории

Первые изобретатели свечей зажигания столкнулись с большой проблемой: герметичность. В то время не было настолько качественной керамики и в ход шли разные материалы: стекло, слюда и даже некоторые породы дерева, но быстрое разрушение при нагрузках было неизбежно.

Первый прообраз современной свечи зажигания появился на свет 152 года назад. Француз Ленуар, установил систему зажигания на своём первом двигателе, после чего за её доработку взялся немец Отто. Прародители современной свечи зажигания радикально отличались от современных аналогов. Так, например, наиболее распространенная в 1900 году система зажигания с «запальной трубкой» состояла из керамической изоляторной трубки с пропущенным в ней проводом высокого напряжения. Искра от динамо – машины через высоковольтный провод передавалась непосредственно на поршень либо стенки цилиндра, воспламеняя рабочую смесь.

История «нормальных» свечей зажигания, берет начало с приходом двадцатого столетия. Первый патент на свечу зажигания выдан Роберту Бош в 1902 годом. Инженер компании Боша предлагает использование высококачественной керамики для изолятора и находит способ передачи высокого напряжения в четко установленный момент. Конструкция свечей того времени оказалась на столько удачной, что на протяжении нескольких десятилетий эксплуатации, в их конструкцию не пришлось вносить каких-либо глобальных изменений, лишь небольшие, связанные с увеличением срока службы!

 

 

 

 

 

 

 

 

 

 

 

         Глава 1. Свеча зажигания

 

1.2. Свеча зажигания. Назначение. Устройство

1.2.1. Свеча зажигания. Назначение

 

Задачей свечи зажигания в бензиновом двигателе автомобиля является воспламенение топливно-воздушной смеси в камере сгорания.

 

Она осуществляет воспламенение смеси воздуха и топлива. На качество этого воспламенения влияют многие факторы, имеющие очень большое значение для эксплуатации автотранспорта и для состояния окружающей среды. Важны такие показатели, как плавность хода, мощность и эффективность двигателя, а также выброс вредных веществ.

Если подумать, что одна свеча зажигания должна зажигать от 500 до 3500 раз в минуту, то становится ясно, насколько значимой является роль современной технологии свечей зажигания, цель которой состоит в соблюдении норм выбросов вредных веществ и в сокращении расхода топлива.

Такие жесткие условия работы определяют особенности конструкции свечей и применяемых материалов, так как от бесперебойности искрообразования зависят мощность, топливная экономичность, пусковые свойства двигателей, а также токсичность отработавших газов.

 

 

 

 

 

 

 

 

 

 

Глава 1. Свеча зажигания

1.2. Свеча зажигания. Назначение. Устройство

1.2.2. Свеча зажигания. Устройство

Основными элементами любой свечи зажигания являются металлический корпус, керамический изолятор, электроды и контактный стержень.

Контактный вывод, расположенный в верхней части свечи, предназначен для подключения свечи к высоковольтным проводам системы зажигания или непосредственно к индивидуальной высоковольтной катушке зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности, образуя лабиринт.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1 000 °C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

 

 

 

 

 

 

 

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Цоколь (корпус)

Служит для заворачивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированной никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов.

С 1999 года на рынке появились свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов.

Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов, истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в камере сгорания, полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается. Эффективность «форкамерных» свеч поставлена под сомнение проведённым экпериментом.

 

 

 

 

 

 

 

 

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор — минимальное расстояние между центральным и боковым электродом. Величина зазора — это компромисс между «мощностью» искры, то есть размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяемые зазором:

  1. Чем больше зазор — тем больше размеры искры, тем больше вероятность воспламенения смеси и больше зона воспламенения. Всё это    Рис. 1. Зазор.
  2. положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Слишком увеличивать зазор тоже нельзя, иначе высокое напряжение будет искать более лёгкие пути — пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т. д.
  3. Чем больше зазор — тем сложнее пробить его искрой. Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением . Соответствующая
  4. напряжённость электрического поля , где  — расстояние между электродами, называется электрической прочностью промежутка. То есть чем больше зазор — тем бо́льшее напряжение пробоя необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса, но это не важно в данном случае. Понятное дело, что высокое напряжение пр мы не можем поменять — оно определяется системой зажигания. А вот зазор мы поменять можем.
  1. Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых и платиновых свечей с тонким центральным электродом).
  2. Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси. Чем она больше — тем сложнее пробить. Пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с однородным и слабо неоднородным электрическим полем определяется произведением относительной плотности газа на расстояние между электродами, . Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20 °C, 760 мм рт. ст.).

Реферат — Свеча зажигания неотъемлемый атрибут двигателя внутреннего сгорания с легким топливом


НОВЫЕ ВОЗМОЖНОСТИ СВЕЧИ ЗАЖИГАНИЯ

Свеча зажигания — неотъемлемый атрибут двигателя внутреннего сгорания с легким топливом. Свеча появилась на свет более 160 лет назад сначала в первом двигателе (без сжатия) француза Ленуара, а затем в более эффективном двигателе со сжатием немца Отто.

Свеча служит для воспламенения топливовоздушной смеси в камере сгорания двигателя. Классическая свеча, знакомая всем автолюбителям, содержит стальной корпус с резьбой и шестигранником, изолятор с центральным электродом, образующий искровой зазор с боковым электродом. Свеча по-прежнему является одним из самых напряженных узлов двигателя. Причина — в тяжелейших условиях эксплуатации: циклические воздействия высоких напряжений, температуры, давления, широкий диапазон режимов двигателя, отложения продуктов сгорания, электроэрозия и др. На совершенствование свечи тратились и до сих пор тратятся большие ресурсы. За последние пять лет в Патентном фонде США зарегистрировано более 7 тысяч «свечных» патентов.

Бытует мнение, что свеча и система зажигания достигли определенного совершенства, что от них мало что зависит, лишь бы были исправны. А главное — «железо» и объем двигателя. Так ли это?

Оценим, какая часть электрической энергии высоковольтного импульса выделяется в искре свечи. Как известно, основная доля энергии искры в современных двигателях выделяется на этапе индуктивной фазы разряда. Источником высоковольтной электрической энергии является катушка зажигания. Количество накапливаемой энергии пропорционально величине индуктивности катушки, поэтому последняя получается весьма тяжелой и материалоемкой. Суммарное сопротивление высоковольтной цепи системы зажигания составляет около 20 кОм. Оценим сопротивление искрового зазора. Учитывая, что напряжение между электродами после пробоя падает до 300 В, а ток разряда в среднем равен 300 мА, то сопротивление искрового зазора примерно равно 1 кОм. Отсюда следует, что электрический к.п.д. искры составляет около 5%.

Рассмотрим тепловой к.п.д. Ток разряда в искре превращается в джоулево тепло, которое и осуществляет поджигание воздушно-топливной смеси. Расчет возникающих потерь далеко не прост, поэтому согласимся с мнением других авторов, которые оценили потери тепла на разогрев электродов величиной около 70%.

Но электроды — не единственные паразиты, пожирающие драгоценное тепло искры. Сам вихрь, бушующий в камере сгорания, уносит тепло. Скорость вихря максимальна именно у стенок камеры сгорания, где расположен искровой зазор свечи. С учетом этого к.п.д. искры осторожно оценим величиной порядка 15%.

Приходится только удивляться, как двигатель с такими потерями еще работает. Но самое удивительное впереди. Из-за асимметрии горения возникают механические потери. Свеча является пассивным точечным источником тепла. Конфигурация фронта пламени при развитии горения воздушно-топливной смеси определяется вихревыми потоками. На первом этапе пламя от искры распространяется в виде постоянно расширяющейся трехмерной спиральной поверхности вдоль стенки в один из углов камеры, а оттуда в центр. Центром камеры сгорания является центр дна поршня в положении верхней мертвой точки (ВМТ). На втором этапе фронт пламени начинает распространяться практически равномерно во все стороны. Возникшая на первом этапе «спираль» продолжает поддерживаться от искры, поэтому горение завершается в другом углу камеры сгорания, противоположном «спирали».

Горение происходит в замкнутом, практически неизменном по объему пространстве. Поэтому по мере сгорания топлива давление в камере увеличивается, а это дает прогрессивный рост скорости распространения пламени. Из-за быстротечности процессов в камере фактически нарушается закон Паскаля, поскольку в области завершения горения кратковременно давление будет заметно превосходить давление в других областях камеры сгорания. Другими словами, высокое давление генерируется со скоростью большей, чем скорость выравнивания давления в замкнутом объеме.

