Система динамической стабилизации dsc – Система курсовой устойчивости, система динамической стабилизации, ESP, VSA, VSC, VDC, DSC – назначение, устройство, принцип работы

что это за система на Mazda и как она работает

Современный автомобиль – это масштабный комплекс электронных, гидравлических и механических систем и агрегатов, которые делают каждую поездку комфортной и безопасной. И каждый автопроизводитель стремится добавить в конструкцию своих машин собственные уникальные разработки, чтобы выделяться на фоне конкурентов. Такие разработки могут быть как глобальными, например, использование роторных или оппозитных двигателей, так и узконаправленными, зачастую незаметными на первый взгляд.

Примером подобной разработки является система DSC, которой оснащаются современные модели японского бренда Mazda. Она активно борется с образованием заносов на скользких дорогах, предотвращая тем самым возникновение аварийных ситуаций. И, как показывают результаты тестов и отзывы реальных водителей, справляется она со своей задачей достойно.

Что такое DSC на Мазде

Название DSC – это аббревиатура от Dynamic Stability Control (досл. контроль динамической устойчивости). В официальных русифицированных руководствах от Mazda она определяется как противозаносная система – и такое название полностью отражает назначение DSC в автомобиле.

Данную систему можно считать результатом длительного развития ESP-устройств, которые являются первыми в истории автопрома системами курсовой устойчивости. И задачи нового поколения систем, используемых на Mazda, остались теми же:

  • защита от срывов автомобиля в боковое скольжение;
  • защита от заносов;
  • предотвращение опрокидывания машины.

Для осуществления своих функций DSC-система использует широкий спектр показателей датчиков, что позволяет ей своевременно и точно регулировать интенсивность торможения, а также тягу, передаваемую на отдельные колеса.

В результате на любых дорожных покрытиях, в том числе и в сильный гололед, обеспечивается надежное сцепление и устойчивость, упрощается трогание с места и интенсивные ускорения. Также она предотвращает срыв колес в пробуксовку, если под ними покрытие с разными характеристиками.

Как работает система DSC

Для анализа текущей ситуации и своевременного выявления первых признаков возможного заноса эта система использует показания многих датчиков и агрегатов:

  • угловую скорость, получаемую от 4 активных датчиков;
  • угол поворота руля;
  • скорость вхождения автомобиля в поворот;
  • уровень давления тормозной жидкости;
  • значения поперечного и продольного ускорения;
  • угол рыскания;
  • срабатывание стоп-сигнала и т.д.

Таким образом, система контролирует не только технические характеристики в конкретный момент времени, но и действия водителя. Это обеспечивает эффективную защиту при различных стилях вождения и дорожных ситуациях.

Все эти данные постоянно передаются в вычислительный центр DSC-системы и интерпретируются. Итоговый результат сопоставляется с эталонным значением, которое хранится в памяти устройства. Если отклонения выходят за допустимые пределы, то система начинает предпринимать действия для стабилизации курса автомобиля.

Важно отметить, что DSC не является жестким ограничителем – в ней используется не только конкретная эталонная модель, но и некоторый диапазон возможных отклонений.

Восстановление оптимальной устойчивости и сцепления достигается в результате целого комплекса действий:

  • изменяется режим работы двигателя – прежде всего, создаваемый крутящий момент;
  • увеличивается или уменьшается интенсивность торможения отдельных колес;
  • если машина оборудована активным рулевым управлением, то DCS может автоматически изменять и угол поворота колес;
  • на моделях с адаптивной подвеской также регулируется демпфирование в стойках.

Одним из наиболее важных и сложных моментов в работе DSC-системы является регулировка крутящего момента. Для этого задействуется целый комплекс мер:

  • варьируется положение заслонки дросселя;
  • изменяется интенсивность впрыска топлива или подачи импульсов со свечей;
  • временно меняется величина угла опережения зажигания;
  • предотвращается переключение скоростей в автоматической коробке;
  • если машина полноприводная, то может изменяться распределение крутящего момента между ее осями.

Еще одна важная функция DSC-системы – контроль максимальной скорости. После достижения заданного предельного показателя система направит на БУД сигнал об уменьшении крутящего момента.

