Сателлиты это в машине – Что такое сателлиты в автомобиле. Что такое дифференциал машины? Нажмите на кнопку «Поворачиваем», чтобы увидеть, как работает дифференциал во время поворота, и «Едем прямо», чтобы посмотреть, как движутся его компоненты во время прямолинейного движения

Содержание

Планетарная передача — Википедия

Планетарная передача с остановленным водилом по сути является двухступенчатой зубчатой передачей с неподвижными осями колес. Планетарная передача (солнечная шестерня остановлена) Планетарная передача (коронная шестерня остановлена) Схема эпициклически движущейся планеты

Планетарная передача (далее — ПП) — механическая передача вращательного движения, за счёт своей конструкции способная в пределах одной геометрической оси вращения изменять, складывать и раскладывать подводимые угловые скорости и/или крутящий момент. Обычно является элементом трансмиссии различных технологических и транспортных машин.

Конструктивно ПП всегда представляет собой набор взаимозацепленных зубчатых колёс (не менее 4), часть из которых (не менее 2) имеет общую геометрическую неподвижную ось вращения, а другая часть (также, не менее 2) имеет подвижные оси вращения, концентрически вращающиеся на так называемом «водиле» вокруг неподвижной. Зубчатые колёса на неподвижной оси всегда связаны друг с другом не напрямую, а через зубчатые колёса на подвижных осях, а ввиду того, что вторые способны не только вращаться относительно первых, но и обкатывать их, тем самым передавая поступательное движение на водило, все звенья ПП, на которые можно подавать/снимать мощность, получают возможность вращаться дифференциально, с тем лишь условием, что угловая скорость любого такого звена не абсолютно хаотична, а определяется угловыми скоростями всех остальных звеньев. В этом плане ПП похожа на планетарную систему, в которой скорость каждой планеты определяется скоростями всех остальных планет системы. Дифференциальный принцип вращения всей системы, а также то, что в своём каноническом виде набор зубчатых колёс, составляющих ПП, собран в некоем подобии солнца и эпициклически движущихся по орбите планет, даёт данной механической передаче такие присущие только ей интернациональные определения, как

планетарная, дифференциальная (от лат. differentia — разность, различие) или эпициклическая, каждое из которых в данном случае есть синонимы.

С точки зрения теоретической механики планетарная передача — это механическая система с двумя и более степенями свободы. Эта особенность, являющаяся прямым следствием конструкции, есть важное отличие ПП от каких-либо других передач вращательного движения, всегда имеющих только одну степень свободы. И эта особенность наделяет саму ПП тем важным качеством, что в аспекте воздействия на угловые скорости вращения ПП может не только редуцировать эти скорости, но и складывать и раскладывать их, что, в свою очередь, делает её основным механическим исполнительным узлом не только различных планетарных редукторов, но таких устройств, как дифференциалы и суммирующие ПП.

Планетарная передача и планетарный механизм[править | править код]

В русскоязычной инженерной терминологии термины планетарная передача (далее — ПП) и планетарный механизм (далее — ПМ) зачастую предполагаются как синонимы. Отличия в том, что термин ПП обычно используется в контексте принципиального понимания устройства той или иной передачи вращательного движения, особенно если устройство такой передачи не очевидно (скрыто корпусом/картером) или такая передача обладает определёнными уникальными свойствами, присущими только планетарной, и на этом надо акцентировать внимание. А термин ПМ используется для обозначения конкретного зубчато-рычажного механизма, причём существуют критерии, позволяющие чётко описать ПМ как сборочный узел в составе более крупного узла или агрегата и определить, сколько и каких именно использовано ПМ в конкретной передаче вращательного движения.

Состав планетарного механизма[править | править код]

Конструкция ПП/ПМ основана на различных комбинациях из трёх основных и нескольких одинаковых вспомогательных звеньев. Три основные звена с одной общей осью вращения — два центральных зубчатых колеса и водило. Вспомогательные звенья — набор одинаковых зубчатых колёс на подвижных осях вращения и подшипники.

  • Малое центральное зубчатое колесо с внешними зубьями называется солнечной шестернёй или солнцем (С).
  • Большое центральное зубчатое колесо с внутренними зубьями называется коронной, эпициклической шестернёй или эпициклом (Э).
  • Водило (В) является основой ПМ — это неотъемлемая деталь абсолютно любого ПМ и краеугольный камень всей идеи передачи вращения через планетарную систему с дифференциальной связью. Водило представляет собой рычажный механизм — обычно такую пространственную вилку, ось «основания» которой совпадает с осью самого ПМ, а оси «зубцов» с установленными на них сателлитами концентрически вращаются вокруг неё в плоскости/плоскостях расположения центральных зубчатых колёс. Оси «зубцов» — это и есть так называемые подвижные оси или оси сателлитов
  • Сателлиты () представляют собой зубчатые колёса (или группы колёс) с внешними зубьями. При этом сателлиты находятся в одновременном и постоянном зацеплении с обоими центральными зубчатыми колёсами ПМ. Количество сателлитов в ПМ обычно составляет от двух до шести (чаще всего — три, так как только при трёх сателлитах нет нужды в специальных уравновешивающих механизмах) и точного значения для функциональности ПМ не имеет. В различных ПМ применяются сателлиты одновенцовые (одно простое зубчатое колесо), двухвенцовые (два соосных зубчатых колеса с общей ступицей), трёхвенцовые и так далее. Также сателлиты могут быть парными — то есть, располагающимимся на осях одного водила и зацепленными в паре.

Зубчатые колёса, составляющие ПМ, могут быть любого известного типа: прямозубые, косозубые, шевронные, червячные. Тип зацепления в общем случае не важен и на принципиальную работу ПП влияния не оказывает.

В любом ПМ оси вращения центральных зубчатых колёс и водила всегда совпадают. Однако это не значит, что оси сателлитов всегда будут параллельны основной оси. Как и в случае с простыми зубчатыми передачами, здесь возможны варианты параллельных, скрещивающихся и пересекающихся осей. Пример второго варианта — межколёсный дифференциал с коническими зубчатыми колёсами. Пример третьего варианта — самоблокирующийся дифференциал Torsen с червячным зацеплением.

Любой ПМ, независимо простой он или сложный, плоский или пространственный, для своей работоспособности должен иметь одно водило с сателлитами и не менее двух любых центральных зубчатых колёс. Под определением «два любые» подразумевается, что это могут быть не только одно солнце и один эпицикл, но и два солнца и ни одного эпицикла, или два эпицикла и ни одного солнца. Три звена, в том числе водило, есть необходимое и достаточное условие для того, чтобы ПМ мог выполнять функции передачи мощности и сложения/разложения потоков: работать в качестве редуктора (в том числе многоскоростного), в качестве дифференциала или суммирующей ПП. Также три звена есть основа такого русскоязычного технического термина, как Трёхзвенный Дифференциальный Механизм (или ТДМ).

Формально, механизмы, состоящие всего из двух звеньев — из водила и всего лишь одного центрального зубчатого колеса — также могут именоваться планетарными. Фактически же, такие двухзвенные ПМ трудно разумно приспособить для выполнения какой-либо работы: они не годятся для передачи мощности с одного основного звена на другое и лишь при определённых условиях могут работать как переусложнённая прямая передача. Увеличение числа основных звеньев одного ПМ в большую сторону — до 4 и более — возможно и формально и фактически, однако при этом такие ПМ не приобретают никаких новых свойств, хотя и получают больше теоретически доступных передаточных отношений и могут давать проектируемой ПП определённые компоновочные преимущества.

Простые и сложные ПМ, планетарный ряд[править | править код]

Схемы наиболее распространённых сложных планетарных механизмов

Критерием деления ПМ на простые и сложные является число составляющих его основных звеньев (именно основных, а число сателлитов — не в счёт). Простой ПМ имеет всего три основных звена: одно водило и два любых центральных зубчатых колеса. Кинематика допускает всего-лишь 7 (семь!) ПМ, подпадающих под это условие: один наиболее распространённый и всем известный, так называемый «элементарный», с набором одновенцовых сателлитов схемы ; три ПМ с двухвенцовыми саттелитами (, , ) и три ПМ с парными взаимозацепленными сателлитами (СВЭ, СВС, ЭВЭ)).

Сложных ПМ гораздо больше чем простых. Их точное число не определено ввиду отсутствия такой нужды, а наиболее распространённые из них приведены на рисунке. Точно так же как и простые ПМ, сложные имеют всего одно водило, но центральных зубчатых колёс может быть три и более. При этом в составе сложного ПМ всегда умозрительно можно выделить несколько простых ПМ (конкретно: три в четырёхзвенном и шесть в пятизвенном), каждый из которых в себя включает два каких-то центральных зубчатых колеса и одно общее водило.

Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой ПМ с набором одновенцовых сателлитов является однорядным. Все три простые ПМ с двухвенцовыми сателлитами — двухрядные. ПМ с парными взаимозацепленными сателлитами схемы СВЭ — однорядный; схем СВС и ЭВЭ — двухрядные. Таким образом, все простые ПМ могут быть или однорядными или двухрядными. Сложные ПМ, в свою очередь, могут быть двух, трёх и четырёхрядные. Верхнее число рядов в сложном ПМ формально не ограничено, хотя фактически уже пятирядные есть большая редкость, хотя в сборках из планетарных механизмов, применяющихся в многоступенчатых планетарных коробках передач, общее число рядов может быть пять и больше. Нередко термины ПМ и планетарный ряд предполагаются как синонимы, но, в общем случае, это неверно: даже если в отдельных случаях оба термина могут обозначать одно и то же, всегда следует помнить, что их смыл несколько разный.

Плоские и пространственные ПМ[править | править код]

Свободный дифференциал на основе простого плоского двухрядного ПМ с парными сателлитами Свободный дифференциал на основе пространственного ПМ с коническими шестернями

Наличие в составе одного ПМ более одного планетарного ряда не означает, что он является пространственным. Сколько бы ни было рядов, но если плоскости вращения всех составляющих каждый ряд зубчатых колёс параллельны, то такой ПМ будет оставаться плоским. Критерием отличия плоского ПМ от пространственного является наличие не просто более одной плоскости вращения составляющих его зубчатых колёс, но наличие непараллельных плоскостей их вращения. Плоскости вращения звеньев в пространственном ПМ не обязаны быть строго перпендикулярны друг-другу и могут находиться под любыми произвольными углами. Примером пространственного ПМ может служить конический симметричный дифференциал, наподобие применяющегося в приводе ведущих колёс автомобиля. А вот близкий по конструкции цилиндрический дифференциал, применяющийся там же и выполняющий точно такие же функции, будет оставаться плоским ПМ.

Пространственные ПМ по своему функционалу ничем не отличаются от аналогичных по составу плоских ПМ. Выбор того или иного ПМ в качестве основы конкретной ПП есть лишь вопрос экономики или конструкторских предпочтений. Тот же простой межколёсный дифференциал почти всегда выполнен на основе пространственного ПМ не потому, что что плоский не годится, а, скорее, по определённым компоновочным соображениям. Плюс, как это ни странно, пространственный ПМ для выполнения схожих функций может требовать меньшего количества шестерён и деталей вообще. Так, тот же межколёсный дифференциал в пространственном варианте требует всего лишь 4 одинаковые шестерни, из которых две пойдут на два солнца и две — на два саттелита. В случае же плоского варианта, таких шестерён потребуется как минимум шесть, а скорее всего — восемь, и при этом они обязательно будут двух разных типоразмеров.

2 степени свободы ПМ[править | править код]

Уникальной особенностью любого ПМ, отличающей его от всех прочих зубчатых передач, является наличие у него двух степеней свободы. Применительно к простому трёхзвенному ПМ это означает, что понимание угловой скорости вращения любого одного основного звена не даёт однозначного понимания угловых скоростей двух других основных звеньев, даже если известны все передаточные отношения внутри ПМ. Здесь все три основных звена находятся в дифференциальной связи друг с другом и для определения их угловых скоростей надо знать угловые скорости как минимум двух из них. В этом есть важное отличие ПМ от прочих зубчатых механизмов, в которых угловые скорости всех элементов связаны линейной зависимостью, а по угловой скорости одного элемента всегда можно точно определить угловые скорости всех остальных элементов, сколь много их бы не было. И в этом есть основа уникальных свойств, присущих любому ПМ: способность изменять угловые скорости на выходе при неизменных угловых скоростях на входе, способность делить и суммировать потоки мощности и всё это при постоянно зацепленных шестернях.