Напомню читателям об эффекте, открытом австрийским физиком Махом: «При завершении горения воздушно-топливной смеси в замкнутой камере температура сгоревших газов в зоне источника зажигания наибольшая и уменьшается к границам зоны горения». Опираясь на выполненные автором исследования, можно сформулировать положение, дуальное эффекту Маха: «В момент завершения в замкнутой камере горения воздушно-топливной смеси со скоростью, близкой к скорости звука, давление сгоревших газов в зоне завершения горения наибольшее и уменьшается по мере удаления от нее». Чем выше скорость завершения горения, тем больше указанная разница в давлениях.

К чему это приводит? Посмотрите внимательно на поршень, находящийся в области ВМТ. По сути, это балансирующая система с точкой опоры практически в центре поршня. По мере увеличения реакции нагрузки данная балансирующая система приближается к стационарной. Между тем, балансирующие системы обладают очень важным свойством: малая асимметрия может привести к большим последствиям.

Аналогично, когда через 15° поворота коленвала, после прохода ВМТ завершается горение воздушно-топливной смеси, поршень, наряду с равномерным давлением на все дно, получает импульс по одному краю. Ему «ничего не остается», как повернуться относительно точки опоры, что приведет к кратковременному заклиниванию поршня в цилиндре. Двигатель перед тем, как заглохнуть, может «козлить». Это объясняется тем, что поршни по очереди «проскакивают» через заклиненное состояние. У холодного двигателя заклинивающий эффект максимален.

В мировой практике с этим явлением начали бороться не сразу. Когда в авиации из соображений надежности стали применять две симметричные свечи на цилиндр, то это повысило мощность двигателя на 5 %. Такое решение в автомобильной практике первой использовала HONDA, так как убедилась в значительном повышении крутящего момента на «низах». Далее к такому же решению прибегла Alfa-Romeo. И совсем недавно — Daimler-Chrysler. Однако внедрение дублированной системы зажигания — недешевое удовольствие и, кроме того, оно фактически означает необходимость разработки нового двигателя. А что делать с сотнями миллионов автомобилей, которые уже колесят по всему свету?

Кроме того, применение двух свеч на цилиндр не устраняет другой недостаток. Длина пути распространения фронта пламени в реальных камерах сгорания составляет не менее трех радиусов поршня. Большая протяженность пути фронта пламени приводила к тому, что при высокой частоте вращения вала приходилось поджигать воздушно-топливную смесь задолго до ВМТ (увеличивать угол опережения зажигания), а фаза сжатия заканчивалась уже после зажигания воздушно-топливной смеси. Если рассматривать индикаторную диаграмму, то при этом тепловая энергия нарастает в фазе сжатия и, естественно, уменьшается в фазе расширения. Таким образом, с ростом частоты вращения вала крутящий момент падает «с удвоенной скоростью». Затем наступает момент, когда двигатель «визжит, но тянуть уже не может», так как способен обслуживать только сам себя. И все это, в основном, из-за долгого горения или неверного способа зажигания.

В итоге мы можем сделать вывод, что системы зажигания современных двигателей грешат принципиальными недостатками.

Все недостатки, рассмотренные выше, устраняются, если горение воздушно-топливной смеси начать в центре камеры сгорания.

И сделать это разумнее всего с помощью факельного зажигания по аналогии с лучшими форкамерными двигателями. Первый форкамерный двигатель был предложен Рикардо в 1918 г., а последний был снят с производства в начале 80-х. И это удивительно, так как форкамерные двигатели были лучше обычных по всем показателям, кроме одного — они были сложнее, особенно в отношении системы питания и газораспределения. Вероятно, последнее и перевесило в извечном компромиссе: цена — качество.

Главное достоинство факельного зажигания — активность. Факел способен преодолеть заметные расстояния как поперек, так и навстречу вихрю.

В 1994 г. автором и его коллегами были начаты исследования по созданию системы зажигания и свечи с факельным эффектом.

Мы остановились на принципиально новом решении. У нашей свечи центральный искровой зазор симметрично окружен конусным резонатором. Конус изготовлен из жаростойкого сплава, обладающего антикалильными свойствами.

В чем неочевидность решения? Конструкция свечи полуоткрытая, но при этом свеча обладает факельным эффектом. Академик А.Е. Акимов назвал нашу свечу «торсионным генератором». Но главное все же не в том, как назвать, а в том, какими качествами обладает новая свеча.

Копия из книги: «Сгорание в быстроходных поршневых двигателях» Автор: Воинов А.Н.; Издательство: «Москва, Машиностроение» 1977 г.

Снимки Камеры сгорания, произведённые специальной оптико-телевизионной системой.

Динамика развития области горения:

Верхний ряд — при штатной системе зажигания.

Нижний ряд — со свечей, обеспечивающей факельное зажигание.

Именно благодаря «полуоткрытости» свечи ей не страшны проблемы вентиляции и засорения продуктами неполного сгорания.

Она работает лучше обычной свечи, лучше форкамерной свечи на всех режимах двигателя, так как формирует более мощный расходящийся факел.

В ходе одного из экспериментов проверялась приемистость двигателя со штатной и новой свечой без нагрузки. Двигатель со штатной системой зажигания набирал максимальную частоту вращения вала в течение примерно 3 с. После замены свечи на новую мотор без видимой задержки буквально «взрывается», при этом частота вращения вала «зашкаливает».

В процессе экспериментов были установлены зависимости к.п.д. новой свечи от ряда характеристик: формы камеры сгорания, положения, энергии и длительности искры, качества воздушно-топливной смеси.

Наши исследования позволяют констатировать, что факельное зажигание улучшает одновременно все параметры двигателя и автомобиля: скорость, приемистость, экономичность, экологичность. Особенно важным достижением представляется снижение уровня выбросов окислов азота. Резко уменьшилась тепловая нагруженность двигателя, появилась возможность осуществлять разгон с переходом от 1-й на 5-ю передачу. Машина «не замечает» подъемов, т.е. не снижает скорости на подъеме. Расход топлива сокращается и перестает зависеть от скорости, поэтому при движении со скоростью 120 км/ч и выше экономия нередко достигает 50%.

Замечено, для автомобилей с большей массой и двигателей с увеличенным диаметром поршней выигрыш увеличивается.

Многое еще предстоит исследовать, эволюция новой свечи только начинается. Надеюсь, что новинка заинтересует и автопром, и настоящих автолюбителей. В заключение автор выражает особую благодарность и признательность российскому изобретателю Г.Н. Березовскому, который первый предложил использовать свечу с конической поверхностью.

Источник: журнал «Двигатель

«Свечи зажигания со скользящей искрой»

Содержание

Введение

1. История появления и совершенствования свечи зажигания

2. Автомобильные свечи со скользящей искрой

3. Эпилог

4. Преимущества свечи со скользящей искрой Заключение Список используемой литературы

автомобильный свеча зажигание искра Автомобильные свечи зажигания Электроискровая свеча является важнейшим компонентом любой современной автомобильной системы зажигания. От совершенства ее конструкции и правильного подбора в значительной степени зависит надежность работы двигателя внутреннего сгорания (ДВС) с принудительным воспламенением топливовоздушной рабочей смеси. По принципу работы различают свечи с искровым воздушным зазором, со скользящей искрой, полупроводниковые, эрозийные и комбинированные. При любом исполнении свеча зажигания является быстродействующим искровым запалом топливовоздушной смеси в цилиндрах ДВС. Наибольшее распространение на автомобильных двигателях получили искровые свечи с воздушным зазором, что объясняется их высокой надежностью, простотой конструкции и технологичностью изготовления.

Бензин, огонь и выхлопные трубы — приблизительно так в четырех словах можно описать сферу работы свечи зажигания. Но для того, чтобы понять, какие нагрузки испытывает самая обыкновенная свеча при работе, этих слов будет явно недостаточно.

Вначале 10−25 кВ напряжение искрового пробоя прошивает центральный электрод свечи, почти мгновенно температура бензовоздушной смеси на впуске в камеру сгорания вырастает от нескольких десятков градусов до двух-трех тысяч градусов при воспламенении, в этот же момент давление в цилиндре переваливает за 50 кгс/см кв., а разогретая до 800 градусов по Цельсию, иногда и выше, рабочая часть свечи подвергается атакам химически активных веществ, состав и количество которых зависят как от качества самого бензина, так и количества присадок, содержащихся в нем. Теперь все это суммируем, умножаем на миллион, два, три миллиона рабочих циклов. Вполне естественно возникает вопрос: «За счет чего свеча зажигания может успешно справляться со столь непростой работой?». Для развернутого ответа на этот вопрос и для того, чтобы полнее оценить конструктивное совершенство современной свечи зажигания, необходимо обратиться к ее истории.

