Ротор генератор – Роторы генератора в Казахстане. Сравнить цены, купить потребительские товары на маркетплейсе Satu.kz

Ротор и статор электродвигателя: определение, виды, назначение

Рано или поздно человек, интересующийся электротехникой, слышит упоминания о роторе и статоре, и задается вопросом: «Что это такое, и в чем отличие этих устройств?» Простыми словами, ротор и статор – это две основные части, расположенные в электродвигателе (устройстве по преобразованию электрической энергии в механическую). Без них существование современных двигателей, а значит и большинства электрических приборов на их основе, было бы невозможным. Статор является неподвижной частью устройства, а ротор – подвижной, они вращаются в разные стороны относительно друг друга. В этой статье мы подробно разберем конструкцию этих деталей и их принцип действия, чтобы после прочтения статьи у читателей сайта Сам Электрик больше не осталось вопросов по данному поводу.

Что такое ротор

Ротор, еще его иногда называют якорь, это подвижная, то есть вращающаяся часть в генераторе или электродвигателях, которые повсеместно применяются в бытовой и промышленной технике.

Внешний вид ротора коллекторного двигателя

Если рассматривать ротор двигателя постоянного тока или универсального коллекторного двигателя, то он состоит из нескольких основных узлов, а именно:

  1. Сердечник. Он выполнен из множества штампованных тонких металлических пластин, изолированных друг от друга специальным диэлектриком или же просто оксидной пленкой, которая проводит ток гораздо хуже, чем чистый металл. Сердечник набирается из них и представляет собой «слоеный пирог». В результате электроны не успевают разогнаться из-за маленькой толщины металла, и нагрев ротора гораздо меньше, а эффективность всего устройства выше за счет уменьшения потерь. Данное конструктивное решение принято для уменьшения вихревых токов Фуко, которые неизбежно возникают при работе двигателя из-за перемагничивания сердечника. Этот же метод борьбы с ними используется и в трансформаторах переменного тока.
  2. Обмотки. Вокруг сердечника особым образом намотана медная проволока, покрытая лаковой изоляцией для предотвращения появления короткозамкнутых витков, которые недопустимы. Вся обмотка дополнительно пропитана эпоксидной смолой или лаком для фиксации обмоток, чтобы они не повреждались при вибрациях от вращения.
  3. Обмотки ротора могут подключаться к коллектору – специальному блоку с контактами, надежно закрепленному на валу. Эти контакты называются ламелями, они выполнены из меди или ее сплава для лучшей передачи электрического тока. По нему скользят щетки, обычно выполненные из графита, и в нужный момент на обмотки подается электрический ток. Это называется скользящий контакт.
  4. Сам вал является металлическим стержнем, на его концах расположены посадочные места под подшипники качения, он может иметь резьбу или выемки, пазы под шпонку для крепления шестерен, шкивов или других деталей, приводимых в движение электродвигателем.
  5. На валу также размещается крыльчатка вентилятора, чтобы двигатель охлаждал сам себя и не приходилось бы устанавливать дополнительное устройство для отвода тепла.

Стоит отметить, что не у всякого ротора есть обмотки, которые, в сущности, представляют собой электромагнит. Вместо них могут применяться постоянные магниты, как в бесщеточных двигателях постоянного тока. А у асинхронного двигателя с короткозамкнутым ротором обмоток в привычном виде вовсе нет, вместо них используются короткозамкнутые металлические стержни, но об этом ниже.

Что такое статор

Статор – это неподвижная часть в электродвигателе. Обычно он совмещен с корпусом устройства и представляет собой цилиндрическую деталь. Он так же состоит из множества пластин для уменьшения нагрева из-за токов Фуко, в обязательном порядке покрытых лаком. На торцах располагаются посадочные места под подшипники скольжения или качения.

Внешний вид статора

Конструкция называется пакет статора, она впрессовывается в чугунный корпус устройства. Внутри этого цилиндра вытачиваются пазы под обмотки, которые, так же как и для ротора, пропитываются специальными составами, чтобы тепло равномернее распределялось по устройству, и обмотки не терлись друг об друга от вибрации.

Обмотки статора могут подключаться разными способами в зависимости от назначения и типа электрической машины. Для трехфазных электродвигателей применимы типы подключения звезда и треугольник. Они представлены на схеме:

Схемы подключения звездой и треугольником

Для выполнения подключений на корпусе устройства предусмотрена специальная распределительная коробка («борно»). В эту коробку выведены начала и концы трех обмоток и предусмотрены специальные клеммники различных конструкций, в зависимости от мощности и назначения машины.