Любой ПМ, независимо от того, простой он или сложный, имеет фактически лишь две степени свободы. Для простого ПМ это подтверждается и визуальным наблюдением за работой такого механизма и уравнением Чёбышева. Для сложных ПМ это визуально не очевидно, а уравнение Чёбышева теоретически может допускать существование для таких ПМ трёх степеней свобод, что подразумевает наличие четырёх звеньев, находящихся в дифференциальной связи друг с другом. Но фактически такие сложные ПМ будут физически неработоспособны в тех практических задачах, ради которых они создаются, а все работоспособные сложные ПМ останутся двухстепенными. Независимо от числа основных звеньев любого работоспособного сложного ПМ, в нём, так же как и в простом ПМ, в дифференциальной связи друг с другом будет находиться только три основных звена, а остальные основные звенья, сколько бы их ни было, будут иметь линейную связь с каким-то одним из трёх вышеупомянутых. Попытки же создания сложных ПМ с тремя (и тем более, с четырьмя) фактическими степенями свободы считаются бесперспективными, а все работоспособные трёх- и четырёхстепенные ПП основаны на сборке последовательно взаимозацепленных двухстепенных ПМ.

Передаточное отношение[править | править код]

Планетарная передача в режиме повышения скорости. Водило (зелёное) вращается внешним источником. Усилие снимается с солнечной шестерни (жёлтая), в то время как кольцевая шестерня (красная) закреплена неподвижно. Красные метки показывают вращение входного вала на 45°.

Передаточное отношение такой передачи визуально определить достаточно сложно, в основном, потому что система может приводиться во вращение различными способами.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён.

Рассмотрим случай, когда водило зафиксировано, а мощность подводится через солнечную шестерню. В этом случае планетарные шестерни вращаются на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни. Например, если мы обозначим число зубьев солнечной шестерни как S{\displaystyle S}, а для планетарных шестерён примем это число как P{\displaystyle P}, то передаточное отношение будет определяться формулой SP{\displaystyle {\frac {S}{P}}}, то есть если у солнечной шестерни 24 зуба, а у планетарных по 16, то передаточное отношение будет −2416{\displaystyle -{\frac {24}{16}}}, или −32{\displaystyle -{\frac {3}{2}}}, что означает поворот планетарных шестерён на 1,5 оборота в противоположном направлении относительно солнечной.

Далее вращение планетарных шестерён может передаваться кольцевой шестерне, с соответствующим передаточным числом. Если кольцевая шестерня имеет A{\displaystyle A} зубьев, то оно будет вращаться с соотношением PA{\displaystyle {\frac {P}{A}}} относительно планетарных шестерён. (В данном случае перед дробью нет минуса, так как при внутреннем зацеплении шестерни вращаются в одну сторону). Например, если на кольцевой шестерне 64 зуба, то относительно приведённого выше примера это отношение будет равно 1664{\displaystyle {\frac {16}{64}}}, или 14{\displaystyle {\frac {1}{4}}}. Таким образом, объединив оба примера, мы получим следующее:

  • Один оборот солнечной шестерни даёт −SP{\displaystyle -{\frac {S}{P}}} оборотов планетарных шестерён;
  • Один оборот планетарной шестерни даёт PA{\displaystyle {\frac {P}{A}}} оборотов кольцевой.

В итоге, если водило заблокировано, общее передаточное отношение системы будет равно −SA{\displaystyle -{\frac {S}{A}}}.

В случае, если закреплена кольцевая шестерня, а мощность подводится к водилу, передаточное отношение на солнечную шестерню будет меньше единицы и составит 1(1+AS){\displaystyle {\frac {1}{(1+{\frac {A}{S}})}}}.

Если закрепить кольцевую шестерню, а мощность подводить к солнечной шестерне, то мощность должна сниматься с водила. В этом случае передаточное отношение будет равно 1+AS{\displaystyle 1+{\frac {A}{S}}}. Это самое большое передаточное число, которое может быть получено в планетарной передаче. Такие передачи используются, например, в тракторах и строительной технике, где требуется большой крутящий момент на колёсах при невысокой скорости.

Всё вышесказанное можно описать следующими двумя уравнениями (выведены из условия отсутствия проскальзывания сопрягаемых шестерён и следовательно равенства дуг, проходимых точками, находящихся на окружностях, в единицу времени):

A(ωa−ωc)=PωpS(ωs−ωc)=−Pωp{\displaystyle {\begin{aligned}A\left(\omega _{a}-\omega _{c}\right)=P\omega _{p}\\S\left(\omega _{s}-\omega _{c}\right)=-P\omega _{p}\end{aligned}}}

Здесь ωa,ωc,ωp,ωs{\displaystyle \omega _{a},\omega _{c},\omega _{p},\omega _{s}} — угловые скорости соответственно: кольцевой шестерни, водила, планетарных шестерён относительно водила, и солнечной шестерни. Первое уравнение характеризует вращение водила относительно кольцевой шестерни, второе — солнечной шестерни относительно водила.

Если исключить из уравнений ωp{\displaystyle \omega _{p}} путём их сложения — получится одно уравнение: Aωa+Sωs=(A+S)ωc{\displaystyle A\omega _{a}+S\omega _{s}=(A+S)\omega _{c}}. Так как числа зубьев шестерён всегда удовлетворяют условию A=S+2P{\displaystyle A=S+2P} (исходя из простых геометрических соотношений, поскольку в диаметр коронной шестерни помещается диаметр солнечной шестерни и два диаметра сателлитов), по-другому это уравнение можно записать как:

(2+n)ωa+nωs−2(1+n)ωc=0{\displaystyle \left(2+n\right)\omega _{a}+n\omega _{s}-2\left(1+n\right)\omega _{c}=0}

Где n — это параметр передачи, равный n=SP{\displaystyle n={S \over P}}, то есть отношению чисел зубьев солнечной и планетарных шестерён.

В нижеуказанной таблице (указывающей выходные скорости различных типов планетарных передач в зависимости от их конструктивных особенностей) приняты следующие условные обозначения:

Сателлит (механика) Википедия

Планетарная передача с остановленным водилом по сути является двухступенчатой зубчатой передачей с неподвижными осями колес. Планетарная передача (солнечная шестерня остановлена) Планетарная передача (коронная шестерня остановлена) Схема эпициклически движущейся планеты

Планетарная передача (далее — ПП) — механическая передача вращательного движения, за счёт своей конструкции способная в пределах одной геометрической оси вращения изменять, складывать и раскладывать подводимые угловые скорости и/или крутящий момент. Обычно является элементом трансмиссии различных технологических и транспортных машин.

Конструктивно ПП всегда представляет собой набор взаимозацепленных зубчатых колёс (не менее 4), часть из которых (не менее 2) имеет общую геометрическую неподвижную ось вращения, а другая часть (также, не менее 2) имеет подвижные оси вращения, концентрически вращающиеся на так называемом «водиле» вокруг неподвижной. Зубчатые колёса на неподвижной оси всегда связаны друг с другом не напрямую, а через зубчатые колёса на подвижных осях, а ввиду того, что вторые способны не только вращаться относительно первых, но и обкатывать их, тем самым передавая поступательное движение на водило, все звенья ПП, на которые можно подавать/снимать мощность, получают возможность вращаться дифференциально, с тем лишь условием, что угловая скорость любого такого звена не абсолютно хаотична, а определяется угловыми скоростями всех остальных звеньев. В этом плане ПП похожа на планетарную систему, в которой скорость каждой планеты определяется скоростями всех остальных планет системы. Дифференциальный принцип вращения всей системы, а также то, что в своём каноническом виде набор зубчатых колёс, составляющих ПП, собран в некоем подобии солнца и эпициклически движущихся по орбите планет, даёт данной механической передаче такие присущие только ей интернациональные определения, как планетарная, дифференциальная (от лат. differentia — разность, различие) или эпициклическая, каждое из которых в данном случае есть синонимы.

С точки зрения теоретической механики планетарная передача — это механическая система с двумя и более степенями свободы. Эта особенность, являющаяся прямым следствием конструкции, есть важное отличие ПП от каких-либо других передач вращательного движения, всегда имеющих только одну степень свободы. И эта особенность наделяет саму ПП тем важным качеством, что в аспекте воздействия на угловые скорости вращения ПП может не только редуцировать эти скорости, но и складывать и раскладывать их, что, в свою очередь, делает её основным механическим исполнительным узлом не только различных планетарных редукторов, но таких устройств, как дифференциалы и суммирующие ПП.

Планетарная передача и планетарный механизм

В русскоязычной инженерной терминологии термины планетарная передача (далее — ПП) и планетарный механизм (далее — ПМ) зачастую предполагаются как синонимы. Отличия в том, что термин ПП обычно используется в контексте принципиального понимания устройства той или иной передачи вращательного движения, особенно если устройство такой передачи не очевидно (скрыто корпусом/картером) или такая передача обладает определёнными уникальными свойствами, присущими только планетарной, и на этом надо акцентировать внимание. А термин ПМ используется для обозначения конкретного зубчато-рычажного механизма, причём существуют критерии, позволяющие чётко описать ПМ как сборочный узел в составе более крупного узла или агрегата и определить, сколько и каких именно использовано ПМ в конкретной передаче вращательного движения.

Состав планетарного механизма

Конструкция ПП/ПМ основана на различных комбинациях из трёх основных и нескольких одинаковых вспомогательных звеньев. Три основные звена с одной общей осью вращения — два центральных зубчатых колеса и водило. Вспомогательные звенья — набор одинаковых зубчатых колёс на подвижных осях вращения и подшипники.

  • Малое центральное зубчатое колесо с внешними зубьями называется солнечной шестернёй или солнцем (С).
  • Большое центральное зубчатое колесо с внутренними зубьями называется коронной, эпициклической шестернёй или эпициклом (Э).
  • Водило (В) является основой ПМ — это неотъемлемая деталь абсолютно любого ПМ и краеугольный камень всей идеи передачи вращения через планетарную систему с дифференциальной связью. Водило представляет собой рычажный механизм — обычно такую пространственную вилку, ось «основания» которой совпадает с осью самого ПМ, а оси «зубцов» с установленными на них сателлитами концентрически вращаются вокруг неё в плоскости/плоскостях расположения центральных зубчатых колёс. Оси «зубцов» — это и есть так называемые подвижные оси или оси сателлитов
  • Сателлиты () представляют собой зубчатые колёса (или группы колёс) с внешними зубьями. При этом сателлиты находятся в одновременном и постоянном зацеплении с обоими центральными зубчатыми колёсами ПМ. Количество сателлитов в ПМ обычно составляет от двух до шести (чаще всего — три, так как только при трёх сателлитах нет нужды в специальных уравновешивающих механизмах) и точного значения для функциональности ПМ не имеет. В различных ПМ применяются сателлиты одновенцовые (одно простое зубчатое колесо), двухвенцовые (два соосных зубчатых колеса с общей ступицей), трёхвенцовые и так далее. Также сателлиты могут быть парными — то есть, располагающимимся на осях одного водила и зацепленными в паре.

Зубчатые колёса, составляющие ПМ, могут быть любого известного типа: прямозубые, косозубые, шевронные, червячные. Тип зацепления в общем случае не важен и на принципиальную работу ПП влияния не оказывает.

В любом ПМ оси вращения центральных зубчатых колёс и водила всегда совпадают. Однако это не значит, что оси сателлитов всегда будут параллельны основной оси. Как и в случае с простыми зубчатыми передачами, здесь возможны варианты параллельных, скрещивающихся и пересекающихся осей. Пример второго варианта — межколёсный дифференциал с коническими зубчатыми колёсами. Пример третьего варианта — самоблокирующийся дифференциал Torsen с червячным зацеплением.