1. История появления и совершенствования свечи зажигания

Безлошадный экипаж.

На рубеже ХIХ-ХХ веков на дорогах Европы и Америки стало встречаться все больше и больше безлошадных экипажей, приводимых в движение паровыми, электрическими, газовыми и бензиновыми двигателями. Установив на трехколесную повозку усовершенствованную модель 4-тактного двигателя внутреннего сгорания (ДВС) конструкции Николауса Отто, в 1883 году Карл Бенц и Готлиб Даймлер явили миру первый автомобиль с двигателем внутреннего сгорания, работающим на жидком топливе — бензине.

Несмотря на его такие очевидные преимущества, как высокая удельная мощность, малый удельный вес, высокая частота вращения и экономичность в сравнении с остальными конструкциями двигателей тех лет (исключая двигатель Рудольфа Дизеля), бензиновому двигателю внутреннего сгорания пришлось в течение почти двадцати лет доказывать свое преимущество. К примеру, в 1899 году в Соединенных Штатах Америки из всех выпущенных самодвижущихся экипажей 40% составляли «паромобили», 38% «электромобили» и только 22% автомобили с бензиновыми двигателями. Немаловажным фактором, препятствовавшим бензиновому двигателю занять доминирующее положение, являлось несовершенство системы зажигания и свечи зажигания.

Наиболее распространенная модель на то время системы зажигания с так называемой «запальной трубкой» в 1900 году выглядела следующим образом: в головке блока цилиндров размещалась керамическая трубка-изолятор с пропущенным по ней высоковольтным проводом, один конец которого выходил непосредственно в цилиндр ДВС. Такая конструкция позволяла сообщаемому по ней высокому напряжению, вырабатываемому динамо-машиной, совершать пробой в виде искры на поршень или стенку цилиндра, поджигая рабочую смесь. Максимальное количество оборотов в минуту такого двигателя обычно не превышало и тысячи. Понятно, что с такими показателями бензиновому ДВС было непросто конкурировать с конструкциями других двигателей. Ситуацию, в которой оказался бензиновый двигатель на пороге ХIХ-ХХ веков, прекрасно иллюстрируют слова самого Карла Бенца, сказанные им после серии неудачных попыток увеличить мощность своего детища: «Без надежной работы свечи зажигания все усилия напрасны».

Долой керамику из двигателя В 1902 году Роберт Бош, применив концепцию свечи зажигания и высоковольтного магнето, принципиально решает проблему того, как сообщить высокое напряжение на свечу в четко определенный момент. Но это изобретение лишь наполовину решило проблему низкой эффективности и надежности работы системы зажигания, так как свеча зажигания еще долго продолжала оставаться ее «ахиллесовой пятой». Для получения надежного образца свечи еще только предстояло найти материалы, пригодные для ее изготовления.

В первую очередь это касалось изолятора. Изолирующим материалом для первых свечей служило мало подходившее для таких целей керамическое сырье, и в первое время оно ничем не отличалось от того, что шло на изготовление обыкновенной керамической посуды. Ничего удивительного не было в том, что такая свеча начинала разрушаться уже при небольших тепловых перегрузках, плохо переносила вибрацию, детонацию и другие механические воздействия неотъемлемых спутников работающего двигателя. Оттого нередки были случаи, когда изолятор свечи под воздействием всех вышеперечисленных негативных факторов рассыпался прямо во время работы двигателя, обрушаясь всеми своими частями прямо внутрь цилиндра. Излишне объяснять, что после таких встрясок весь кривошипно-шатунный механизм надолго выходил из строя.

Тогда на борьбу за улучшение качества изолятора свечи были мобилизованы все мало-мальски известные и исследованные диэлектрики того времени: стекло, кварц, слюда, тальк, резина и даже некоторые сорта древесины. Много времени было потрачено на попытки использовать огнеупорное стекло в качестве изолятора, но из приведенного выше списка материалов лучше всего с поставленными задачами справлялась слюда. Свеча со слюдяным изолятором была устойчива к механическим нагрузкам, хорошо отводила тепло и обладала прекрасными изолирующими свойствами. Но дожить до наших дней слюдяной свече помешало то, что даже при очень незначительных тепловых перегрузках слюдяной изолятор быстро дегидрирует и распадается. Как это ни странно, но к началу Второй мировой войны абсолютное большинство двигателей американских ВВС снабжались именно такими свечами, тогда как в самолетах германских «люфтваффе» уже широко применялись свечи с изолятором из высококачественной керамики.

Бензин есть двигатель прогресса В тот же предвоенный период нефтеперерабатывающая промышленность наладила массовое производство этилированного бензина. Добавление тетраэтилсвинца в традиционный состав бензина позволило значительно улучшить октановое (антидетонационное) свойство бензина. И вскоре этилированный бензин с успехом вытеснил отовсюду своего предшественника. Но свинец, присутствовавший в этом соединении, прекрасно справлялся не только с детонацией в цилиндрах, но и с традиционными на то время изоляторами и электродами свечей зажигания, вызывая у последних следы глубокой эрозии за самые короткие сроки. И только с появлением новой конструкционной керамики с высоким содержанием оксида алюминия удалось прекратить разрушительное воздействие этилированного бензина на изолятор свечи.

Характеризуя свечу зажигания на рубеже тридцатых — сороковых годов, про нее можно сказать следующее: это была свеча со стальным корпусом и присоединительной резьбой, нарезанной по его внешнему контуру, центральный электрод в форме округлого стержня, изготовленного из хромоникелевого сплава с традиционным Г-образным боковым электродом. Изолятор свечи изготавливался из керамики с высоким содержанием оксида алюминия. Средняя продолжительность службы такой свечи не превышала 8−10 тысяч километров, а ее функциональные возможности волне соответствовали нуждам автомобилестроения тех лет. Но грянувшая война моторов диктовала свои условия, и в первую очередь о своих правах заявила авиация, чьи форсированные поршневые двигатели требовали стократного запаса надежности для каждой из устанавливаемой на него детали. Так, авиадвигатели, начиная с периода сороковых годов, стали комплектоваться свечами с поистине революционными на то время техническими решениями. Это были свечи с продублированными боковыми электродами, со способностью к очищению изолятора энергией искрового разряда т.н. «воздушно-поверхностным разрядом» и биметаллическим центральным электродом, внутрь электрода был помещен теплопроводящий мостик в виде медного сердечника, что позволило значительно расширить границы рабочего теплового режима свечи. Эта конструкция оказалась настолько удачной, что даже в ходе последующих десятилетий ее эксплуатации в нее не потребовалось вносить каких-либо серьезных изменений.

В отличие от авиаторов, ни в сороковые годы, ни в период 50−60-х годов, автолюбители не были избалованы свечными новинками. На тот период свеча превратилась едва ли не в самую консервативную деталь двигателя и мало чем отличалась от своего довоенного предшественника, исправно неся свою службу. Конечно, работа в лабораториях не прекращалась, к примеру, фирмой Bosch именно в те годы были разработаны их первые образцы свечей зажигания с использованием платины, но выпуск таких свечей ограничивался отдельными опытными партиями.

Наступил 1970 год. В тот год правительством США было принято постановление Clean Air, согласно которому выбросы вредных веществ новыми автомобилями должны быть снижены на 90% в период 1971 по 1976 годы. В 1974 году схожее постановление было принято и правительством ФРГ, а постепенно к нему присоединились и другие европейские страны. Прежде всего это означало прекращение использования этилированного бензина и возврат к неэтилированному, чьи горючие свойства значительно хуже, чем у его свинцового собрата. Рабочий объем карбюраторных двигателей резко пошел на убыль, зрела необходимость внесения серьезных изменений в существующую конструкцию ДВС.

Снять большую мощность с меньшего объема можно было только путем форсирования двигателя, а это влекло за собой изменение теплового режима двигателя, увеличение его степени сжатия и оборотов, серьезное вмешательство в шатунно-поршневую группу, создание принципиально новых систем подачи топлива, усовершенствования камеры сгорания, впускного и выпускного трактов, а также системы зажигания. Понятно, чтобы соответствовать новым требованиям, свечи также подверглись серьезной трансформации.

Назло ювелирам

Перед конструкторами свечей зажигания встали следующие задачи: необходимо было расширить рабочий тепловой режим свечи, обеспечить устойчивое искрообразование, улучшить способности свечи к самоочищению. Вот тут и пригодился опыт прежних лет. Эксперименты с традиционным хромоникелевым сплавом и его самыми разными сочетаниями с такими материалами, как медь, серебро, платина, золото. Полученные новые материалы повысили сопротивляемость электродов свечи к коррозии и эрозии, а главное, значительно улучшили их теплопроводящие свойства. В середине 1980-х годов были запущены в серию свечи с медным сердечником. Медь — прекрасный проводник тепла и электричества, что позволило новым свечам работать при более высоких температурных нагрузках, не вызывая калильного зажигания. При этом улучшились способности свечи к самоочищению и искрообразованию, срок службы таких свечей также вырос.