Читайте также: Что такое ESP и как работает данная система.

DSC Off — что это за кнопка

Если вы хотите получить полный контроль над автомобилем, вы можете отключить систему DSC. Для этого нужно нажать и удерживать кнопку DSC Off до тех пор, пока на приборной панели не загорится соответствующий сигнал.

Отключить противозаносную систему вам может понадобиться в различных ситуациях. И это не только желание продемонстрировать собственные водительские навыки. DSC может оказаться существенной помехой при попытках выбраться из глубокого снега или грязи. Дело в том, что этот комплекс работает в паре с противобуксовочной системой, задача которой – не дать вам забуксовать. В результате работы этих двух систем при нажатии на педаль газа не будет расти крутящий момент. Поэтому в таких ситуациях рекомендуется отключать DSC.

Включить же ее повторно вы сможете, нажав на ту же кнопку. Также перезапуск ПЗС происходит автоматически после остановки и повторного запуска двигателя.

Читайте также: Что такое система TCS и как она работает.

Похожие статьи

Cистема курсовой устойчивости и динамической стабилизации

В своем стремлении сделать автомобили как можно более безопасными, производители оснащают их всевозможными вспомогательными системами, предназначенными для того, чтобы в нужный момент помочь водителю избежать опасности. Одна из них – это система курсовой устойчивости. На автомобилях разных марок она может называться по-разному: ESC у Honda, DSC у BMW, ESP у подавляющего большинства европейских и американских автомобилей, VDC у Subaru, VSC у Toyota, VSA у Honda и Acura, но предназначение у системы курсовой стабилизации одно – не позволить автомобилю сойти с заданной траектории при любых режимах езды, будь то разгон, торможение, движение по прямой или в повороте.

Работа ESC, VDC и любой другой может быть проиллюстрирована следующим образом: машина движется в повороте с набором скорости, внезапно одна сторона попадает на занесенный песком участок. Сила сцепления с дорогой резко меняется, и это может привести к заносу или сносу. Чтобы предотвратить уход с траектории, система динамической стабилизации моментально перераспределяет крутящего момента между ведущими колесами, и при необходимости подтормаживает колеса. А в случае, если автомобиль оснащен активной системой рулевого управления, изменяется угол поворота колес.

система динамической стабилизации esp

система динамической стабилизации esp

Впервые система курсовой устойчивости автомобиля появилась в далеком 1995 году, тогда получив название ESP или Electronic Stability Programme, и с тех пор стала наибольшее распространенной в автомобилестроении. В дальнейшем устройство всех систем будет рассматриваться на ее примере.

Устройство систем ESC, DSC, ESP, VDC, VSC, VSA

Система курсовой устойчивости представляет собой систему активной безопасности высокого уровня. Она является составной, состоящей из более простых, а именно:

Данная система состоит из набора входных датчиков (давления в тормозной системе, угловой скорости колес, ускорения, скорости поворота и угла поворота руля и других), блока управления и гидравлического блока.

Одна группа датчиков применяется для оценки действий водителя (данные об угле поворота рулевого колеса, давлении в тормозной системе), другая помогает анализировать фактические параметры движения машины (оценивается частота вращения колес, поперечное и продольное ускорение, скорость поворота авто, давление в тормозной).

ЭБУ ESP, основываясь на данных, полученных от датчиков, подает соответствующие команды исполнительным устройствам. Помимо систем, входящих в состав самой ESP, ее блок управления взаимодействует с блоком управления двигателем и блоком управления АКПП. От них он также получает необходимую информацию и посылает им управляющие сигналы.

Система динамической стабилизации работает, посредством гидравлического блока ABS.

Принцип работы систем ESC, DSC, ESP, VDC, VSC, VSA

ЭБУ системы курсовой устойчивости работает непрерывно. Получая информацию от датчиков, анализирующих действия водителя, вычисляет желаемые параметры движения автомобиля. Полученные результаты сравниваются с фактическими параметрами, информация о которых поступает от второй группы датчиков. Несовпадение распознается ESP как неконтролируемая ситуация, и она включается в работу.