Любой ПМ, независимо простой он или сложный, плоский или пространственный, для своей работоспособности должен иметь одно водило с сателлитами и не менее двух любых центральных зубчатых колёс. Под определением «два любые» подразумевается, что это могут быть не только одно солнце и один эпицикл, но и два солнца и ни одного эпицикла, или два эпицикла и ни одного солнца. Три звена, в том числе водило, есть необходимое и достаточное условие для того, чтобы ПМ мог выполнять функции передачи мощности и сложения/разложения потоков: работать в качестве редуктора (в том числе многоскоростного), в качестве дифференциала или суммирующей ПП. Также три звена есть основа такого русскоязычного технического термина, как Трёхзвенный Дифференциальный Механизм (или ТДМ).

Формально, механизмы, состоящие всего из двух звеньев — из водила и всего лишь одного центрального зубчатого колеса — также могут именоваться планетарными. Фактически же, такие двухзвенные ПМ трудно разумно приспособить для выполнения какой-либо работы: они не годятся для передачи мощности с одного основного звена на другое и лишь при определённых условиях могут работать как переусложнённая прямая передача. Увеличение числа основных звеньев одного ПМ в большую сторону — до 4 и более — возможно и формально и фактически, однако при этом такие ПМ не приобретают никаких новых свойств, хотя и получают больше теоретически доступных передаточных отношений и могут давать проектируемой ПП определённые компоновочные преимущества.

Простые и сложные ПМ, планетарный ряд

Схемы наиболее распространённых сложных планетарных механизмов

Критерием деления ПМ на простые и сложные является число составляющих его основных звеньев (именно основных, а число сателлитов — не в счёт). Простой ПМ имеет всего три основных звена: одно водило и два любых центральных зубчатых колеса. Кинематика допускает всего-лишь 7 (семь!) ПМ, подпадающих под это условие: один наиболее распространённый и всем известный, так называемый «элементарный», с набором одновенцовых сателлитов схемы ; три ПМ с двухвенцовыми саттелитами (, , ) и три ПМ с парными взаимозацепленными сателлитами (СВЭ, СВС, ЭВЭ)).

Сложных ПМ гораздо больше чем простых. Их точное число не определено ввиду отсутствия такой нужды, а наиболее распространённые из них приведены на рисунке. Точно так же как и простые ПМ, сложные имеют всего одно водило, но центральных зубчатых колёс может быть три и более. При этом в составе сложного ПМ всегда умозрительно можно выделить несколько простых ПМ (конкретно: три в четырёхзвенном и шесть в пятизвенном), каждый из которых в себя включает два каких-то центральных зубчатых колеса и одно общее водило.

Каждый набор из центральных зубчатых колёс и сателлитов, вращающихся в одной плоскости, образует так называемый планетарный ряд. Простой ПМ с набором одновенцовых сателлитов является однорядным. Все три простые ПМ с двухвенцовыми сателлитами — двухрядные. ПМ с парными взаимозацепленными сателлитами схемы СВЭ — однорядный; схем СВС и ЭВЭ — двухрядные. Таким образом, все простые ПМ могут быть или однорядными или двухрядными. Сложные ПМ, в свою очередь, могут быть двух, трёх и четырёхрядные. Верхнее число рядов в сложном ПМ формально не ограничено, хотя фактически уже пятирядные есть большая редкость, хотя в сборках из планетарных механизмов, применяющихся в многоступенчатых планетарных коробках передач, общее число рядов может быть пять и больше. Нередко термины ПМ и планетарный ряд предполагаются как синонимы, но, в общем случае, это неверно: даже если в отдельных случаях оба термина могут обозначать одно и то же, всегда следует помнить, что их смыл несколько разный.

Плоские и пространственные ПМ

Свободный дифференциал на основе простого плоского двухрядного ПМ с парными сателлитами Свободный дифференциал на основе пространственного ПМ с коническими шестернями

Наличие в составе одного ПМ более одного планетарного ряда не означает, что он является пространственным. Сколько бы ни было рядов, но если плоскости вращения всех составляющих каждый ряд зубчатых колёс параллельны, то такой ПМ будет оставаться плоским. Критерием отличия плоского ПМ от пространственного является наличие не просто более одной плоскости вращения составляющих его зубчатых колёс, но наличие непараллельных плоскостей их вращения. Плоскости вращения звеньев в пространственном ПМ не обязаны быть строго перпендикулярны друг-другу и могут находиться под любыми произвольными углами. Примером пространственного ПМ может служить конический симметричный дифференциал, наподобие применяющегося в приводе ведущих колёс автомобиля. А вот близкий по конструкции цилиндрический дифференциал, применяющийся там же и выполняющий точно такие же функции, будет оставаться плоским ПМ.

Пространственные ПМ по своему функционалу ничем не отличаются от аналогичных по составу плоских ПМ. Выбор того или иного ПМ в качестве основы конкретной ПП есть лишь вопрос экономики или конструкторских предпочтений. Тот же простой межколёсный дифференциал почти всегда выполнен на основе пространственного ПМ не потому, что что плоский не годится, а, скорее, по определённым компоновочным соображениям. Плюс, как это ни странно, пространственный ПМ для выполнения схожих функций может требовать меньшего количества шестерён и деталей вообще. Так, тот же межколёсный дифференциал в пространственном варианте требует всего лишь 4 одинаковые шестерни, из которых две пойдут на два солнца и две — на два саттелита. В случае же плоского варианта, таких шестерён потребуется как минимум шесть, а скорее всего — восемь, и при этом они обязательно будут двух разных типоразмеров.

2 степени свободы ПМ

Уникальной особенностью любого ПМ, отличающей его от всех прочих зубчатых передач, является наличие у него двух степеней свободы. Применительно к простому трёхзвенному ПМ это означает, что понимание угловой скорости вращения любого одного основного звена не даёт однозначного понимания угловых скоростей двух других основных звеньев, даже если известны все передаточные отношения внутри ПМ. Здесь все три основных звена находятся в дифференциальной связи друг с другом и для определения их угловых скоростей надо знать угловые скорости как минимум двух из них. В этом есть важное отличие ПМ от прочих зубчатых механизмов, в которых угловые скорости всех элементов связаны линейной зависимостью, а по угловой скорости одного элемента всегда можно точно определить угловые скорости всех остальных элементов, сколь много их бы не было. И в этом есть основа уникальных свойств, присущих любому ПМ: способность изменять угловые скорости на выходе при неизменных угловых скоростях на входе, способность делить и суммировать потоки мощности и всё это при постоянно зацепленных шестернях.

Любой ПМ, независимо от того, простой он или сложный, имеет фактически лишь две степени свободы. Для простого ПМ это подтверждается и визуальным наблюдением за работой такого механизма и уравнением Чёбышева. Для сложных ПМ это визуально не очевидно, а уравнение Чёбышева теоретически может допускать существование для таких ПМ трёх степеней свобод, что подразумевает наличие четырёх звеньев, находящихся в дифференциальной связи друг с другом. Но фактически такие сложные ПМ будут физически неработоспособны в тех практических задачах, ради которых они создаются, а все работоспособные сложные ПМ останутся двухстепенными. Независимо от числа основных звеньев любого работоспособного сложного ПМ, в нём, так же как и в простом ПМ, в дифференциальной связи друг с другом будет находиться только три основных звена, а остальные основные звенья, сколько бы их ни было, будут иметь линейную связь с каким-то одним из трёх вышеупомянутых. Попытки же создания сложных ПМ с тремя (и тем более, с четырьмя) фактическими степенями свободы считаются бесперспективными, а все работоспособные трёх- и четырёхстепенные ПП основаны на сборке последовательно взаимозацепленных двухстепенных ПМ.

Передаточное отношение

Планетарная передача в режиме повышения скорости. Водило (зелёное) вращается внешним источником. Усилие снимается с солнечной шестерни (жёлтая), в то время как кольцевая шестерня (красная) закреплена неподвижно. Красные метки показывают вращение входного вала на 45°.

Передаточное отношение такой передачи визуально определить достаточно сложно, в основном, потому что система может приводиться во вращение различными способами.

При использовании планетарной передачи в качестве редуктора один из трёх её основных элементов фиксируется неподвижно, а два других служат в качестве ведущего и ведомого. Таким образом, передаточное отношение будет зависеть от количества зубьев каждого компонента, а также от того, какой элемент закреплён.

Рассмотрим случай, когда водило зафиксировано, а мощность подводится через солнечную шестерню. В этом случае планетарные шестерни вращаются на месте со скоростью, определяемой отношением числа их зубьев относительно солнечной шестерни. Например, если мы обозначим число зубьев солнечной шестерни как S{\displaystyle S}, а для планетарных шестерён примем это число как P{\displaystyle P}, то передаточное отношение будет определяться формулой SP{\displaystyle {\frac {S}{P}}}, то есть если у солнечной шестерни 24 зуба, а у планетарных по 16, то передаточное отношение будет −2416{\displaystyle -{\frac {24}{16}}}, или −32{\displaystyle -{\frac {3}{2}}}, что означает поворот планетарных шестерён на 1,5 оборота в противоположном направлении относительно солнечной.

Далее вращение планетарных шестерён может передаваться кольцевой шестерне, с соответствующим передаточным числом. Если кольцевая шестерня имеет A{\displaystyle A} зубьев, то оно будет вращаться с соотношением PA{\displaystyle {\frac {P}{A}}} относительно планетарных шестерён. (В данном случае перед дробью нет минуса, так как при внутреннем зацеплении шестерни вращаются в одну сторону). Например, если на кольцевой шестерне 64 зуба, то относительно приведённого выше примера это отношение будет равно 1664{\displaystyle {\frac {16}{64}}}, или 14{\displaystyle {\frac {1}{4}}}. Таким образом, объединив оба примера, мы получим следующее:

  • Один оборот солнечной шестерни даёт −SP{\displaystyle -{\frac {S}{P}}} оборотов планетарных шестерён;
  • Один оборот планетарной шестерни даёт PA{\displaystyle {\frac {P}{A}}} оборотов кольцевой.

В итоге, если водило заблокировано, общее передаточное отношение системы будет равно −SA{\displaystyle -{\frac {S}{A}}}.

В случае, если закреплена кольцевая шестерня, а мощность подводится к водилу, передаточное отношение на солнечную шестерню будет меньше единицы и составит 1(1+AS){\displaystyle {\frac {1}{(1+{\frac {A}{S}})}}}.

Если закрепить кольцевую шестерню, а мощность подводить к солнечной шестерне, то мощность должна сниматься с водила. В этом случае передаточное отношение будет равно 1+AS{\displaystyle 1+{\frac {A}{S}}}. Это самое большое передаточное число, которое может быть получено в планетарной передаче. Такие передачи используются, например, в тракторах и строительной технике, где требуется большой крутящий момент на колёсах при невысокой скорости.

Всё вышесказанное можно описать следующими двумя уравнениями (выведены из условия отсутствия проскальзывания сопрягаемых шестерён и следовательно равенства дуг, проходимых точками, находящихся на окружностях, в единицу времени):

A(ωa−ωc)=PωpS(ωs−ωc)=−Pωp{\displaystyle {\begin{aligned}A\left(\omega _{a}-\omega _{c}\right)=P\omega _{p}\\S\left(\omega _{s}-\omega _{c}\right)=-P\omega _{p}\end{aligned}}}

Здесь ωa,ωc,ωp,ωs{\displaystyle \omega _{a},\omega _{c},\omega _{p},\omega _{s}} — угловые скорости соответственно: кольцевой шестерни, водила, планетарных шестерён относительно водила, и солнечной шестерни. Первое уравнение характеризует вращение водила относительно кольцевой шестерни, второе — солнечной шестерни относительно водила.

Если исключить из уравнений ωp{\displaystyle \omega _{p}} путём их сложения — получится одно уравнение: Aωa+Sωs=(A+S)ωc{\displaystyle A\omega _{a}+S\omega _{s}=(A+S)\omega _{c}}. Так как числа зубьев шестерён всегда удовлетворяют условию A=S+2P{\displaystyle A=S+2P} (исходя из простых геометрических соотношений, поскольку в диаметр коронной шестерни помещается диаметр солнечной шестерни и два диаметра сателлитов), по-другому это уравнение можно записать как:

(2+n)ωa+nωs−2(1+n)ωc=0{\displaystyle \left(2+n\right)\omega _{a}+n\omega _{s}-2\left(1+n\right)\omega _{c}=0}

Где n — это параметр передачи, равный n=SP{\displaystyle n={S \over P}}, то есть отношению чисел зубьев солнечной и планетарных шестерён.