Но настоящим прорывом в деле производства свечей стало начало серийного выпуска свечей с платиновыми и золотопалладиевыми напайками на кончиках электродов. В 1985 году первые образцы таких свечей фирмы Bosch поступили в продажу на североамериканском рынке. Все виды традиционных свечей обладают одним неустранимым недостатком: их центральные электроды, изготовленные, как правило, из Ni-Cr-Fe и Ni-Cr-Ti, теряют сравнительно большое количество молекул металла при искровом пробое. По приблизительным расчетам после каждых 1500 километров пробега зазор между центральным и боковым электродом увеличивается настолько, что уже требуется дополнительных 500 В напряжения для успешного искрообразования. Не сложно подсчитать, что после 15−20 тысяч километров пробега таких свечей без их планового ТО напряжение искрового пробоя может возрасти на 5 и более киловольт. После чего двигателю гарантируются проблемы с запуском, неустойчивая работа на «холостых», ухудшается разгонная динамика, увеличивается содержание вредных веществ в выхлопных газах. Поэтому производитель свечей рекомендовал, а жизнь заставляла каждые 7−10 тысяч километров проверять и регулировать зазор межу электродами.

Но как только производители начали добавлять в состав электрода платину и золотопалладиевый сплав, эмиссия молекул настолько сократилась, что ресурс свечи увеличился в разы. Большинство «платиновых» свечей рассчитаны на пробег в 100 и более тысяч километров и не требуют обслуживания.

2. Автомобильные свечи со скользящей искрой

В настоящее время все ведущие фирмы-производители свечей, такие как AC Delco, Bosch, Federal Mogul, NGK, Denso, могут предложить своим покупателям традиционную свечу с платиновой напайкой на кончике одного или сразу двух электродов. Но даже данная конструкция уже день вчерашний, к примеру, на сегодняшний день стандарт платиновой свечи фирмы Bosch сочетает в себе такие конструктивные решения, как центральный электрод из чистой платины с напайкой на кончике, выполненной из иттриевого сплава. Свечи этой серии Platinum+2 и Platinum+4 изготовлены по технологии свечей с воздушно-скользящей искрой, или по-другому воздушно-поверхностным разрядом. Суть данной технологии сводится к тому, что искра в зависимости от нагрузки на двигатель, степени изношенности и загрязнения свечи сама определяет наиболее оптимальный для зажигания путь от центрального к одному из боковых электродов, преодолевая его либо воздушным путем, либо скользя по поверхности изолятора, попутно сжигая на нем следы нагара. На практике применение такой технологии позволяет свечам зажигания постоянно, по мере накопления углеродистых отложений на изоляторе, немедленно входить в режим самоочищения, не дожидаясь того момента, когда корпус изолятора нагреется до температуры их сжигания. Справедливости ради надо отметить, что технологию воздушно-поверхностного разряда также используют в своих изделиях такие фирмы-производители, как NGK, Denso и некоторые другие.

Но вернемся к нашим электродам. Низкое сопротивление новых материалов позволило безболезненно для системы зажигания увеличить зазор между электродами до 1,3−1,6 мм. Вместе с зазором увеличилась и длина плазменного шнура, а чем длиннее фронт плазмы, тем эффективнее сгорание пусть даже очень бедной рабочей смеси [https://gugn.ru, 28].

Для своей серии свечей «Iridium IX» фирмой NGK и «Iridium power» фирмой Denso в качестве материала для центрального электрода используется уникальный сплав иридия и радия, полученный материал в шесть раз тяжелее и в восемь раз прочнее платины. Срок службы таких свечей переваливает за 150 000 км, толщина же центрального электрода не превышает 0,6−0,7 мм, что позволило снизить напряжение искрового пробоя на 5 кВ по сравнению с обычными свечами.

Этим же двум фирмам принадлежит авторство нанесения «V» и «U»-образных канавок на кончики электродов. Столь простое на первый взгляд дополнение позволило повысить надежность искрообразования и устойчивость к загрязнению в свечах данного вида.

В ходе работ по совершенствованию свечей зажигания изменения коснулись не только химического состава электродов, но также их формы и количества.

Конструкция свечи зажигания с несколькими боковыми электродами позволяет искре при ежесекундно меняющихся режимах работы двигателя самостоятельно определять оптимальный путь для пробоя. Соответственно это снижает риск пропуска искры, а также увеличивает срок службы всего изделия благодаря распределению нагрузки по электродам. В таких свечах искровой зазор задается заводом-изготовителем и не нуждается в регулировке в период всего срока эксплуатации.

Еще одним шагом, позволившим повысить надежность искрообразования, стало использование принципа, суть которого в том, что искра легче соскальзывает с заостренного электрода, чем с плоскоокруглого. Практическое отображение этот принцип нашел в свечах Bosch Super plus и Bosch Super 4.

Борись с нагаром, Но все великолепие и совершенство современного электрода будет сведено на нет, если он покроется толстым слоем черного нагара. Нагар на свече — это твердая углеродистая масса с шероховатой поверхностью, образующаяся при температуре поверхности 200 градусов по Цельсию и выше. Отложения нагара на рабочей части свечи может вызывать: калильное зажигание, короткое замыкание высоковольтной цепи системы зажигания на массу при утечке тока по нагару на поверхности теплового конуса изолятора, а также пропуски искрообразования, последнее считывается автомобильной системой OBDII (на автомобилях выпуска позднее 1995 года) как ошибка, и на приборной панели немедленно вспыхивает лампа «Check Engine».

Сжигание нагара, если в продуктах сгорания нет несгораемых веществ, начинает происходить уже при температуре 350−400 градусов по Цельсию. Эффективность самоочищения от нагара зависит от того, как быстро тепловой конус изолятора нагреется до этой температуры. В то же время нельзя давать изолятору и электродам раскаляться настолько, чтобы вызвать калильное зажигание. Таким образом, рабочая температура нижней части изолятора у современных свечей колеблется в пределах 400−900 градусов по Цельсию.

Теплообмен работающей свечи выглядит следующим образом: 67% тепла воспринимает торец корпуса свечи, 21% — тепловой конус изолятора, 12% — электроды свечи центральный и боковой, более 90% от всего этого тепла уходит в головку цилиндра через резьбовое соединение. Для управления тепловой характеристики свечи важно знать следующее: через керамический изолятор центрального электрода отводится более 80% тепла, поступающего в свечу через тепловой конус и центральный электрод. Керамика — не очень хороший проводник тепла, следовательно, чем длиннее керамический изолятор свечи, тем медленнее отводится поступающее тепло, тем «горячее» данная свеча; соответственно, чем короче изолятор, тем быстрее отводится тепло и тем свеча «холоднее». Соотношение длины теплового конуса изолятора и теплопроводящих свойств центрального электрода свечи и определяют ее тепловую характеристику. Чем быстрее способен тепловой конус свечи достигать нижнего температурного порога самоочищения, тем меньше вероятность отложения нагара на его стенках.

Последний павший Бастион Все свечи с никельхромовыми и медными сердечниками, включая свечи с платиновыми и иридиевыми наконечниками, страдают одним и тем же недугом, из-за различия коэффициентов теплового расширения металла и керамики в местах сопряжения металлических и керамических деталей образуются воздушные микрозазоры, что приводит к ухудшению тепловых характеристик свечей. Но, похоже, и здесь привычное положение вещей было нарушено инженерами Bosch. Суть их новой технологии состоит в том, что центральный электрод из чистой платины вплавляется в изолятор с уникальным для керамики коэффициентом теплового расширения, таким образом удалось получить высококачественную, исключающую появление в ней зазоров керамометаллическую спайку. Изготовленный из такого материала конус изолятора свечи максимально быстро, в зависимости от настроек двигателя, разогревается до температуры самоочищения от нагара. В сочетании с воздушно-поверхностным разрядом такая свеча становится практически неуязвимой для нагара — блестящее решение и второй части ставившейся перед конструкторами задачи.