Существуют серьезные отличия в работе двигателей при разном соединении обмоток. Например, при подключении звездой двигатель будет стартовать плавнее, однако нельзя будет развить максимальную мощность. При присоединении треугольником, электродвигатель будет выдавать весь крутящий момент, заявленный производителем, но пусковые токи в таком случае достигают высоких значений. Электросеть может быть просто не рассчитана на такие нагрузки. Использование устройства в этом режиме чревато нагревом проводов, и в слабом месте (это места соединения и разъемы) провод может отгореть и привести к пожару. Главным преимуществом асинхронных двигателей является удобство в смене направления их вращения, нужно просто поменять местами подключения двух любых обмоток.

Статор и ротор в асинхронных двигателях

Трехфазные асинхронные двигатели имеют свои особенности, ротор и статор в них отличаются от использованных в других типах электродвигателей. Например, ротор может иметь две конструкции: короткозамкнутый и фазный. Рассмотрим особенности строения каждого из них по подробнее. Однако для начала давайте вкратце разберемся, как работает асинхронный двигатель.

В статоре создается вращающееся магнитное поле. Оно наводит на роторе индуцируемый ток и тем самым приводит его в движение. Таким образом ротор всегда пытается «догнать» вращающееся магнитное поле.

Необходимо также упомянуть о такой важной особенности асинхронного двигателя, как скольжение ротора. Это явление заключается в разности частот вращения ротора и магнитного поля, создаваемого статором. Объясняется это как раз тем, что ток индуцируется в роторе только при его движении относительно магнитного поля. И если бы частоты вращения были одинаковы, то этого движения бы просто не происходило. В результате ротор пытается «догнать» по оборотам магнитное поле, и если это происходит, то ток в обмотках перестает индуцироваться и ротор замедляется. В этот момент сила, действующая на него, растет, он начинает опять ускоряться. Так и получается эффект стабилизации частоты вращения, за что эти электродвигатели и пользуются большой востребованностью.

Схематическое изображения статора и ротора

Короткозамкнутый ротор

Он также представляет собой конструкцию, состоящую из металлических пластин, выполняющих функцию сердечника. Однако вместо медной обмотки там установлены стержни или пруты, не касающиеся друг друга и накоротко замкнутые между собой металлическими пластинами на торцах. При этом стержни не перпендикулярны пластинам, а направлены под углом. Это делается для уменьшения пульсаций магнитного поля и момента. Таким образом получаются витки, замкнутые накоротко, от сюда и название.

 

Коротко замкнутый ротор и статор асинхронного двигателя

Фазный ротор

Главное отличие фазного ротора от короткозамкнутого заключается в наличии трехфазной обмотки, уложенной в проточки сердечника и соединяющейся в особом коллекторе с тремя кольцами вместо ламелей. Эти обмотки обычно соединяются «звездой». Такие электродвигатели более трудоемки в производстве за счет усложнения конструкции, однако их пусковые токи ниже, чем у двигателей с короткозамкнутым ротором, а также они лучше поддаются регулировке.

Фазный ротор

Надеемся, что после прочтения данной статьи у вас больше не осталось вопросов о том, что такое ротор и статор электродвигателя и какой у них принцип работы. Напоследок рекомендуем просмотреть видео, в котором наглядно рассмотрен данный вопрос:

Материалы по теме:

Ротор — Википедия

Материал из Википедии — свободной энциклопедии

Роторный экскаватор как экспонат в бывшем угольном карьере — «стальном городе» Феррополис (Германия), превращенном в музей под открытым небом

Ро́тор (от лат. roto «вращаться») может означать:

в математике
  • Ротор — то же, что вихрь векторного поля, то есть вектор, характеризующий вращательное движение в данной точке векторного поля.
  • Ротор многогранника — выпуклое тело способное свободно вращаться в многограннике постоянно касаясь всех его граней; см. тело постоянной ширины и фигура постоянной ширины.
в медицине
в технике
  • Ротор — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела (например, ротор двигателя Ванкеля) или отдающие её рабочему телу (например, ротор роторного насоса). Ротор двигателей связан с ведущим валом, ротор рабочих машин — с приводным валом. Ротор выполняется в виде барабанов, дисков, колёс.
  • Ротор — вращающаяся часть паровой турбины, компрессора, гидронасоса, гидромотора и т. д.
  • Буровой ротор — механизм, являющийся многофункциональным оборудованием буровой установки, который предназначен для вращения бурильных труб и поддержания колонны бурильных или обсадных труб при свинчивании и развинчивании в процессе спуско-подъемных операций, при поисковом бурении и капитальном ремонте скважин. Привод — цепной или карданный. Роторное бурение.
  • Ротор — устройство управления поворотом антенны в направлении приёма или передачи сигнала.
  • Ротор — любое вращающееся тело в теории балансировки.
  • Ротор — система вентилятора.
Ротор (слева) и статор (справа) электродвигателя в разборе
в электротехнике
  • Ротор — вращающаяся часть электрической машины (генератора или двигателя переменного тока внутри неподвижной части — статора). Ротор асинхронной электромашины обычно представляет собой собранное из листовой электротехнической стали цилиндрическое тело с пазами для размещения обмотки. Ротор в электромашинах постоянного тока называется якорем.
  • Ротор — автоматически управляемая машина (транспортное устройство, прибор), в которой заготовки двигаются вместе с обрабатывающими их орудиями по дугам окружности. Роторная печь. Роторный экскаватор. Роторная линия (комплекс роторов).
в авиации
в ветроэнергетике
  • Ротор Дарье — составная часть вертикально-осевого ветрогенератора, крыльчатка которого представляет собой двояковыпуклые лопасти, закреплённые при помощи штанг на вертикально вращающейся оси.
  • Ротор Савониуса — составная часть вертикально-осевого ветрогенератора в виде двух смещенных относительно друг друга полуцилиндрических лопастей и небольшого (10—15 % от диаметра лопасти) перекрытия, которые образуют параллельно оси вращения ротора.
в судостроении
  • Ротор Флеттнера — «парусная мачта» или заменяющий паруса ротор (на судне их устанавливается несколько), с помощью которого судно приводится в движение посредством ветра, благодаря эффекту Магнуса. Роторное судно Флеттнера.
собственные имена
  • Ротор, Артуро (1907—1988) — филиппинский врач, государственный служащий, музыкант и писатель.
  • РОТОР — Сетевой конкурс «Российский Онлайн ТОР».
  • НПО «Ротор» — предприятие — разработчик и производитель гироскопических приборов для ракетно-космической техники (СССР, Россия).
  • «Ротор» — промышленное предприятие в Барнауле.
  • «Ротор» — футбольный клуб из Волгограда (в 2015—2018 годах «Ротор-Волгоград»).
  • «Ротор»[en] — киргизский футбольный клуб из Бишкека.

Ротор (техника) — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 декабря 2018; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 16 декабря 2018; проверки требует 1 правка. У этого термина существуют и другие значения, см. Ротор. Межопорный ротор Ротор электромотора (такие чаще всего применяются в электроинструментах)

Ро́тор (англ. rotor; от лат. rota «колесо», roto «вращаюсь») — вращающаяся часть двигателей и рабочих машин, на которой расположены органы, получающие энергию от рабочего тела (например, ротор двигателя Ванкеля) или отдающие её рабочему телу (например, ротор роторного насоса). Ротор двигателей связан с ведущим валом, ротор рабочих машин — с приводным валом. Ротор выполняется в виде барабанов, дисков, колёс. Ротор тесно связан с понятием статора.

В электротехнике часто ошибочно считают слова «ротор» и «якорь» синонимами. Это неверно, так как ротор не всегда является якорем электрической машины.

Турбогенератор — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 ноября 2016; проверки требуют 18 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 ноября 2016; проверки требуют 18 правок. Снятый наружный щит и опорный подшипник генератора турбоагрегата Балаковской АЭС

Турбогенератор — устройство, состоящее из синхронного генератора и паровой или газовой турбины, выполняющей роль привода. Термин «турбогенератор» намеренно включён в название ГОСТ 533, чтобы отличать данные типы генераторов от генераторов вертикального исполнения, используемых в паре с гидротурбинами ГОСТ 5616 (использование терминов «турбогенератор» и «гидрогенератор» для описания отдельно взятых электрических генераторов является неправильным). В случае электростанций применяется термин турбоагрегат.

Основная функция в преобразовании внутренней энергии рабочего тела в электрическую, посредством вращения паровой или газовой турбины. Скорость вращения ротора определяется по параметрам используемого генератора, от десятков тысяч оборотов в минуту (для синхронных генераторов с возбуждением от постоянных магнитов «НПК «Энергодвижение») до 3000, 1500 об/мин (у синхронных генераторов с возбуждением обмоток ротора). Механическая энергия от турбины преобразуется в электрическую посредством вращающегося магнитного поля ротора в статоре. Поле ротора, которое создается либо установленными на ротор постоянными магнитами, либо током постоянного напряжения, протекающего в медной обмотке ротора, приводит к возникновению трёхфазного переменного напряжения и тока в обмотках статора. Напряжение и ток на статоре тем больше, чем сильнее поле ротора, т.е. больше ток протекающий в обмотках ротора. У синхронных генераторов с внешним возбуждением напряжение и ток в обмотках ротора создает тиристорная система возбуждения или возбудитель — небольшой генератор на валу основного генератора. В составе турбогенераторов применяются генераторы, имеющие цилиндрический ротор, установленный на двух подшипниках скольжения, в упрощенном виде напоминает увеличенный генератор легкового автомобиля. Выпускаются 2-х полюсные (3000 об/мин), 4-х полюсные (1500 об/мин как на Балаковской АЭС), и многополюсные машины, в зависимости от мест эксплуатации и технологических требований. Для охлаждения таких генераторов используются следующие способы охлаждения обмоток: жидкостное — через рубашку статора; жидкостное — с непосредственным охлаждением обмоток; воздушное; водородное (чаще применяются на АЭС).