В нижеуказанной таблице (указывающей выходные скорости различных типов планетарных передач в зависимости от их конструктивных особенностей) приняты следующие условные обозначения:

Формула Виллиса

i0=nP−nSnP−nA{\displaystyle i_{0}={n_{P}-n_{S} \over n_{P}-n_{A}}}, где i0{\displaystyle i_{0}} — передаточное число при заблокированном водиле i0=nSnA=−NANS{\displaystyle i_{0}={n_{S} \over n_{A}}=-{N_{A} \over N_{S}}}, nS{\displaystyle n_{S}} — скорость солнечной шестерни, nP{\displaystyle n_{P}}- скорость водила и nA{\displaystyle n_{A}} — скорость кольцевой шестерни. [2][3]

Управляющие элементы планетарной передачи

Наличие у любых ПМ и их сборок двух и более степеней свободы может использоваться в некоторых типах ПП в качестве основного функционала (здесь имеются в виду планетарные дифференциалы, разветвители потоков и суммирующие ПП). Однако для работы ПП в режиме редуктора с одним ведущим звеном и одним ведомым всем остальным свободным основным звеньям необходимо задать определённую угловую скорость (в том числе, возможно, нулевую). Лишь в таком случае лишние степени свободы будут сняты, все свободные основные звенья станут опорными, а вся подающаяся на единственное ведущее звено мощность будет снята с единственного ведомого в полном объёме (с поправкой на КПД ПП). Функцию задания необходимых угловых скоростей свободным звеньям выполняют так называемые управляющие элементы ПМ. Таковых элементов два: фрикционы и тормоза.

  • Фрикционы соединяют друг с другом два свободных звена ПМ, либо соединяют свободное звено с внешним подводом мощности. В обоих случаях при полной блокировке фрикционы обеспечивают паре соединённых элементов некую одинаковую ненулевую угловую скорость. Конструктивно обычно выполнены в виде многодисковых фрикционных муфт, хотя в отдельных случаях возможны и более простые муфты.
  • Тормоза соединяют свободные звенья ПМ с корпусом ПП. При полной блокировке тормоза обеспечивают заторможенному свободному звену нулевую угловую скорость. Конструктивно могут быть аналогичны фрикционам — в виде многодисковых фрикционных муфт; но широко распространены и более простые конструкции — ленточные, колодочные, однодисковые.

Фрикционы и тормоза по принципу своего действия являются идеальными синхронизаторами угловых скоростей соединяемых элементов. Также они выполняют предохранительные функции и при резких ударных нагрузках могут пробуксовывать, переводя динамические нагрузки в работу сил трения. И также они могут выполнять функцию главной муфты сцепления (главного фрикциона), поэтому зачастую в механических трансмиссиях машин с ПКП главная муфта сцепления вообще не применяется. При том, что тормоза в отличие от фрикционов допускают больше вариантов фактического исполнения, конструкция и тех и других может быть совершенно одинаковой, или, по крайней мере, унифицированной, несмотря на существенное функциональное различие фрикционов и тормозов. Помимо фрикционов и тормозов в работе ПП могут быть задействованы автоматически срабатывающие механизмы свободного хода (другое их название — обгонные муфты или автологи). В русскоязычных кинематических схемах планетарных КП фрикционы, тормоза и муфты свободного хода обычно обозначаются буквами Ф, Т и М.

Применение

Наиболее широкое применение принцип нашёл в планетарных редукторах, автомобильных дифференциалах, бортовых планетарных передачах ведущих мостов тяжёлых автомобилей, кроме того, используется в суммирующих звеньях кинематических схем металлорежущих станков, также в редукторах привода воздушных винтов турбовинтовых двигателей (ТВД) в авиации, также довольно распространены планетарные втулки для велосипедов.

В современных устройствах могут использоваться каскады из нескольких планетарных передач для получения большого диапазона передаточных чисел. На этом принципе работают многие автоматические коробки передач.

Часто планетарные передачи используются для суммирования двух потоков мощности (например, планетарные ряды двухпоточных трансмиссий некоторых танков и др. гусеничных машин), в этом случае неподвижно зафиксированных элементов нет. Например, два потока мощности могут подводиться к солнечной шестерне и эпициклу, а результирующий поток снимается с водила. Широко применяется данная схема в авиации: в приводе постоянных оборотов электрогенератора планетарный механизм используется для сложения двух различных входных частот вращения с целью получения стабильной выходной. В авиационных электро- и гидроприводах для надёжности используются два мотора, работающие на общий выходной вал через планетарный редуктор, и при отказе одного мотора или цепи управления им работоспособность привода сохраняется, но с двойным уменьшением частоты вращения.

Планетарные передачи также используются в случаях, когда необходимо переменное передаточное отношение (может быть достигнуто торможением, например, водила).

Планетарный механизм поворота

ПМП применяются на гусеничных тракторах и танках для изменения скорости и поворота. В этом случае в трансмиссии к левому и правому ведущим колёсам устанавливается свой планетарный редуктор, коронная шестерня которого приводится от двигателя, с водила передаётся момент на колесо, а солнечная шестерня связана с тормозом той или иной конструкции (как правило, ленточным). Также между коронной шестернёй и выходным валом установлен так называемый блокировочный фрикцион, а на выходном валу (от водила) — ещё один тормоз.

Если тормоз солнечной шестерни и фрикцион выключены, то момент на ведущее колесо трактора не передаётся — корона через сателлиты вращает расторможенную солнечную шестерню, практически не создавая момента на водиле. Для исключения движения трактора в этом случае может быть заторможен основной тормоз (на выходном валу). Если начать затормаживать солнечную шестерню, то сателлиты получат точку опоры и начнут создавать момент на водиле, вращая ведущее колесо трактора. При полностью заторможенной солнечной шестерне ПМП работает как обычный понижающий редуктор. Это первая передача ПМП. При включении блокировочного фрикциона он начнёт передавать момент от двигателя напрямую на водило, минуя редуктор, и при полном включении фрикциона редуктор ПМП будет полностью выведен из работы (заблокирован) — это вторая передача ПМП, работа в качестве прямой передачи.

Таким образом, включение тормоза водила даёт остановку трактора, включение тормоза солнечной шестерни — первую (понижающую) передачу, включение блокировочного фрикциона — вторую.

Преимущества и недостатки

Конструкция передачи со многими сателлитами обеспечивает зацепление большего числа зубцов и потому меньшую нагрузку на каждый зубец. Это позволяет достичь меньших размеров и массы по сравнению с обычной передачей при той же передаваемой мощности.

Соосность ведущих и ведомых валов облегчает компоновку машин и каскадных механизмов.

Сбалансированность сил в передаче приводит к меньшему уровню шума.

Конструкция передачи позволяет достичь больших передаточных отношений при малом числе колёс.

К недостаткам планетарных передач относят повышенные требования к точности изготовления и сборки, а также малый КПД при больших передаточных отношениях.

См. также

Литература

  • Антонов А. С., Артамонов Б. А., Коробков Б. М., Магидович Е. И. Планетарные передачи // Танк. — М.: Воениздат, 1954. — С. 422—429. — 607 с.
  • Ткаченко В. А. Проектирование многосателлитных планетарных передач / Харьковский государственный университет им. А. М. Горького. — Харьков: Изд-во Харьк. университета, 1961. — 186 с. — 7000 экз.
  • Кудрявцев В. Н. и др. Планетарные передачи: Справочник / Авт.: В. Н. Кудрявцев, Ю. Н. Кирдяшев, Е. Г. Гинзбург, Ю. А. Державец, А. Н. Иванов, Е. С. Кисточкин, И. С. Кузьмин, А. Л. Филипенков; Под ред. докторов техн. наук В. Н. Кудрявцева и Ю. Н. Кирдяшева. — Л.: Машиностроение. Ленингр. отд-ние, 1977. — 536 с. — 39 000 экз.

Ссылки

Примечания

  1. ↑ Pattantyús Gépész- és Villamosmérnökök Kézikönyve 3. tom. Műszaki Könyvkiadó, Budapest, 1961. p.632.
  2. Bernd Künne. Köhler/Rögnitz Maschinenteile 2. — Vieweg+Teubner Verlag, 2008. — С. 508. — ISBN 3835100920.
  3. Berthold Schlecht. Maschinenelemente 2: Getriebe, Verzahnungen und Lagerungen. — Pearson Studium, 2010. — С. 787. — ISBN 3827371465.

Планетарная коробка передач подробно — Энциклопедия журнала «За рулем»

Планетарная механическая коробка передач (МКП) — разновидность коробки передач, в которой используются планетарные механизмы. Была распространена в начале ХХ столетия (автомобиль Ford T), в наше время получила достаточно широкое распространение в гусеничной технике — военной и гражданской, а также на велосипедах и в автомобилях с гибридной трансмиссией.

Устройство и принцип работы

В планетарной МКП используется система шестерен-сателлитов, вращающихся вокруг центральной солнечной шестерни. Чаще всего сателлиты размещены внутри большой коронной шестерни (эпицикла), с которой находятся в постоянном зацеплении. В свою очередь сателлиты закреплены на водиле.
Изменение передаточного отношения планетарной МКП зависит от того, какой из трех основных элементов — солнечная шестерня, сателлиты с водилом и коронная шестерня — закреплен неподвижно, на какой подается крутящий момент и с какого элемента снимается трансмиссией. В любом случае один из трех основных элементов планетарной коробки (а сателлиты рассматриваются как одно целое с водилом) будет неподвижен, два других будут вращаться. Для остановки и блокировки одного из элементов КП используется система ленточных тормозов и блокировочных муфт. Но есть планетарные механизмы, в которых тормоза и муфты отсутствуют — речь идет о дифференциалах, которые тоже относятся к планетарным механизмам, построенным с применением конических шестерен.
Вариантов планетарных систем, применяемых в МКП, достаточно много. Описание принципа работы касается простейшей системы с тремя сателлитами, закрепленными на водиле под углом в 120 градусов.
Понижающая передача. Первый вариант. Если остановить эпицикл, крутящий момент от двигателя подавать на вал солнечной шестерни, а снимать крутящий момент с водила, то в результате частота вращения вала водила будет меньше, чем частота вращения солнечной шестерни.
Второй вариант. Если подать вращающий момент вала двигателя на эпицикл, заблокировать солнечную шестерню, а крутящий момент снимать с водила, получится тот же эффект (но с передаточным числом близким к единице).
Повышающая передача. Первый вариант. Эпицикл заблокирован, крутящий момент подается на водило с сателлитами, а снимается с центральной солнечной шестерни. В результате КП работает в качестве повышающего редуктора.
Второй вариант. Солнечная шестерня блокирована, крутящий момент подается на водило, снимается с большой коронной шестерни. Эффект получается такой же, КП работает в режиме повышающей передачи.
Задний ход. Первый вариант. Крутящий момент подается на солнечную шестерню, снимается с эпицикла, водило закреплено неподвижно. С этом случае КП работает в качестве редуктора с отрицательным передаточным отношением, то есть включен режим реверса крутящего момента.
Второй вариант. Крутящий момент подается на эпицикл, снимается с вала солнечной шестерни, водило, опять же, закреплено неподвижно. КП работает в реверсивном режиме с отрицательным передаточным отношением.

Применение планетарных МКП

В автомобильном транспорте МКП с ручным (а точнее, с ножным) управлением вышли из употребления еще в 1928 году — с прекращением выпуска легендарного автомобиля марки Ford T. В этой машине применялась планетарная механическая двухступенчатая коробка передач. При этом переключение передач производилось педалями, которые включали ленточные тормоза коробки. Первая передача включалась нажатием на правую педаль, вторая — на среднюю и задний ход — на левую педаль (всего было три педали, вместо педали «газа» использовался подрулевой рычаг).
В 30-е и последующие годы МКП была вытеснена полуавтоматическими и автоматическими планетарными КП. В полуавтоматах вместо сцепления использовались гидромуфты, в автоматах — гидротрансформаторы.

Планетарный редуктор

Сегодня планетарные МКП широко используются в гусеничной технике, в том числе и военной — в танках, тягачах, транспортерах. В авиационных турбинах, в металлорежущих станках — в качестве редукторов.