3. Эпилог

Ну, казалось бы, все, можно ставить точку, принимая во внимание прекрасные способности современных свечей справляться с температурными, химическими, электрическими и механическими нагрузками с моторесурсом по сто и более тысяч километров. Все выглядит предельно просто — вворачиваешь такую свечу в автомобиль, ложишься на привычный курс: дом — деревня — гараж — работа, и только знай, что меняй — масло, фильтр, «резину»; и опять масло, фильтр, «резину», и снова масло; ну и, конечно, свечи примерно один раз в две пятилетки — красота, да и только! Но на практике все это доступно для очень немногих современных автомобилей, да и то при исключительно благоприятных условиях их эксплуатации. Для того чтобы понять, что заслоняет от нас столь радужную перспективу, достаточно заглянуть под капот простой отечественной малолитражки. Считаем: катушка зажигания, высоковольтные провода, крышка распределителя зажигания, бегунок, датчик «Холла», коммутатор, коммутационные провода — любая из вышеперечисленных деталей может вызвать перебои в искрообразовании, а то и вовсе прекратить его, не «пробежав» и пятидесяти из упомянутых ста тысяч километров. И это только то, что может ухватить взгляд снаружи. А если копнуть глубже, где износ поршневых колец, направляющих втулок клапанов, маслосъемных колпачков приводит к попаданию масла в камеру сгорания и на рабочую часть свечи, тогда моторесурс пусть даже самой совершенной свечи будет измерен уже не десятками тысяч, а скорее лишь сотней — другой километров, к счастью, такую картину можно встретить не часто.

При эксплуатации исправного двигателя свечи все же лучше менять в пределах рекомендованного производителем пробега. Для того чтобы стимулировать в себе это желание, существуют по крайней мере три веских причины. Во-первых, новые свечи значительно снижают вероятность пропуска искры, что как нельзя лучше сказывается на мощности и экономичности двигателя, при этом риск попадания несгоревшего топлива в катализатор — минимальный. Во-вторых, новые свечи требуют меньшего напряжения для искрообразования, что облегчает запуск холодного двигателя. В-третьих, значительно сокращается выброс вредных веществ в атмосферу.

При выборе марки и типа свечи кроме собственных пристрастий и содержимого кошелька необходимо учитывать калильное число, длину присоединительной резьбы свечи, а также напряжение, вырабатываемое вашей системой зажигания; пока на сегодняшний день избежать этого никак нельзя. Перед каким выбором свечей зажигания мы столкнемся завтра, предположить непросто, только за последние пять лет Патентным бюро США выдано более семи тысяч свидетельств в области усовершенствования ее конструкции. Если предположить, что эволюция ДВС и его составляющих будет продолжаться еще десяток — другой лет с прежней динамикой, лучше сразу воздержаться от всяческих прогнозов. Поживем — увидим.

4. Преимущества свечи со скользящей искрой

Свежая новость от BOSCH — лидера в области новых технологий и интеллигентных конструкторских решении по автомобильному оборудованию. Новая свеча BOSCH-Super 4 — концепция будущего. BOSCH-Super 4 работает пo новейшему принципу скользящей по воздуху искры и впервые оснащена 4 тонкими электродами в сочетании с заостренным посеребренным центральным электродом. Эта комбинация уникальна в своем роде и имеет важные преимущества. В зависимости от нагрузки двигателя и степени износа искра сама находит наилучший путь для надежной работы. В отличие от других свечей зажигания, которые применяются на более старых автомобилях, BOSCH-Super 4 имеет восемь различных путей для искры. Другое преимущество заключается в возможности самоочистки. Особенно важно для автомобилей с большим пробегом.

Преимущества BOSCH Super 4 очевидны: увеличение мощности двигателя принцип скользящей по воздуху искры комбинация «4 тонких электрода + заостренный посеребренный центральный электрод» в зависимости от нагрузки двигателя и степени износа искра сама находит наилучший путь для надежной работы (8 путей для искры!) самоочистка.

Иттрий формирует липкий слой окиси, он делает свечу необычайно устойчивой к износу и высоким температурам. Используя этот принцип, Бош создает свечи для различных моделей автомобилей, отличающиеся только межэлектродными зазорами. Еще один «плюс» свечи BOSCH Super Plus — точечный заземляющий электрод — новое конструкторское решение в большинстве вариантов свечей Super plus. В результате эта свеча дает фантастическое увеличение надежности впрыска, а, следовательно оптимальное сжигание топливной смеси с помощью каталитического дожигателя выхлопных газов.

Быстрый пуск двигателя, фантастическое ускорение и заметная экономия бензина — это то, что дают свечи BOSCH серии Platinum: BOSCH Platinum, BOSCH Platinum2 и BOSCH Platinum+4.

Только платиновые свечи Бош обладают «чистым» платиновый центральным электродом, который плавно переходит в керамический изолятор. Оригинальная конструкция позволяет быстрее достичь температуры самоочистки свечи. Используя меньшее напряжение при зажигании, свечи BOSCH Platinum обеспечивают надежный пуск двигателя в жару и холод, обеспечивает более надежную искру при высоких оборотах.

Заключение

Эффективная мощность свечи со скользящей искрой существенно больше, чем у обычных свечей. Это гарантирует инновационная концепция для свечей зажигания. Эффективная мощность двигателя существенно оптимизируется благодаря увеличенной на 60% мощности свечи. И это при езде в любых условиях на протяжении всего срока службы. Для повседневных поездок это означает дополнительный комфорт благодаря ощутимо более плавному ходу и улучшенной приспособляемости двигателя. Увеличенная на 200% вероятность зажигания сокращает до минимума риск пропуска воспламенения рабочей смеси. Для водителей автомобилей с традиционными системами зажигания это означает и дополнительную безопасность за счет улучшенного ускорения. Точно установленный еще на конвейере зазор между электродами гарантирует надежность эксплуатации на протяжении всего срока службы.

Список используемой литературы

1. Журнал «За рулём»

2. Журнал «5 Колесо»

3. http://autodela.ru

4. http://auto.potrebitel.ru

Реферат: Свечи и автомобиль

Неисправная или неподходящая свеча может повлиять и на продолжительность жизни всего мотора…

В момент зажигания на свече возникает электрическая искра, воспламеняющая топливную смесь в цилиндре. Если на одной из свечей в результате дефекта искры нет или она слабая цилиндр халтурит и не работает. Результат очевиден: потеря мощности и динамики, повышенный расход топлива. Неработающая свеча может вывести из строя и другие элементы системы зажигания, а в определенных случаях и катализатор (несгоревшая в цилиндрах топливная смесь взорвется внутри катализатора, забьет его ячейки и сильно затруднит жизнь мотору).

Для любой свечи зажигания основными параметрами считаются калильное число, диаметр и длина резьбы. Информация об этих величинах всегда зашифрована в маркировке свечи. К сожалению, разные производители используют разные маркировки, и не будучи специалистом без каталогов не разобраться. Например, свеча с одинаковыми параметрами может иметь следующие обозначения: А17ДВ, BP6ES, N9YCC, W7DC.

Юбка изолятора нормально работающей свечи нагревается до 600–800 градусов. При этой температуре масло, попадающее на детали свечи, полностью сгорает, практически не оставляя нагара. Используемые в форсированных моторах свечи работают при более высоких температурах и должны иметь более высокое калильное число. Такие свечи называют «холодными», поскольку у них обеспечен интенсивный отвод тепла от центрального электрода. И наоборот, в менее форсированных двигателях применяются «горячие» свечи зажигания. Тепловой поток к деталям свечи в таких моторах относительно невелик, и калильное число должно быть небольшим. При установке «горячих» свечей на современный форсированный двигатель их температура может достигнуть 1000 и больше градусов. Последствия такого эксперимента могут оказаться весьма дорогими — детали свечей оплавятся, а в худшем случае (при сравнительно продолжительной работе двигателя в таких условиях) погибают клапана, кольца и поршни. Невеселая картина получится и при обратной установке — «холодные» свечи в малофорсированный двигатель. Температура деталей свечей не превысит 400 градусов, и масло, попадающее на них, не сможет выгорать полностью. В результате свечи просто выходят из строя.

При замене свечей каждый может провести блиц-анализ своего автомобиля. Дело в том, что по внешнему виду свечей можно сделать несколько выводов о работе системы зажигания и двигателя в целом. Светло-коричневый или светло-серый цвет изолятора свидетельствует о нормальной работе двигателя. Если на изоляторе и электродах появились разноцветные отложения — качество топлива неудовлетворительное и/или в топливе или моторном масле слишком много присадок. Бархатисто-черный сухой налет копоти — слишком богатая воздушно-топливная смесь, засорение воздушного фильтра. Черный маслянистый нагар — вероятность износа деталей двигателя (направляющих втулок клапанов, сальников клапанов, цилиндров, колец) или свеча слишком «холодная». Изолятор «снежно-белой» окраски — свеча работает в предельно допустимом тепловом режиме. Возможно, что свеча слишком «горячая» для вашего двигателя. Трещина на керамической юбке — детонация, неправильно установленное зажигание, топливо с низким октановым числом.