Один из основателей компании «ABB» Чарльз Браун построил первый турбогенератор в 1901 году[1]. Это был 6-ти полюсный генератор мощностью 100 кВА[2].

Появление во второй половине XIX века мощных паровых турбин привело к тому, что потребовались высокоскоростные турбогенераторы. Первое поколение этих машин имело стационарную магнитную систему и вращающуюся обмотку. Но данная конструкция имеет целый ряд ограничений, одно из них — небольшая мощность. Кроме этого, ротор явнополюсного генератора не способен выдерживать большие центробежные усилия.

Основным вкладом Чарльза Брауна в создание турбогенератора было изобретение ротора, в котором его обмотка (обмотка возбуждения) укладывается в пазы, которые получаются в результате механической обработки поковки. Вторым вкладом Чарльза Брауна в создание турбогенератора была разработка в 1898 году ламинированного цилиндрического ротора. И, в конечном итоге, в 1901 году он построил первый турбогенератор. Данная конструкция используется в производстве турбогенераторов по сей день.

В зависимости от системы охлаждения турбогенераторы подразделяются на несколько типов: с воздушным, масляным, водородным и водяным охлаждением. Также существуют комбинированные типы, например, генераторы с водородно-водяным охлаждением.

Также существуют специальные турбогенераторы, к примеру, локомотивные, служащие для питания цепей освещения и радиостанции паровоза. В авиации турбогенераторы служат дополнительными бортовыми источниками электроэнергии. Например, турбогенератор ТГ-60 работает на отбираемом от компрессора авиадвигателя сжатого воздуха, обеспечивая привод генератора трёхфазного переменного тока 208 вольт, 400 герц, номинальной мощностью 60 кВ*А.

Также были разработаны сверхмощные турбогенераторы КГТ-20 и КГТ-1000 на основе сверхпроводимости [3].

Генератор состоит из двух ключевых компонентов — статора и ротора. Но каждый из них содержит большое число систем и элементов. Ротор — вращающийся компонент генератора и на него воздействуют динамические механические нагрузки, а также электромагнитные и термические. Статор — стационарный компонент турбогенератора, но он также подвержен воздействию существенных динамических нагрузок — вибрационных и крутящих, а также электромагнитных, термических и высоковольтных.

Первоначальный (возбуждающий) постоянный ток ротора генератора подается на него с возбудителя генератора. Обычно возбудитель соосно соединён упругой муфтой с валом генератора и является продолжением системы турбина-генератор-возбудитель. Хотя на крупных электрических станциях предусмотрено и резервное возбуждение ротора генератора. Такое возбуждение происходит от отдельно стоящего возбудителя. Такие возбудители постоянного тока приводятся в действие своим электродвигателем переменного трехфазного тока и включены как резерв в схему сразу нескольких турбоустановок. С возбудителя постоянный ток подается в ротор генератора посредством скользящего контакта через щётки и контактные кольца. Современные турбогенераторы используют тиристорные системы самовозбуждения.

  • Вольдек А. И. Электрические машины. Энергия. Л. 1978
  • Operation and Maintenance of Large Turbo Generators, by Geoff Klempner and Isidor Kerszenbaum, ISBN 0-471-61447-5, 2004
  • Толковый словарь русского языка / Под ред. Д.Н. Ушакова. — М.: Гос. ин-т «Сов. энцикл.»; ОГИЗ; Гос. изд-во иностр. и нац. слов., 1935-1940. (4 т.)
  • Трухний А.Д. Стационарные паровые турбины — 2-е изд., перераб. и доп. — М. Энергоатомиздат, ISBN 5-283-00069-9, 1990
  • Глебов И. А. Турбогенераторы с использованием сверхпроводимости. — Л.: Наука : Ленингр. отд-ние, 1981. — 231 с.
  1. ↑ The Growth of Turbogenerators, by K. Abegg, 1973, The Royal Society.
  2. ↑ The Evolution of the Synchronous Machine, by Proffesor Gerhard Neidhofer, Engineering Science and Education Journal, October 1992.
  3. ↑ Глебов, 1981.

Отправить ответ

avatar
  Подписаться  
Уведомление о