Очень популярны планетарные механический коробки передач, встроенные в заднюю втулку велосипедного колеса. Эти коробки легки, долговечны, эффективны и просты в эксплуатации, поскольку не требуют какого-либо обслуживания. В то же время они повышают стоимость велосипедов и не применяются в спортивных моделях — из-за большой массы (порядка 1,5-2 кг) и меньшей ремонтопригодности по сравнению с открытыми устройствами перевода цепи параллелограммного типа.

Достоинства и недостатки планетарных КП

К достоинствам планетарных коробок следует отнести компактность. Все детали планетарной КП вращаются вокруг одной оси. В них нет валов, ползунов и последовательно расположенных шестерен. В результате такая коробка занимает примерно столько же места, сколько одно-двухдисковое сцепление.
В то же время планетарные коробки способны передавать очень большой крутящий момент, что обуславливает их применение в тяжелой (в частности, танковой) технике. Эта особенность объясняется тем, что крутящий момент равномерно распределяется на сателлиты (которых может быть больше трех), зубья которых испытывают меньшие по сравнению с двух-трехвальными КП механические нагрузки. Планетарные коробки отличаются повышенным ресурсом и простотой обслуживания.
Конструкция планетарных коробок позволяет легко организовать систему управления — оснастить элементы КП ленточными тормозами и блокировочными муфтами (поясним: первые нужны для плавной остановки вращения шестерен, вторые — для окончательной блокировки и, соответственно, переключения передачи).
Наконец, правильно спроектированная планетарная КП с верно подобранным передаточным отношением шестерен имеет более высокий коэффициент полезного действия, чем двух-трехвальные механические КП.
Но вместе с тем есть у планетарных коробок и недостатки. Главный из них — сложность с проектирования и производства многоступенчатых КП. В автоматических коробках для получения трех и более ступеней переключения приходится прибегать к каскадным планетарным системами. Это усложняет КП и, соответственно, снижает ее КПД и надежность.
В наши дни наработки в области планетарных автомобильных коробок передач используются в производстве автоматических планетарных коробок, которые полностью вытеснили механические КП этого типа. Вместе с полуавтоматическими и бесступенчатыми трансмиссиями (прежде всего, с вариаторными системами) АКП широко используются в легковых автомобилях среднего и высокого класса. Благодаря эксплуатационным удобствам АКП пользуются повышенной популярностью и постепенно вытесняют механические КП с ручным управлением из автомобилей бюджетного класса.

Дифференциал:описание,история,фото,виды | НЕМЕЦКИЕ АВТОМАШИНЫ

 

Многие покупатели при выборе внедорожника наверняка сталкивались в описании той или иной модели с термином «электронная блокировка дифференциала». Но что это такое, и как работает этот самый дифференциал, знают далеко не все потенциальные владельцы автомобилей этого класса. В нашем сегодняшнем материале мы подробно расскажем, для чего машине дифференциал, каковы его разновидности и на какие автомобили он устанавливается

История создания и назначение дифференциала

На автомобилях, оснащенных двигателем внутреннего сгорания, дифференциал появился через несколько лет после их изобретения. Дело в том, что первые экземпляры машин, приводимых в действие двигателем, имели очень плохую управляемость. Оба колеса на одной оси при повороте вращались с одинаковой угловой скоростью, что приводило к пробуксовке колеса, идущего по внешнему, большему, чем внутренний, диаметру. Решение проблемы было найдено просто: конструкторы первых автомобилей с ДВС позаимствовали у паровых повозок дифференциал – механизм, изобретенный в 1828 году французским инженером Оливером Пекке-Ром.

Он представлял собой устройство, состоящее из валов и шестерней, через которые крутящий момент от двигателя передается на ведущие колеса. Но после установки на автомобиль дифференциала обнаружилась еще одна проблема – пробуксовка колеса, утратившего сцепление с дорогой. Обычно это проявлялось, когда автомобиль двигался по дороге, покрытой участками льда. Тогда колесо, попавшее на лед, начинало вращаться с большей скоростью, чем то, которое находилось на грунте или бетоне, что в итоге приводило к заносу автомобиля. Тогда конструкторы задумались об усовершенствовании дифференциала с тем, чтобы при подобных условиях оба колеса вращались с одинаковой скоростью и автомобиль не заносило. Первым, кто проводил эксперименты с созданием дифференциала с ограниченным проскальзыванием, стал Фердинанд Порше.
Ему понадобилось три года, чтобы разработать, протестировать и выпустить на рынок так называемый кулачковый дифференциал – первый механизм с ограниченным проскальзыванием, который устанавливался на первые модели марки Volkswagen. Впоследствии инженеры разработали различные виды дифференциалов, о которых речь пойдет ниже. В автомобиле дифференциал выполняет три функции: 1) передает крутящий момент от двигателя к ведущим колесам, 2) задает колесам разные угловые скорости, 3) служит понижающей передачей в сочетании с главной передачей.

Главная передача

При движении автомобиля крутящий момент от коленвала двигателя передается коробке передач и затем, через главную передачу и дифференциал, на ведущие колеса. Главная передача позволяет увеличивать или уменьшать крутящий момент передаваемый колесам автомобиля и одновременно уменьшать и соответственно увеличивать скорость вращения колес. Передаточное число в главной передаче подбирается таким образом, что максимальный крутящий момент и частота вращения ведущих колес находятся в наиболее оптимальных значениях для конкретного автомобиля. Кроме того, главная передача очень часто является объектом тюнинга автомобиля.

Устройство главной передачи

По сути, главная передача — это не что иное, как шестеренчатый понижающий редуктор, в котором ведущая шестерня связана с вторичным валом КПП, а ведомая – с колесами автомобиля. По типу зубчатого соединения главные передачи различаются на следующие разновидности:

  • цилиндрическая – в большинстве случаев применяется на автомобилях с поперечным расположением двигателя и коробки передач и передним приводом;
  • коническая – применяется очень редко, так как имеет большие габариты и высокий уровень шума;
  • гипоидная – наиболее востребованная разновидность главной передачи, которая применяется на большинстве автомобилей с классическим задним приводом. Гипоидная передача отличается малыми размерами и низким уровнем шума;
  • червячная – практически не применяется на автомобилях по причине трудоемкости изготовления и высокой стоимости.

Также стоит отметить, что автомобили с передним и задним приводом имеют различное расположение главной передачи. В переднеприводных автомобилях с поперечным расположением КПП и силового агрегата, цилиндрическая главная передача располагается непосредственно в картере КПП.

В автомобилях с классическим задним приводом главная передача установлена в корпусе ведущего моста и соединена с коробкой передач посредством карданного вала. В функционал гипоидной передачи заднеприводного автомобиля также входит и разворот вращения на 90 градусов за счет конических шестерен. Несмотря на различные типы и расположение, предназначение главной передачи остается неизменным.

Разновидности дифференциалов

По виду блокировки дифференциалы делятся на два – ручная и электронная блокировка. Ручная, как следует из названия, производится водителем вручную при помощи кнопки или тумблера. В этом случае шестерни-сателлиты механизма блокируются, ведущие колеса двигаются с одинаковой скоростью. Обычно ручная блокировка дифференциала предусмотрена на внедорожниках. Ее рекомендуется включать при преодолении сложного бездорожья и отключать при выезде на обычные дороги.

 

Электронная или автоматическая блокировка дифференциала осуществляется при помощи электронного блока управления, который, анализируя состояние дорожного покрытия (используется информация с датчиков ABS и антипробуксовочной системы), сам блокирует шестерни-сателлиты. Задний дифференциал с электронным управлением Range Rover Sport По степени блокировки это устройство делится на дифференциал с полной блокировкой и дифференциал с частичной блокировкой шестерен-сателлитов. Полная блокировка дифференциала предполагает 100%-ную остановку вращения шестерен-сателлитов, при которой сам механизм начинает выполнять функцию обычной муфты, передавая равнозначный крутящий момент на обе полуоси.

Вследствие этого оба колеса вращаются с одинаковой угловой скоростью. Если же одно из колес теряет сцепление с дорогой, весь крутящий момент передается на колесо с лучшим сцеплением, что позволит преодолеть бездорожье. Такое устройство дифференциала используется на внедорожниках Toyota Land Cruiser, Mercedes-Benz G-Class и других. Полная блокировка дифференциала Частичная блокировка дифференциала предполагает неполную остановку вращения шестерен-сателлитов, то есть с проскальзыванием. Достигается такой эффект за счет так называемых самоблокирующихся дифференциалов.

В зависимости от того, каким образом срабатывает этот механизм, их делят на два вида: Speed sensitive (функционируют при разнице в угловых скоростях вращения полуосей) и Torque sensitive (функционируют при уменьшении крутящего момента на одной из полуосей). Такое устройство дифференциала используется на внедорожниках Mitsubishi Pajero, Audi с системой полного привода Quattro, BMW с системой X-Drive и так далее. Дифференциалы, относящиеся к группе Speed sensitive, имеют разную конструкцию. Существует механизм, в котором роль дифференциала играет вискомуфта. Она представляет собой резервуар, расположенный между полуосью и ротором карданного вала, заполненный специальной вязкой жидкостью, в которую, в свою очередь, погружены диски, сочлененные с полуосью и ротором. Когда угловая скорость вращения колес разнится (одно колесо вращается быстрее другого), диски в резервуаре тоже начинают вращаться с разными скоростями, но вязкая жидкость постепенно выравнивает их скорость, и, соответственно, крутящий момент.

Как только угловые скорости обоих колес сравняются, вискомуфта отключается. По своим характеристикам вискомуфта менее надежна, чем фрикционный дифференциал, поэтому ее устанавливают на машины, предназначенные для преодоления бездорожья средней степени или спортивные модификации автомобилей. Еще один механизм дифференциала, относящийся к группе Speed sensitive – героторный дифференциал.

Здесь роль блокировки, в отличие от вискомуфты, играет масляный насос и фрикционные пластины, которые монтируются между корпусом дифференциала и шестерней-сателлитом полуосей. Но принцип действия во многом схож с таковым у вискомуфты: при возникновении разницы в угловых скоростях ведущих колес насос нагнетает масло на фрикционные пластины, которые под давлением блокируют корпус дифференциала и шестерню полуоси до тех пор, пока скорости вращения колес не сравняются. Как только это происходит, насос перестает работать и блокировка отключается.

Дифференциалы, относящиеся к группе Torque sensitive, тоже имеют разную конструкцию. К примеру, есть механизм, в котором используется фрикционный дифференциал. Его особенностью является разность угловых скоростей вращения колес при движении автомобиля на прямой и в повороте. При езде по прямой дороге угловая скорость обоих колес одинаковая, а при прохождении поворота ее значение различно для каждого колеса. Это достигается за счет установки между корпусом дифференциала и шестерней-саттелитом фрикциона, который способствует улучшению передачи крутящего момента на колесо, утратившее сцепление с дорогой. Еще один тип дифференциалов — с гипоидным (червячным или винтовым) и косозубым зацеплением.

Их условно делят на три группы. Первая – с гипоидным зацеплением, в которой у каждой полуоси есть собственные шестерни-сателлиты. Они объединятся между собой при помощи прямозубого зацепления, причем ось шестерни располагается по отношению к полуоси перпендикулярно. При возникновении разницы в угловых скоростях ведущих колес, шестерни полуосей расклиниваются, образуется трение между корпусом дифференциала и шестернями. Происходит частичная блокировка дифференциала и крутящий момент передается на ту ось, угловая скорость вращения которой меньше. Как только угловые скорости колес выровняются, происходит деактивация блокировки.

Вторая – с косозубым зацеплением, в которой у каждой полуоси также есть свои шестерни-сателлиты (они винтовые), но их оси располагаются параллельно полуосям. А объединяются эти агрегаты между собой при помощи косозубого зацепления. Сателлиты в этой механизме установлены в специальных нишах на корпусе дифференциала. Когда угловая скорость вращения колес различается, происходит расклинивание шестерен, и они, сопрягаясь с шестернями в нишах корпуса дифференциала, частично блокируют его.

При этом крутящий момент направляется на ту полуось, скорость вращения которой меньше. Третья – с косозубыми шестернями полуосей и винтовыми шестернями сателлитов, которые располагаются параллельно друг другу. Такой тип используется в конструкции межосевого дифференциала. Благодаря планетарной конструкции дифференциала, имеется возможность посредством частичной блокировки смещать крутящий момент на ту ось, угловая скорость вращения колес которой меньше. Диапазон такого смещения весьма широк – от 65/35 до 35/65. При установлении равнозначной угловой скорости вращения колес передней и задней оси дифференциал разблокируется. Эти группы дифференциалов получили самое широкое применение в автомобилестроении: их устанавливают как на «гражданские» модели, так и на спортивные.