Последнее время кроме обычных свечей в продаже появились и более дорогие — платиновые и с несколькими электродами. В отличие от обычных, в платиновых свечах на электроды наносится специальная наплавка, содержащая этот драгоценный металл, либо центральный электрод выполнен из тонкой нити платинового сплава. Дело в том, что платина намного устойчивее к коррозии и электрохимическому разрушению, чем традиционные хромоникелевые сплавы. У таких свечей ниже порог калильного зажигания (неуправляемый процесс воспламенения рабочей смеси раскаленными элементами свечи), а срок службы в 2–3 раза больше.

Новый тип (долгоиграющих) свечей оснащается двумя, тремя или четырьмя боковыми электродами. Неверно полагать, что такие свечи в момент зажигания образуют нечто большее, чем обычную искру. Их плюс в другом — искра образуется между центральным и ближайшим боковым электродом. Его поверхность понемногу изнашивается, и эстафету подхватывает следующий — тот, расстояние до которого окажется кратчайшим. Работа по очереди нескольких боковых электродов существенно продлевает срок службы свечи. Однако нам радоваться по этому поводу не стоит. Что хорошо старушке-Европе — нам не подходит вовсе. Вполне возможно, что очень дорогие, вовсю рекламируемые свечи с несколькими электродами прослужат даже меньше обычных. Виной тому будут наш бензин, условия эксплуатации и климат.

Виды свечей:

Платиновая одноэлектродная свеча зажигания

Платиновая двухэлектродная свеча зажигания

Трехэлектродная свеча зажигания

Четырехэлектродная свеча зажигания

И еще о бензине. Последнее время недобросовестные производители добавляют в топливо красную гадость (антидетонационный химический состав на основе окислов железа). Экологи могут спать спокойно — состав не вредит окружающей среде. Он вреден для автомобилистов. Бензин с такой присадкой образует токопроводящую пленку на свечах зажигания, вызывая преждевременную смерть последних. Результат мгновенный — всего за несколько километров свечи могут полностью выйти из строя и заставить вас ломать голову над внезапно «уснувшим» мотором. Характерная примета — красный нагар на свечах.

Понятно, что свечи зажигания должны строго соответствовать предписаниям изготовителя вашего автомобиля, и перед заменой нелишне заглянуть в инструкцию. Ни в коем случае нельзя использовать одновременно свечи с разным калильным числом. Вообще, менять свечи рекомендуется только комплектом, сразу во всех цилиндрах. Рекомендуемый срок службы свечей зажигания обычно составляет 20–30 тысяч километров. Если производитель рекомендует свечи одной фирмы, а вы склонны доверять другой — подобрать любой комплект именно для вашего двигателя не составит труда. Продавцы в магазинах имеют каталоги с таблицами совместимости свечей разных марок.

На Мондео используется два типа свечей (Моторкрафт Платина): двойная платина и обычная платина. Те свечи, что двойная платина (по спецификации Форд AYRF22PP), должны работать на большем зазоре — 1,3 мм., а обычная платина (AYFS22PP1) работает на меньшем зазоре 1 мм. Зазор на свечах регулировать нельзя, так как может нарушиться платиновый элемент, родные (Моторкрафт) свечи идут с правильным установленым зазором 1 мм или 1,3 мм. Родные Моторкрафт двойная платина — крайне редкие и дорогие свечи, в России их практически нет.

Обозначение РР в маркировке свечи Motorcraft обозначает «двойную платину» (см http://www.motorcraft.com). Есть 3 вида — P, PP, E, EE, F. Р и Е — «одинарная платина», РР и ЕЕ — «двойная», F и FE — особая (отличная, или вообще просто класс — синонимов много)(finewire) — последний писк (читай, самый дорогой).

Свеча AYRF рекомендована для Зетеков, которые ставили на Мондео AYFS идет на новые Фокусы с тем же двиглом. Технологически, концы электродов на обоих одинаковы — из платины там две нашлепки, через которые искра и подается. Технологически обе взаимозаменяемы, поэтому первая встречается реже, по цене отличаться не должны, просто у нас если чего-то реже встречается — сразу цена скачет…

Есть мнение что Регулировать зазор на свечах МОЖНО, просто, как все изящные и дорогие изделия свеча с платиновой накладкой требует бережного и внимательного обращения — ее можно повредить и щеткой при чистке, например. При работе с контактом важно не допустить деформации площадки , на которую наварен платиновый пятак — иначе слетит из-за напряжений металла.

Список литературы

Свечи зажигания — это… Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания
1 — Контактный вывод
2 — рёбра изолятора
3 — изолятор
4 — металлическая оправа
5 — центральный электрод
6 — боковой электрод
7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор — минимальное расстояние между центральным и боковым электродом. Величина зазора — это компромисс между «мощностью» искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор — тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали — двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути — скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор — тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор — тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять — оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси. Чем она больше — тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации — в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих «самоочищению» их поверхности от продуктов сгорания топливной смеси — нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета «кофе с молоком».

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи — конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи — конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи — конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

Свечи зажигания | Журнал Популярная Механика

Технологию производства свечей зажигания мы изучали на единственном в России заводе данного профиля, ныне принадлежащем компании Robert Bosch и недавно переоборудованном на современный лад.

На левом берегу Волги прямо напротив Саратова стоит небольшой, но интересный промышленный город Энгельс. Здесь находится единственный в России аэродром, на котором базируются тяжелые бомбардировщики Ту-160. Троллейбусы, на которых каждый из нас ездил, тоже делаются здесь, на заводе «ТролЗа». Кроме них в Энгельсе делают железнодорожные вагоны, газовое оборудование, трубы, спецавтомобили и многое другое. Вот и «свечной заводик» Bosch прописался здесь, забор в забор с производителем троллейбусов.

Роберт Бош родился в 1861 году. Фирма, которую он основал (прародительница Bosch), называлась «Мастерская точной механики и электротехники» и располагалась в Штутгарте. В городе Бош был известен тем, что ездил к клиентам на велосипеде и приучал к тому же своих сотрудников.

На проходной на нас укоризненно глядит бюст старика с окладистой бородой. Он смахивает на Фридриха Энгельса, и кажется, что мы оказались в прошлом веке, когда это головное предприятие СССР по свечам зажигания называлось «Заводом автотракторных запальных свечей» (ЗАЗС). Но все оказывается с точностью до наоборот. В скульптуре увековечен не столп мирового коммунизма, а Роберт Бош, основатель компании, образцовый капиталист. Что касается завода, теперь он называется Bosch-Eng.

Критический взгляд легендарного немецкого инженера легко объясняется, достаточно прочитать его изречение рядом на стене: «Для меня невыносима мысль, что при проверке моей продукции будет доказано, что я произвел что-то с отклонением от стандарта. Поэтому я всегда старался производить только такие товары, которые выдержат любую проверку, то есть лучшее из лучшего». Роберт Бош был в первую очередь изобретателем и лишь затем менеджером, но качество он ставил во главу угла. В любой стране мира, в том числе и в России, этот принцип должен соблюдаться.

Керамическое производство Керамическое производство Этап 1. Огромная мельница превращает глинозем с присадками и воду в керамический порошок.

Выпечка по‑крупному

Технологический процесс изготовления свечей разбит на три блока: керамическое и металлическое производство плюс сборка. Необходимое условие — пространственное разделение участков металла и керамики. Если хотя бы малая толика металла попадет в компаунд, из которого делаются изоляторы, свечи не пройдут испытания на электрический пробой. Поэтому сборочный участок расположен в середине здания, а металлический и керамический — по разные стороны от него. Это позволяет сократить перемещения заготовок до минимума и обеспечить изоляцию металлического участка от керамического.

Фургон начинили мебелью из IKEA

Фургон начинили мебелью из IKEA 2. Высушенный порошок попадает в формы, где под давлением превращается в заготовки изоляторов. Заготовки укладываются в капсели.

Производство изолятора свечи начинается с огромных, во всю высоту цеха, мельниц. Здесь гранулы глинозема с присадками и водой перемалываются в тончайшую эмульсию с размером частиц 2,5−3 мкм. Процесс долгий, вместе с сушкой занимает более суток. Берегут этот порошок как зеницу ока: не дай бог в него попадут посторонние вещества, и уж тем паче частицы металла — тогда десятки тысяч изоляторов отправятся в отходы.