ПОХОЖИЕ СТАТЬИ:

  • Что такое трансмиссия и как она работает — фото видео.
  • Как уменьшить расходы на покупку новой машины?
  • Как не ошибиться при выборе видеорегистратора для авто?
  • Как проверить и заменить катушку зажигания — фото видео.
  • Почему классические автомобили так популярны?
  • Бмв е39 технические характеристики история модели фото видео.
  • БМВ 5-серии: обзор,описание,характеристики,комплектация,цена,фото,видео.
  • Новый двигатель TSI от кампании Фольксваген
  • Гелевые аккумуляторы:описание,виды,устройство,зарядка.
  • Механическая коробка передач — как работает и что это такое
  • Мерседес S-class W140: обзор,описание,фото,видео,характеристика
  • Тормозные барабаны: описание,фото,видео,типы,устройства
  • 5 внедорожников, которые падают в цене
  • Опель Зафира 2019: фото,комплектации,характеристики,цена,обзор
  • Женщина атакует VW Golf трубой, а затем своим собственным автомобилем.

устройство, виды и принцип работы

Дифференциал – это механизм трансмиссии, распределяющий подводимый к нему крутящий момент между приводными валами и позволяющий колесам вращаться с разными угловыми скоростями. Особенно это заметно, когда машина проходит поворот. Дифференциал обеспечивает безопасное и комфортное вождение на сухой дороге с твердым покрытием. Однако если автомобиль покинет ее пределы и продолжит двигаться по пересеченной местности, а также в случае гололеда (и других тяжелых погодных условий) этот механизм может лишить автомобиль возможности передвигаться. О том, что такое дифференциал, как он устроен, в чем его вред для внедорожников и как с этим бороться — пойдет речь ниже.

Дифференциал как часть трансмиссии

Дифференциал в автомобиле  —  это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.

межколёсный дифференциалмежколёсный дифференциалВедуший мост с дифференциалом в разрезе

При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения — механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) — нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними  в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.

Схема расположения дифференциала зависит от типа привода автомобиля:

  1. Передний привод – картер коробки передач.
  2. Задний привод – корпус ведущего моста.
  3. Полный привод – корпусы переднего и заднего мостов (для передачи крутящего момента ведущим колесам) или раздаточная коробка (для передачи крутящего момента ведущим мостам).

Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.

Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы.  Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.

Пробуксовка в таких условиях часто приводила к  авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.

Как устроен дифференциал

Что такое дифференциалЧто такое дифференциалПринципиальная схема дифференциала

Узел работает как планетарный редуктор. Принципиальное устройство дифференциала: шестерни полуосей (5) и сателлитов (4) размещены в чашке (3). Чашка (корпус) жестко соединена с ведомой шестерней (2), которая принимает крутящий момент от ведущей шестерни главной передачи (1). Корпус передает вращение посредством сателлитов полуосям, вращающим ведущие колеса. Разные угловые скорости обеспечиваются благодаря работе сателлитов. Величина крутящего момента остается неизменной.

Применение дифференциалов в зависимости от их видов

Устройства используют для передачи крутящего момента ведущим колесам и ведущим мостам автомобиля .

Грузовики и легковые автомобили всех типов приводов имеют межколесный дифференциал, передающий вращение колесам. Межосевой дифференциал, распределяющий крутящий момент между мостами, применяют исключительно в полноприводных машинах.

По типу применяемой зубчатой передачи различают следующие виды механизмов:

    Автозагадка: Механик. ч.2: ru_auto — LiveJournal

    Это ответ на вчерашнюю Автозагадку.

    mech_title3

    Лучший ответ, наиболее полно описывающий последовательность повреждений, дал das_gloom . Так же верный ответ дал son_of_anarchy , кроме того он в целом верно объяснил, что это ошибка производителя. Однако причину возникновения первичного дефекта никто правильно не указал. Так что кина приза не будет. Зато будет подробное объяснение и многобукв.


    Но в начале краткие ответы на вопросы загадки. Потом будут разъяснения и размышления.

    Краткие ответы

    1. Что явилось первичным дефектом, повлекшим разрушение механизма?

    Заклинивание сателлита на оси является  первичным дефектом, приведшем  к появлению последующих дефектов.

    Разрушение ступичной части ведомого диска с наибольшей вероятностью так же вызвано заклиниванием сателлита и возникшим в результате этого ударом в трансмиссии.


    Локальные  следы перегрева в виде следов побежалости на рабочих поверхностях маховика и нажимного диска корзины сцепления не имеют непосредственного отношения к заклиниванию сателлита.

    2. Что является причиной возникновения первичного дефекта?

    Причиной возникновения первичного дефекта «заклинивания сателлита на оси» является работа подшипника в условиях граничного трения, вызванного недостатком смазки в зоне образования масляного клина при вращении с относительно  большой угловой скоростью .

    3. В допустимом ли режиме происходила эксплуатация деталей, приведшая к появлению дефектов?

    К появлению первичного дефекта «заклинивания сателлита на оси» привела эксплуатация  дифференциала в режиме, при котором происходит вращение сателлитов с большой угловой скоростью, таким режимом  является пробуксовка одного колеса, когда одно колесо стоит или медленно катится, а другое вращается с большой скоростью. Пробуксовка  является допустимым режимом эксплуатации автомобиля (Например, зимой во время разгона, когда одно колесо попадает на лёд, или летом когда одно колесо попадает на скорости в лужу и появляется эффект аквапланирования).

    4. Если возможно, как устранить причины появления дефектов?

    Для устранения причины появления граничного трения в подшипнике шестерни сателлита, необходимо выполнить определённые конструктивные мероприятия, обеспечивающие   подачу достаточного количества масла в зону масляного клина.  Наиболее известными конструктивными мероприятиями являются  сверления в шестерне сателлита, либо  маслоподающие  канавки на поверхности вала сателлитов, как, например, в дифференциале ВАЗ-2108.

    5. Какой характер носит причина появления дефектов: эксплуатационный или конструктивный?

    Причина появления дефектов является работа подшипника в условиях граничного трения, эта причина заложена в конструкции узла и, соответственно, носит конструктивный характер.Многобукв

    Исследование контактных следов на корпусе дифференциала и оси сателлитов позволило установить, что повреждения возникли в момент частичного выхода оси сателлитов из корпуса дифференциала .

    Вышедшая из вращающегося корпуса ось зацепилась за детали коробки передач, в результате чего произошёл удар в трансмиссии и изгибание оси сателлитов.От выхода из корпуса ось сателлитов удерживается  фиксирующим штифтом.

    Характер разрушения штифта характерен для среза

    4

    По направлению среза удалось установить, что срез штифта вызван  проворотом  оси сателлитов. Причиной проворота оси сателлитов является заклинивание одного из сателлитов на оси. Следы заклинивания в виде задиров и переноса металла имеются на наружной  поверхности оси сателлитов и внутренней поверхности одного сателлита. Таким образом, заклинивание сателлита на оси явилось первичным дефектом,  приведшем к дальнейшим разрушениям. Повреждения зубьев шестерней привода  полуосей вызвано ударом, возникшим в трансмиссии в момент зацепления оси сателлит за детали коробки передач. Разрушение ступичной части ведомого диска, с наибольшей вероятностью, так же вызвано ударом в трансмиссии. Локальные  следы перегрева в виде следов побежалости на рабочих поверхностях маховика и нажимного диска корзины сцепления, не имеют непосредственного отношения к заклиниванию сателлита и последствиям этого. Данные следы свидетельствуют о тяжёлых условиях эксплуатации сцепления и могу иметь к поломкам только косвенное отношение.Наружная поверхность вала сателлитов и внутренняя поверхность сателлита представляют собой подшипник трения. Для того, чтобы понять причину заклинивания пошипника,  необходимо разобраться в различных видах трения, возникающих в подшипнике.

    Граничное трение —  толщина смазывающего слоя меньше микронеровностей. Трущиеся поверхности разделены тончайшими пленками (не больше 1 мкм), которые образуются в результате адсорбции.

    Жидкое трение —  трущиеся поверхности полностью разделены смазочным слоем. Этот режим реализуется при одновременном выполнении следующих условий:
    а) скорость скольжения должна быть выше критической
    б) должен иметься клиновый зазор между поверхностями, в) направление скорости должно быть перпендикулярно контактной линии. Возникающее при этих условиях гидродинамическое давление создает подъемную силу, которая и разделяет движущиеся поверхности. Изнашивание при этом минимально. Коэффициент трения уже не зависит от материала сопряженных поверхностей, а определяется трением смазочного материала о твердые поверхности и возрастает с ростом скорости.

    Полужидкое трение — толщина смазывающего слоя недостаточна для полного разделения поверхностей.  Это смешанный режим, когда часть поверхности испытывает  граничное, а другая часть – жидкое трение. То есть, непосредственное взаимодействие поверхностей частично сохраняется. При этом в локальных клиновых зазорах, образованных микронеровностями, возникает гидродинамический эффект. С ростом скорости вклад гидродинамического давления увеличивается, толщина смазывающего слоя растет. В режиме полужидкостной смазки коэффициент трения уменьшается с ростом скорости.

    Таким образом, режим граничного трения является самым неблагоприятным для работы подшипника. Как отмечалось выше, недостаток смазки при граничном трении приводит к контактному взаимодействию выступов на поверхности вала и поверхности  отверстия, в результате чего происходит пластическая деформация выступов, что вызывает  локальный разогрев. В этих условиях защитная пленка разрушается, и материалы трущихся поверхностей свариваются в области контакта микровыступов. За счет относительного движения поверхностей образовавшиеся «мостики» разрываются.  В результате происходит задирание (вырывание приварившихся частиц) и перенос частиц материала с одной поверхности на другую. При большой площади схватывания внешняя сила может оказаться недостаточной для разрыва схватившихся поверхностей , и тогда движение деталей пары трения прекращается, происходит так называемое  заклинивание.

    В исследуемом   случае на поверхности вала и в  отверстии сателлита наблюдаются все признаки граничного трения, задиры, перенос материала и последующее заклинивание подшипника. Однако картер дифференциала и расположенные в нём сателлиты находятся в масляной ванне и, следовательно, не должны испытывать недостаток в масле, способный вызвать граничное трение.

    Если рассмотреть внутреннюю поверхность сателлита, то нетрудно заметить, что задиры и следы граничного трения расположены в средней части подшипника, приблизительно на равном удалении от торцев подшипника:

    016

    Следовательно, только средняя часть, удалённая от  краёв, испытывала недостаток смазки.

    При вращении сателлита на валу масло в подшипник подаётся через торцы подшипника и затем через зазор проникает внутрь. При вращении под действием внешних сил вал занимает в подшипнике эксцентрическое положение и увлекает масло в зазор между ним и подшипником:

    026В результате чего создаётся так называемый масляный клин, который обеспечивает жидкое трение. Условия сохранения жидкого трения-  это постоянная подача масла в зону образования клина и вращение вала относительно подшипника. При этом увеличение скорости вращения приводит к увеличению количества масла прокачиваемого через масляный клин. Поскольку подача масла происходит через постоянный зазор между валом и подшипником, то, следовательно, его количество, поступающее в подшипник, также постоянно и зависит только от вязкости масла.

    Таким образом, при определённой скорости вращения сателлитов количество масла способного пройти через зазор будет недостаточно для образования полноценного масляного клина. Поскольку подача масла осуществляется от торцев к центру подшипника, то первым перейдёт в режим граничного трения средняя часть подшипника. Именно таким образом в результате вращения  сателлита с относительно большой для данного подшипника скоростью  и произошло  заклинивание сателлита на валу по причине работы подшипника в условиях граничного трения.

    Вращение сателлитов в дифференциале происходит вследствие разной скорости вращения левого и правого колеса. Основной причиной чего является  движение в поворотах, однако такой режим не приводит к появлению высоких угловых скоростей вращения сателлитов. Режимом, при котором происходит вращение сателлитов с большой угловой скоростью, является пробуксовка одного колеса, когда одно колесо стоит или медленно едет, а другое вращается с большой скоростью. Пробуксовка не является аномальным режимом эксплуатации. Такой режим может появиться не только при езде по бездорожью, но и при движении по дорогам с твёрдым покрытием.

    Например, зимой во время разгона, когда одно колесо попадает на лёд, или летом когда одно колесо попадает на скорости в лужу и появляется эффект аквапланирования. При таких режимах за короткое время колесо может раскрутиться до высоких оборотов, а если после этого оно попадает на асфальт, то в дополнение происходит удар в трансмиссии, который может только усилить нагрузку на подшипник.

    Таким образом, появление пробуксовки на дороге с твёрдым покрытием не является нарушением правил эксплуатации, и поэтому детали автомобиля должны выдерживать нагрузки, возникающие при таком режиме эксплуатации. Поэтому заклинивание сателлита на валу не может являться эксплуатационным дефектом. Такое заклинивание происходит, как сказано выше, вследствие недостаточного количества масла в зоне масляного клина.

    Для обеспечения необходимого количества масла в зоне масляного клина необходимо выполнить определённые мероприятия, обеспечивающие его  подачу.  Наиболее известными конструктивными мероприятиями являются  сверления в шестерне сателлита, либо  маслоподающие  канавки на поверхности вала сателлитов, как, например, в дифференциале ВАЗ-2108.

    7

    Отсутствие конструктивных мероприятий, обеспечивающих подачу масла в зону масляного клина подшипника шестерни дифференциала,  является конструктивным дефектом.

    Размышления

    1. son_of_anarchy дал верный коментарий, но дело в том, что масла было предостаточно. Смазку ведь ещё и подвести нужно правильно. А что масла достаточно ещё не означает, что оно в зоне контакта. Так что это конструкторская недоработка.

    Масло было нормальным. Был полный дифференциал масла: сам дифференциал целый, шестерни целы, подшипники изумительные. Нет следов масляного голодания. И вдруг у тебя явные следы масляного голодания на двух парах трения. Да, понятно, что это было во время буксования: одно колесо стояло, другое вращалось. И поломка  случилась зимой, во время буксования, очевидно, достаточно сильного. Не учли немцы эксплуатацию автомобиля в наших условиях. У нас буксовка на льду — обычная ситуация на наших дорогах, в наших дворах.  Да и масло с утра загустевшее. В альтернативных конструкциях эта проблема учтена. См. выше. На старых ауди есть такие канавки.

    2. Есть такое предубеждение, что если это не жигули, а Фольксваген (а это именно Фольксваген), то инженеры там просто ангелы: они просто не могут ошибиться. Это не совсем так.

    Спасибо за ответы. Инженеры в ру_авто есть. Может будет ещё одна загадка в августе.

    Дифференциал с повышенным внутренним сопротивлением — Википедия

    Дифференциал с повышенным внутренним сопротивлением (также: дифференциал ограниченного проскальзывания (LSD), дифференциал повышенного трения, самоблокирующийся дифференциал) — это дифференциал, механика работы которого за счёт конструктивно заложенного повышенного внутреннего сопротивления между некоторыми вращающимися деталями позволяет такому дифференциалу без каких-либо управляющих воздействий извне выравнивать самостоятельно угловые скорости ведущего и ведомых звеньев вплоть до полной их взаимной блокировки и превращения всего дифференциала в прямую передачу.

    Следует иметь в виду, что в англоязычной литературе данные дифференциалы обозначаются как «LSD (Limited-Slip Differential)», т.е. дифференциал ограниченного проскальзывания, и данный термин не определяет физического принципа работы устройства, наличия управления им и т.д. Имеет значение лишь сама функция блокировки неконтролируемой разницы в угловых скоростях приводов («проскальзывания»). «Ограниченность проскальзывания» подразумевает некий заданный предел разницы угловых скоростей, при превышении которого начинает срабатывать блокировка.

    Преимущества[править | править код]

    Основное преимущество дифференциала с повышенным внутренним сопротивлением (далее — ДПВС) можно увидеть, рассмотрев случай с обычным (или «открытым») дифференциалом, у которого одно колесо вообще не имеет контакта с дорогой. В этом случае второе колесо, контактирующее с дорогой, будет оставаться неподвижным, и первое, не контактирующее с дорогой колесо, будет вращаться свободно — передаваемый крутящий момент будет равным на обоих колёсах, но не будет превышать порогового значения момента, необходимого для движения транспортного средства, и поэтому транспортное средство будет оставаться неподвижным. В обычных автомобилях, движущихся по асфальтовым дорогам, такая ситуация маловероятна, и поэтому для таких автомобилей обычный дифференциал вполне подойдёт. При вождении в более сложных условиях, например, при движении в грязи или по бездорожью, подобные ситуации случаются, и наличие дифференциала с повышенным внутренним сопротивлением позволяет не останавливать движение. За счёт ограничения разницы в угловых скоростях колёс полезный момент передаётся до тех пор, пока хотя бы одно из колёс имеет сцепление с дорогой.

    Коэффициент блокировки[править | править код]

    Коэффициент блокировки есть важнейшее оценочное свойство любого ДПВС. В информационных материалах о ДПВС этот коэффициент может выражаться двояко и несколько отличаться по смыслу толкования, хотя в обоих случаях подразумевать одно и то же, только с разных точек зрения.

    В иностранной технической литературе КБ обычно выражается посредством процентного значения в десятках процентов в диапазоне от 20 % и выше. Цифра обозначает покрываемую конкретным ДПВС ширину диапазона относительного распределения крутящего момента между колёсами/осями от заложенного в дифференциала статического (с поправкой на его возможную несимметричность) до максимального уровня в 100/0, в пределах которого ДПВС может обеспечить взаимную блокировку. Данное определение подпадает под англоязычный термин Locking Effect («блокировочный эффект»). В русскоязычной технической литературе КБ выражается через число от 2 и выше (обычно, без десятичных дробей), обозначающее максимально возможную разницу в крутящих моментах (разницу в силе тяги) на колёсах/осях, в пределах которой данный ДПВС может обеспечить их взаимную блокировку. Данное определение КБ соответствует английскому термину Torque Bias («сдвиг момента»).

    Показано соотношение между КБ в числовом и процентном значениях

    Хотя оба понятия КБ предполагают под собой разные формулы подсчёта, абсолютно любой ДПВС может быть корректно оценён любым из них. При этом, каждое из двух значений КБ можно соотнести с общим оценочным показателем, а между обеими значениями всегда имеется взаимооднозначное соответствие. Так, например, значение КБ=50 % и КБ=3 означает в обоих случаях одно и то же: что ДПВС с указанными КБ допускает перераспределение крутящего момента между колёсами/осями в соотношении не более чем 75/25, что с одной стороны даёт 50 % полного диапазона возможного перераспределения эффективно используемого крутящего момента (75-25=50), а с другой стороны даёт 3-х кратную разницы в возможной силе тяги (75/25=3). Числовое (не процентное) значение КБ, возможно, здесь более интуитивно понятно, тем более, что помимо своего основного смысла, оно предполагает аналогичную разницу в допустимой силе сцепления колёс/осей с поверхностью, что в том же случае КБ=3 означает, что максимально эффективное использование мощности двигателя на этом ДПВС возможно только если сила сцепления каждого колеса с поверхностью дороги будет отличаться не более чем в три раза.

    Простой (свободный) дифференциал не позволяет получить какую-либо разницу в эффективно-используемых крутящих моментах на ведомых звеньях, здесь разница между силой тяги обоих колёс/осей практически нулевая на любых режимах, КБ такого дифференциала равен 0 % или 1. Прямая передача или заблокированный дифференциал позволяют весь эффективно используемый крутящий момент реализовать на любом ведомом звене, здесь любое колесо/ось могут обеспечить всю тягу при нулевой уровне тяге на другом колесе/оси, а КБ в данном случае равен 100 % или бесконечности.

    ДПВС может иметь два верхних значения КБ — по одному для каждой ветви мощности. Такое возможно в случаях несимметричного дифференциала, когда КБ получает поправку на несимметричность — то есть, верхние значения КБ для каждой из сторон отличаются друг от друга на разницу в соотношении раскладываемых крутящих моментов (например, в несимметричном заднем кулачковом межколёсном ДПВС грузового автомобиля ГАЗ-66, раскладывающим крутящий момент по колёсам в соотношении ≈(60/40), значения КБ для правого и левого колёс равны, соответственно, 3.1 и 2.1). И такое возможно в симметричных дифференциалах, когда это конструктивно допустимо механикой работы блокировки (например, в симметричном червячном ДПВС Torsen Type-1 разные значения КБ можно реализовать через разные углы нарезки зубьев в каждой паре сателлит-шестерня).

    Обычно под КБ конкретного ДПВС подразумевается его максимальный КБ. При этом у любого ДПВС существует значение так называемого начального КБ, которое обычно не декларируется.

    Преднатяг[править | править код]

    Под этим термином подразумевается создание в ДПВС внутреннего сопротивления взаимному вращению ведомых звеньев в статике, то есть, при отсутствии подачи на дифференциал какого-либо самого минимального крутящего момента. Величина уровня преднатяга определяется усилием, необходимым для сдвига (поворота) любой ведомого звена дифференциала при неподвижном ведущем звене. В свободном дифференциале уровень преднатяга близок к нулю. Преднатяг, если он есть, «работает» всегда, независимо от того, нагружен ДПВС тяговым или тормозным крутящим моментом или не нагружен. Наличие преднатяга не есть обязательное условие работы ДПВС.

    Так называемая «муфта преднатяга» предполагает под собой некое устройство внутри ДПВС, выполняющее вышеупомянутые функции и затрудняющее взаимное вращение ведомых шестерён дифференциала. Конструкция этого устройства не имеет универсального вида и на разных ДПВС может быть любой. Обычно это есть распорные пружины разной формы, дополненные дистанционными кольцами.

    В пассажирских автомобилях как правило используются два типа ДПВС:

    Дифференциалы обоих типов допускают наличие некоторой конструктивно запрограммированной разницы между крутящими моментами (в первом случае) или угловыми скоростями (во втором случае), но налагают механическое ограничение на возникновение большой их диспропорции.

    Винтовая блокировка[править | править код]

    Конструктивно дифференциалы с винтовой блокировкой могут быть выполнены на основе любого плоского однорядного или двухрядного планетарного механизма схем или с параллельными осями сателлитов, которые, в свою очередь, могут быть как одиночными, так и парными взаимозацепленными. Общем для любого вида исполнения будут две особенности: использование цилиндрических косозубых шестерён во всех парах зацепления и отсутствие фактических осей сателлитов как деталей. Винтовая передача, как таковая, здесь не используется, и широко употребимый термин происходит исключительно от визуального сходства сателлитов дифференциала с винтом, особенно на контрасте с его основными шестернями. А шестерни-сателлиты здесь вращаются не на осях, а в цилиндрических карманах, отфрезерованных в корпусе/водиле дифференциала. Идея блокировки основана на том, что в косозубом зацеплении под нагрузкой возникают осевые силы, стремящиеся раздвинуть по своим осям обе зацепленные шестерни в противоположные от плоскости контакта стороны, и здесь это свойство в первую очередь использовано в парах взаимозацепленных сателлитов, которые для этого получают некоторую осевую подвижность. Под тягой, при повороте или пробуксовке колеса, вращающиеся сателлиты расклиниваются в своих карманах, упираются торцами в корпус дифференциала, за счёт чего происходит их торможение и самовыравнивание угловых скоростей ведомых шестерён. Расклинивание сателлитов тем сильнее, чем выше передаваемый ими крутящий момент, но сам коэффициент блокировки определяется углом наклона зубьев зацепления и фрикционными свойствами пар контакта сателлит/корпус. Для усиления эффекта самоторможения в данных дифференциалах обычно применяют более чем минимально необходимые для плоского планетарного механизма три пары сателлитов — а именно, от четырёх до семи пар. И для усиления фрикционного эффекта в точках контакта торцов сателлитов с корпусом дифференциала могут применяться диски-прокладки из материала, создающего повышенное сопротивление при трении. В случае одиночных сателлитов работа дифференциала в принципе аналогична, с тем лишь отличием, что здесь в самоторможение вовлечены не только сателлиты, но и центральные шестерни дифференциала.