Фургон начинили мебелью из IKEA 3. Вагонетки с капселями поступают в печь, где проходят несколько стадий нагрева и плавного остывания.

На практике таких эксцессов на заводе не помнят, но считают, что предотвращать надо даже теоретические риски. Сейчас на Bosch-Eng вводят дополнительные меры предосторожности: переходят на хранение порошка в герметичных контейнерах. Это, кстати, местная инициатива, исходящая от русских сотрудников, обученных работать по немецкой системе. Высушенный порошок попадает в пресс с резиновой матрицей, где из него под давлением 400−500 бар формируется заготовка изолятора, держащая форму, но хрупкая, как мел. Твердой она станет после обжига в печи при температуре 1600 °C.

Сама печь — это длинный тоннель, разбитый на участки с разной температурой. По тоннелю движется поезд из вагонеток, загруженных керамическими контейнерами (капселями). В них уложены хрупкие заготовки, по 10 000 в каждой вагонетке. В печи они проведут около 30 часов, пройдя несколько ступеней нагрева и затем плавного остывания. Вагонетки идут непрерывным потоком: с одного конца въезжают, с другого выезжают. За год обжиг проходят около 50 млн изоляторов.

Фургон начинили мебелью из IKEA Металлическое производство. Этап 1. Проволока толщиной в мизинец будет распилена на цилиндры, из которых пресс сформирует корпуса свечей.

Под пресс!

Самые важные металлические детали свечи — это стальные корпус и контактный стержень, медные центральный и боковой электроды. Все они изготавливаются из проволоки, и на металлическом участке можно увидеть, сколь разнообразны ее профили и размеры (завод производит несколько типов свечей зажигания, отличающихся формой и материалом электродов).

Фургон начинили мебелью из IKEA 2. Каждую секунду пресс выдает два корпуса для свечей.

Мастер многозначительно кивает на рулоны стальной проволоки толщиной в мизинец взрослого человека. Ее режут на короткие цилиндры, а затем робот-пресс за шесть ударов превращает их в корпуса свечей. Сила ударов достигает 250 тс, и под таким воздействием металл становится текучим, как пластилин. За минуту робот-пресс делает 120 деталей. Энергия и частота ударов таковы, что сравнить их можно с быстрым движением поезда, вагоны которого нагружены в пять-десять раз больше обычного. Но вибрация и шум в цехе невелики, поскольку станок хорошо сбалансирован.

Фургон начинили мебелью из IKEA 3. Станки с ЧПУ обрабатывают поверхность корпусов, нарезают резьбу, приваривают боковой электрод и ставят клеймо.

Этот участок производства самый грязный: под ногами солидный слой машинного масла, смешанного с грязью. Температура в момент удара очень высокая, объясняет мастер, поэтому без масла не обойтись, и технологи пока не знают, как предотвратить его потери. Периодически масляно-грязевую массу собирают с пола и утилизируют, превращая в топливо.

Фургон начинили мебелью из IKEA 4. Готовые корпуса покрывают никелем.

После пресса корпус свечи требует небольшой доработки на автоматизированном токарном станке с ЧПУ. Затем, опять же на роботизированных станках, к нему за доли секунды приваривается боковой электрод, наносится клеймо и накатывается резьба. В заключение он покрывается никелем. Примерно так же, с помощью нескольких штамповочных, сварочных и гальванических операций, изготавливаются контактный стержень и центральный электрод.

Фургон начинили мебелью из IKEA

Место встречи

Сборочные операции разбиты на два этапа: сборка сердечника и окончательная сборка. Здесь тоже трудятся станки-автоматы весьма причудливого вида. Первый станок совершает сразу несколько операций: наносит на изолятор надписи и герметик, окунает в глазурь, вставляет контактный стержень и центральный электрод, а в конце вторично обжигает, чтобы глазурь затвердела. Получившаяся деталь называется сердечником свечи.

Сборочное производство Сборочное производство 1. На начальном этапе сборки изоляторы покрывают розовой глазурью. После обжига она станет прозрачной.

На линии окончательной сборки такое же чудо инженерной мысли собирает корпус и сердечник с уплотнительными кольцами и контактной гайкой, обрезает и загибает боковой электрод, регулирует зазор между центральным и боковым электродами. Вуаля! Свеча готова и поступает на линию упаковки.

Сборочное производство 2. В изоляторы вставляются контактные стержни и электроды.

На заводе Bosch-Eng изготавливается несколько десятков типов свечей, сильно варьирующихся по характеристикам электрической прочности и долговечности. Резонно возникает вопрос: чем на уровне технологии отличаются свечи разных моделей? Оказывается, что только материалами: технологический процесс одинаков для всех.

Вкалывают роботы… и человек

Справочник Б. Басса «Свечи зажигания» сообщает, что в СССР было четыре завода, выпускавших свечи зажигания, хотя только ЗАЗС был узкоспециализированным, производившим до 40% готовых изделий. Уже тогда он занимал исключительное положение: тут свечи разрабатывались и впервые внедрялись в производство. Здесь же монопольно изготавливались изоляторы для всех заводов Союза. В музее Bosch-Eng можно увидеть первые свечи для ВАЗ, ЗиЛ и УАЗ, свечи для уникальных вазовских роторных движков.

Сборочное производство 3. На завершающем этапе сборки стыкуются сердечник и корпус.

Сейчас Bosch-Eng остался один на все страны бывшего постсоветского пространства. Две из трех свечей, сделанных в Энгельсе, уходят на экспорт — примерно 35 млн штук в год. Внешне завод практически не изменился со времен СССР: немцы говорят, что здания построены хорошо и перестраивать ничего не нужно. Внутри же его не узнать. Производство свечей стало гораздо компактнее: изначально оно занимало три корпуса, но инженеры Bosch заново спроектировали линию, уместив ее в один цех; освободившуюся площадь использовали под производство других деталей, например электронной педали газа для Lada Granta и топливной рампы.

Сборочное производство 4. Готовые свечи поступают на автоматическую упаковочную линию.

Технология также изменилась кардинально. Революция на участке металлообработки связана в первую очередь с масштабной заменой токарной обработки на штамповку — отходы металла, расход энергии и времени сократились на порядок. Кругом роботы, роботы… это вторая часть технологического переворота. Без роботов был бы невозможен значительный рост качества и производительности. Примечательно, что это не привело к сокращению численности персонала: сейчас на заводе в Энгельсе даже немного больше работников, чем было до модернизации. Просто на той же территории изготавливается в разы больше продукции.

Сборочное производство

«Когда мы сможем отказаться от свечей, перейдя, например, на лазерное зажигание?» — задал я вопрос перед отъездом с завода. Руководитель керамического производства Bosch-Eng Антон Носов ответил, что работа над лазерным зажиганием интенсивно ведется, но эта технология пока далека от практики и никто в компании не осмеливается назвать сроки начала производства. Известно лишь, что завод еще как минимум десять лет сохранит свою историческую специализацию.

У свечей зажигания впереди долгие годы службы. А раз так, то и работа по улучшению технологии их производства не закончена.

Статья «Пока искрит свеча» опубликована в журнале «Популярная механика» (№3, Март 2015).

Свечи зажигания — это… Что такое Свечи зажигания?

Свечи зажигания

Свеча зажигания — устройство для поджига топливо-воздушной смеси в самых разнообразных тепловых двигателях. Бывают искровые, дуговые, калильные, каталитические.

В бензиновых двигателях внутреннего сгорания используются искровые свечи. Поджиг горючей смеси производится электрическим разрядом напряжением в несколько тысяч или десятков тысяч вольт, возникающим между электродами свечи. Свеча срабатывает на каждом такте, в определённый момент работы двигателя.

В ракетных двигателях свеча зажигает топливную смесь электрическим разрядом только в момент запуска. Чаще всего, в процессе работы свеча разрушается и к повторному использованию непригодна.

В турбореактивных двигателях свеча воспламеняет смесь в момент запуска мощным дуговым разрядом. После этого горение факела поддерживается самостоятельно.

Калильные и одновременно каталитические свечи используются в модельных двигателях внутреннего сгорания. Топливная смесь двигателей специально содержит компоненты, которые легко воспламеняются в начале работы от раскалённой проволочки свечи. В дальнейшем накал нити поддерживается каталитическим окислением паров спирта, входящего в смесь.

Устройство свечей зажигания

Устройство свечи зажигания
1 — Контактный вывод
2 — рёбра изолятора
3 — изолятор
4 — металлическая оправа
5 — центральный электрод
6 — боковой электрод
7 — уплотнитель

Свеча зажигания состоит из металлической оправы, изолятора и центрального проводника.