    Ввиду того, что шестерни с косозубым зацеплением могут быть использованы на плоских планетарных механизмах любой схемы и формы, дифференциалы на их основе можно выполнить с практически любыми заданными передаточными отношениями в каждой паре звеньев ведущее-ведомое. Соответственно, такие дифференциалы могут быть как симметричные, так и несимметричные, и применяться в трансмиссии и как межколёсные и как межосевые. На этих дифференциалах активно используется преднатяг, а блокирующий момент здесь создаётся в тяговом режиме даже при отсутствии разницы в угловых скоростях на выходе. Но исключительно на косозубом зацеплении высокие значения коэффициента блокировки не доступны (обычно < 3), и для усиления эффекта такие дифференциалы могут дополняться фрикционными пакетами по типу дифференциалов с дисковой блокировкой.

    Дифференциалы с винтовой блокировкой очень широко распространены по сей день. Основная их область применения — спортивные и гоночные автомобили. Также они применяются как тюнинговые для незначительного улучшения проходимости в дорожных автомобилях. Однако на истинно внедорожной технике они обычно не используются. Наиболее известны образцы от британской компании Quaife Engineering и американской Torsen NA Inc.. В первом случае дифференциал так и называется — Quaife. Во втором случае — это так называемые Torsen Type-2 и Torsen Type-3.

    Червячная блокировка[править | править код]

    Конструктивно все дифференциалы с червячной блокировкой выполнены на основе простых пространственных планетарных механизмов схемы с сателлитами на . Визуально пары зацепления солнце-сателлит здесь выглядят как червячная передача, в которой оси червячного колеса и самого червяка также перпендикулярны друг-другу и не пересекаются. В роли червяка и в роли червячного колеса здесь могут выступать как сателлиты, так и ведомые шестерни, и имеются разработки червячной блокировки с обеими вариантами распределения ролей между шестернями. Идея блокировки основана на том, что червячной передаче свойственно самоторможение в случаях направления мощности от червячного колеса к червяку, которое тем сильнее, чем больше угол наклона нарезки зубьев червяка к его оси вращения.

    Хотя дифференциал с червячной блокировкой наиболее известен в варианте, разработанном американской Torsen NA Inc., — так называемый Torsen Type-1 — сама компания-разработчик почему-то избегает термина «червячная передача» при описании своего дифференциала. Зубчатая передача здесь декларируется как косозубая на перекрещивающихся осях, но не просто косозубая, а с некоей специфической, разработанной самой Torsen и запатентованной ими же формой зубьев Invex™, фактически являющейся частным вариантом эвольвентного зацепления. В русскоязычной инженерно-технической литературе считается, что в Torsen Type-1 роль червяков выполняют ведомые шестерни, а роль червячных колёс — сателлиты. Объяснение этому проистекает из разного угла наклона косозубой нарезки на ведомых шестернях и сателлитах. Необычная трёхрядная форма сателлита с прямозубым зацеплением по краям и косозубым в центре объясняется исключительно тем, что ввиду компоновки с перекрещивающимися осями конструктивно невозможно организовать через одну и ту же зубчатую нарезку одновременный зацеп как сателлитов с ведомыми шестернями, так и сателлитов между собой, и к повышению внутреннего сопротивления дифференциала эта особенность не имеет отношения. Обе ведомые шестерни здесь имеют сонаправленную нарезку зубьев и некоторую минимальную осевую подвижность, которая, как и в случае дифференциалов с винтовой блокировкой, необходима для сдвига обеих шестерён вдоль оси под нагрузкой, только в данном случае не для контакта с корпусом, а для их взаимного самоторможения друг о друга, что вносит существенный вклад в общее повышение внутреннего сопротивления. Дифференциал момент-чувствительный. Коэффициент блокировки в разных вариантах — 3-6. Дифференциал визуально и кинематически симметричен, и в случае межосевого использовался на модификациях AWD машин, изначально переднеприводных. Вообще, Torsen Type-1 есть один из наиболее известных моделей ДПВС. Он широко использовался в гоночных автомобилях WRC и Формулы-1 разных лет и в качестве межколёсного и в качестве межосевого. А на дорожных легковых автомобилях он стал совершенно однозначной ассоциацией с системами полного привода от Audi — Quattro — хотя в последних разработках Audi применяла и иные варианты. Среди внедорожных машин известным носителем данного ДПВС является Hummer h2.

    Настоящими дифференциалами с червячной блокировкой и высокими (порядка 10 и даже выше) коэффициентами блокировки были американские и немецкие разработки для грузовых автомобилей повышенной проходимости. В данном случае конструкция планетарного механизма ДПВС предполагала тройные взаимозацепленные сателлиты, из которых два сателлита были червяками, а один — червячным колесом. Также, червячными колёсами были ведомые шестерни, а всего в дифференциале было 8 червяков и 6 червячных колёс двух типоразмеров. Основные попытки относительно массового применения этих ДПВС пришлись на предвоенные годы. В СССР этот тип ДПВС испытывался после войны, как в виде трофеев от Rheinmetall-Borsig AG, так и в виде домашних разработок «улучшенной» конструкции на основе немецкой. Данные по конкретным американским и немецким носителям отсутствуют, хотя считается, что дифференциалы с червячной блокировкой были широко распространены на различных грузовиках и тягачах для бездорожья и карьерных разработок. В СССР единственный более-менее массовый носитель — Урал-375Д. Современное использование — вероятно, нулевое.

    Дисковая блокировка[править | править код]

    Разобранный дифференциал с дисковой блокировкой

    Конструктивно дифференциал с дисковой блокировкой всегда состоит из планетарного механизма схемы на конических шестернях, дополненного парой миниатюрных конических фрикционных муфт и парой многодисковых фрикционных пакетов, располагающихся по оси дифференциала с обеих его сторон между ведомыми шестернями и корпусом. Часть фрикционных дисков здесь зацеплена с корпусом дифференциала, а часть — с миниатюрным конусообразным сцеплением, которое сопрягается каждое со своей ведомой шестернёй (солнцем). Идея блокировки основана на том, что под нагрузкой в конических шестернях возникают осевые силы, стремящиеся раздвинуть зацепленные шестерни друг от друга, и в отличие от свободного дифференциала, где этот эффект стараются нивелировать, здесь именно за счёт него и происходит сжатие фрикционных пакетов между ведомыми шестернями и корпусом дифференицала, что в свою очередь приводит к выравниванию угловых скоростей. Помимо конических муфт и фрикционных пакетов для усиления эффекта здесь нередко используется распорная пружина, установленная между ведомыми шестернями. И для усиления эффекта эти дифференциалы обычно имеют не два, а четыре сателлита на крестообразном водиле.

    Разработки подобных дифференциалов известны с довоенного периода — ими занимались американские фирмы LeTurno-Westinghouse и Borg Warner. Современный вид и дисковую блокировку дифференциалы приобрели в 60-х годах, когда появились относительно надёжные фрикционные материалы, что позволило делать всю систему компактной и пригодной для легковых автомобилей. Сегодня используются в качестве межколёсных в задних ведущих мостах как спортивных, так и внедорожных автомобилей. Надёжны, но могут требовать регулировки со временем.

    Кулачковая блокировка[править | править код]

    Кулачковый дифференциал Порше, применявшийся на KdF82

    Конструктивно здесь возможны два варианта исполнения. В одном случае кулачковая муфта, состоящая из двух кулачковых дисков и промежуточного сепаратора с сухарями располагается между обеими ведомыми шестернями свободного дифференциала. Во втором случае, планетарная передача дифференциала вообще не имеет зубчатых колёс: эрзац-водилом дифференциала служит сепараторное кольцо, сателлитами являются сухари, а роль ведомых шестерён выполняют два кулачковых диска или кольца с волнообразным профилем сопряжённой с сепаратором поверхности. В обоих случаях идея блокировки основана на том, что при определённой разнице в угловых скоростях ведомых звеньев сухари расклиниваются между кулачковыми дисками/кольцами и практически моментально блокируют дифференциал. Блокировка здесь срабатывает только от разницы в угловых скоростях. До некоторого значения этой разницы дифференциал работает как свободный, по достижению — сразу блокируется, причём не важно, нагружен он крутящим моментом или нет. Какой-либо переходной режим частичной блокировки между свободным и заблокированным состояниями отсутствует.

    Первые известные разработки кулачковых дифференциалов вероятно принадлежат Фердинанду Порше. Именно его дифференциал пошёл в серию на машинах KdF-Kübelwagen. Сегодня кулачковые самоблокирующиеся дифференциалы в основном используются как межколёсные в автомобилях повышенной проходимости и в военной технике (бронетранспортёрах и пр.).

    Шариковая блокировка[править | править код]

    Конструктивно дифференциалы с шариковой блокировкой представляют собой некий эрзац планетарной передачи симметричной схемы . Формально они не имеют ни шестерён, ни сателлитов в своей конструкции, но фактически, функции составляющих их деталей и общий принцип их работы идентичен конструкции и принципу работы любого настоящего планетарного дифференциала, а механика блокировки определяется повышением внутренного сопротивления работе, как и в остальных типах самоблокирующихся дифференциалов. В роли сателлитов здесь используются шарики, которые плотно набиты в закольцованные канавки в корпусе (водиле) дифференциала, и которые, как и настоящие сателлиты, контактируют одновременно друг с другом и с парой ведомых эрзац-шестерён (двумя солнцами). При небольшой разнице в угловых скоростях шарики, толкая друг-друга, перемещаются в закольцованной канавке в ту или другую сторону, обеспечивая дифференциальное вращение всей конструкции. При достижении некоего уровня разницы в угловых скоростях (пробуксовке) ведомых шестерён шарики не могут её (разницу) поддерживать, за счёт трения самотормозятся в своих канавках и тем самым создают блокировочный эффект.

    Эта конструкция малоизвестна в мировом автопроме и всё её распространение, вероятно, ограничивается Россией и Украиной. Наиболее известные дифференциалы с шариковой блокировкой — это Автоматический Дифференциал Красикова и Автоматический Дифференциал Нестерова.

    Дифференциал с вискомуфтой[править | править код]

    Вязкостная муфта с открытым корпусом.

    Конструктивно дифференциал состоит из простого планетарного механизма абсолютно любой схемы и вискомуфты, соединяющей два его любые звена (два любые вала подачи/снятия мощности). Вискомуфта может располагаться как внутри дифференциала и связывать два ведомых звена, так и снаружи и связывать ведущее и ведомое звено (на принципиальную работы всей системы расположение вискомуфты влияния не оказывает). Идея блокировки основана на свойствах вискомуфты выравнивать угловые скорости двух своих звеньев за счёт свойств дилатантной жидкости. Блокировка срабатывает только от разницы в угловых скоростях. Кратковременно допускается 100 % блокировка. Переходные режимы также активно используются.

    Вязкостные ДПВС менее эффективны в сравнении с вышеупомянутыми механическими ДПВС, так как в них происходит рассеивание энергии. В частности, любая постоянная нагрузка, которая нагревает жидкость внутри муфты, приводит к неустранимым перманентным потерям «дифференциального эффекта».[1]

    Данный ДПВС не стоит путать с использованием вискомуфты в системах так называемого полного привода по требованию.

    Дифференциал с героторным насосом[править | править код]

    В дифференциалах этого типа с одной стороны вращается корпус героторного насоса, а с противоположной стороны вращается вал, соединённый с зубчатым колесом, находящимся внутри насоса. Когда возникает разница в частотах вращения корпуса и зубчатого колеса, насос сжимает рабочую жидкость во внутренней полости насоса. Это обеспечивает передачу вращающего момента к колесу машины, имеющему более сильное сцепление. Системы, основанные на насосах, имеют верхнюю и нижнюю границы прикладываемого давления, и внутреннее демпфирование во избежание гистерезиса. Новейшие системы с героторными насосами имеют компьютерное регулирование выходной мощности, что обеспечивает более высокую подвижность и исключает колебания.

    1. Donnon, Martin et al. Zoom 67. — Express Motoring Publications, 2003. — P. 45–48. — «…the gel used can quite suddenly alter with massive temperature, and lose its ability to generate torque transfer.».

Отправить ответ

avatar
  Подписаться  
Уведомление о