Детали свечи зажигания

Контактный вывод

Контактный вывод расположенный в верхней части свечи предназначен для подключения свечи к высоковольтным проводам системы зажигания. Могут встречаться несколько слегка различных вариантов конструкции. Наиболее часто провод к свече зажигания имеет защёлкивающийся контакт, который надевается на вывод свечи. В других типах конструкции провод может крепиться к свече гайкой. Часто вывод свечи делают универсальным: в виде оси с резьбой и навинчивающегося защёлкивающегося контакта.

Рёбра изолятора

Рёбра изолятора предотвращают электрический пробой по его поверхности.

Изолятор

Изолятор, как правило, делается из алюминиево-оксидной керамики, которая должна выдерживать температуры от 450 до 1000°C и напряжение до 60 000 В. Точный состав изолятора и его длина частично определяют тепловую маркировку свечи.

Часть изолятора, непосредственно прилегающая к центральному электроду, наиболее сильно влияет на качество работы свечи зажигания. Применение керамического изолятора в свече предложено Г. Хонольдом вследствие перехода к высоковольтному зажиганию.

Уплотнители

Служат для предотвращения проникновения горячих газов из камеры сгорания.

Металлическая оправа (корпус)

Служит для завинчивания свечи и удержания её в резьбе головки блока цилиндров, для отвода тепла от изолятора и электродов, а также служит проводником электричества от «массы» автомобиля к боковому электроду.

Боковой электрод

Как правило, изготавливается из легированой никелем и марганцем стали. Приваривается контактной сваркой к корпусу. Боковой электрод, зачастую, очень сильно нагревается во время работы, что может привести к калильному зажиганию. Некоторые конструкции свечей используют несколько боковых электродов. Для увеличения долговечности электроды дорогих свечей снабжают напайками из платины и других благородных металлов. С 1999 года на рынке появились свечи нового поколения — так называемые плазменно-форкамерные свечи, где роль бокового электрода играет сам корпус свечи. При этом образуется кольцевой (коаксиальный) искровой зазор, где искровой заряд перемещается по кругу. Такая конструкция обеспечивает большой ресурс и самоочистку электродов. Форма бокового электрода в зоне пробоя напоминает сопло Лаваля, за счёт чего создаётся поток раскалённых газов истекающих из внутренней полости свечи. Этот поток эффективно поджигает рабочую смесь в КС (камера сгорания), полнота сгорания и мощность увеличивается, токсичность ДВС уменьшается.

Центральный электрод

Центральный электрод как правило соединяется с контактным выводом свечи через керамический резистор, это позволяет уменьшить радиопомехи от системы зажигания. Наконечник центрального электрода изготавливают из железо-никелевых сплавов с добавлением меди, хрома и благородных и редкоземельных металлов. Обычно центральный электрод — наиболее горячая деталь свечи. Кроме того, центральный электрод должен обладать хорошей способностью к эмиссии электронов, для облегчения искрообразования (предполагается, что искра проскакивает в той фазе импульса напряжения, когда центральный электрод служит катодом). Поскольку напряжённость электрического поля максимальна вблизи краёв электрода, искра проскакивает между острым краем центрального электрода и краем бокового электрода. В результате этого края электродов подвергаются наибольшей электрической эрозии. Раньше свечи периодически вынимали и удаляли следы эрозии наждаком. Сейчас, благодаря применению сплавов с редкоземельными и благородными металлами (иттрий, иридий, платина, вольфрам, палладий), нужда в зачистке электродов практически отпала. Срок службы при этом существенно вырос.

Зазор

Зазор — минимальное расстояние между центральным и боковым электродом. Величина зазора — это компромисс между «мощностью» искры, т.е. размерами плазмы, возникающей при пробое воздушного зазора и между возможностью пробить этот зазор в условиях сжатой воздушно-бензиновой смеси.

Факторы, определяющие зазор:

1) Чем больше зазор — тем больше размеры искры, => больше вероятность воспламенения смеси и больше зона воспламенения. Всё это положительно влияет на потребление топлива, равномерность работы, понижает требования к качеству топлива, повышает мощность. Кстати, такие эксперименты уже делали — двигатель работал чуть ли не на парах и разлагающихся при этом молекулах воды.

Внимание! Слишком увеличивать зазор тоже нельзя, иначе высокое наряжение будет искать более лёгкие пути — скажем пробивать высоковольтные провода на корпус, пробивать изолятор свечи и т.д.

2) Чем больше зазор — тем сложнее пробить его искрой. Т.к.

Пробоем изоляции называют потерю изоляцией изоляционных свойств при превышении напряжением некоторого критического значения, называемого пробивным напряжением Uпр. Соответствующая напряженность электрического поля Eпр = U пр/h, где h – расстояние между электродами, называется электрической прочностью промежутка.

Т.е. чем больше зазор — тем бОльшее напряжение пробоя U пр необходимо. Там есть ещё зависимость от ионизации молекул, равномерности структуры вещества, полярности искры, скорости нарастания импульса .. но это не важно в данном случае. Понятное дело, что высокое напряжение U пр мы не можем поменять — оно определяется катушкой зажигания. А вот зазор h мы поменять можем.

3) Напряжённость поля в зазоре определяется формой электродов. Чем они острее — тем больше напряжённость поля в зазоре и легче пробой (как у иридиевых, платиновых свечей).

4) Пробиваемость зазора зависит от плотности газа в зазоре. В нашем случае — от плотности воздушно-бензиновой смеси. Чем она больше — тем сложнее пробить.

Пробивное напряжение газового промежутка с однородным (ОП) и слабо неоднородным (СНП) электрическим полем зависит как от расстояния между электродами, так и от давления и температуры газа. Эта зависимость определяется законом Пашена, согласно которому пробивное напряжение газового промежутка с ОП и СНП определяется произведением относительной плотности газа δ на расстояние между электродами S,U прf(δS). Относительной плотностью газа называют отношение плотности газа в данных условиях к плотности газа при нормальных условиях (20о С, 760 мм рт. ст.).

Зазор свечей не является константой один раз заданной. Он может и должен подстраиваться под конкретную ситуацию эксплуатации двигателя.

Режимы работы свечей

Искровые свечи бензиновых двигателей по режиму работы условно подразделяют на горячие, холодные, оптимальные. Суть данной классификации — в степени нагрева изолятора и электродов. При работе изолятор и электроды любой свечи должны нагреваться до температур, способствующих «самоочищению» их поверхности от продуктов сгорания топливной смеси — нагара, сажи и т.п. Поэтому изоляторы свечей, работающих в оптимальном режиме всегда цвета «кофе с молоком».

Очистка поверхности изоляторов необходима для предотвращения поверхностных утечек высокого напряжения через слой нагара, что уменьшает мощность искрового пробоя зазора. Однако, если элементы свечи нагреваются слишком сильно, то может возникать неконтролируемое калильное зажигание. Процесс часто проявляется только на больших оборотах. Это может приводить к детонации и разрушению элементов двигателя.

Степень нагрева элементов свечей зависит от следующих основных факторов:

Внутренние: -конструкция электродов и изолятора (длинный электрод нагревается быстрее) -материал электродов и изолятора -толщина материалов -степень теплового контакта элементов свечи с корпусом

Внешние: -степень сжатия и компрессии -тип топлива (более высокооктановое обладает бОльшей температурой сгорания) -стиль езды (на больших оборотах двигателя нагрев свечей больше)

Горячие свечи — конструкция свечей специально разработана таким образом, что снижается теплопередача от центрального электрода и изолятора. Применяются в двигателях с низкой степенью сжатия и при использовании низкооктанового топлива. Т.к. в этих случаях меньше температура в камере сгорания.

Холодные свечи — конструкция свечей специально разработана таким образом, что максимально повышается теплопередача от центрального электрода и изолятора. Применяются в двигателях с высокой степенью сжатия, с высокой компрессией и при использовании высокооктанового топлива. Т.к. в этих случаях больше температура в камере сгорания.

Оптимальные свечи — конструкция свечей разработана таким образом, что теплопередача от центрального электрода и изолятора оптимальна для данного конкретного двигателя. Свечи нормально самоочищаются во всех режимах работы двигателя и в то же время не приводят к калильному зажиганию.

Типовые размеры свечей зажигания

Размеры свечей зажигания классифицируются по типу резьбы на них. Наиболее распространены следующие типы свечей: M10x1 M12x1,25 (мотоциклы) M14x1,25 (автомобили) M18x1,5 (некоторые старые двухтактные двигатели).

Ссылки

Wikimedia Foundation. 2010.

Отправить ответ

avatar
  Подписаться  
Уведомление о