схема работы esp

схема работы esp

Стабилизируется движение следующими способами:

  1. подтормаживаются определенные колеса;
  2. изменяется крутящий момент двигателя;
  3. если автомобиль имеет систему активного рулевого управления, изменяется угол поворота передних колес;
  4. если машина имеет адаптивную подвеску, изменяется степень демпфирования амортизаторов.

Крутящий момент мотора изменяется одним из нескольких способов:

  • изменяется положение дроссельной заслонки;
  • пропускается впрыск горючего или импульс зажигания;
  • изменяется угол опережения зажигания;
  • отменяется переключение передачи в АКПП;
  • в случае полного привода осуществляется перераспределение крутящего момента на осях.

Насколько необходима система динамической стабилизации

Существует немало противников каких-либо вспомогательных электронных систем в автомобилях. Все они, как один, утверждают, что ESC, DSC, ESP, VDC, VSC, VSA и прочие только расхолаживают водителей и к тому же являются просто способом вытянуть из покупателя побольше денег. Свои доводы они подкрепляют еще и тем, что еще 20 лет назад, в автомобилях не было подобных электронных помощников, и, тем не менее, водители прекрасно справлялись с управлением.

Надо отдать должное, что доля истины в этих аргументах есть. В самом деле, многие водители, уверовав в то, что помощь ESC, DSC, ESP, VDC, VSC, VSA дает им практически безграничные возможности на дороге, начинают ездить, пренебрегая здравым смыслом. Итог может быть очень печальным.

vsc система курсовой устойчивости

vsc система курсовой устойчивости

Тем не менее, согласиться с противниками систем активной безопасности нельзя. Система курсовой устойчивости необходима, хотя бы как страховочная мера. Как показывают исследования, человек затрачивает намного больше времени на оценку ситуации и правильную реакцию, чем электронная система. ESP уже помогла сберечь жизнь и здоровье многим участникам дорожного движения (особенно начинающим водителям). Если же водитель отточил свое мастерство до такой степени, что система, хоть и работает, но не вмешивается в действия человека, его можно только поздравить.

Дополнительные возможности систем ESC, DSC, ESP, VDC, VSC, VSA

Система курсовой устойчивости, помимо своей основной задачи – динамической стабилизации автомобиля, может выполнять и дополнительные задачи, такие как предотвращение опрокидывания машины, предотвращение столкновения, стабилизация автопоезда и другие.

Внедорожники, в силу высоко расположенного центра тяжести, склонны к опрокидыванию при вхождении в поворот на высокой скорости. Для предотвращения такой ситуации предназначена система предотвращения опрокидывания, или Roll Over Prevention (ROP). В целях повышения устойчивости подтормаживаются передние колеса автомобиля, и снижается крутящий момент двигателя.

Для реализации функции предотвращения столкновения системам ESC, DSC, ESP, VDC, VSC, VSA дополнительно требуется адаптивный круиз-контроль. Вначале водителю подаются звуковые и визуальные сигналы, если реакции не последовало – автоматически нагнетается давление в тормозной системе.

Если система курсовой устойчивости выполняет функцию стабилизации автопоезда на автомобилях, оснащенных тягово-сцепным устройством, то она предотвращает рыскание прицепа за счет подтормаживания колес и уменьшения крутящего момента двигателя.

Еще одна полезная функция, которая бывает особенно необходима при езде по серпантину, заключается в повышении эффективности тормозов при нагреве (название Over Boost или Fading Brake Support). Работает она просто – при нагреве тормозных колодок автоматически повышается давление в тормозной системе.

Наконец, система динамической стабилизации может автоматически удалять влагу с тормозных дисков. Активизируется такая функция при включенных стеклоочистителях на скорости свыше 50 км/ч. Принцип действия заключается в кратковременном регулярном повышении давления в тормозной системе, в результате чего колодки прижимаются к тормозным дискам, те нагреваются и попавшая на них вода частично снимается колодками, а частично испаряется.

Система динамической стабилизации автомобиля ESP что это?

Принцип работы системы динамической стабилизации (ESP)

Оснащение современного автомобиля делает процесс управления простым. В то же время нельзя сказать, что это уж слишком легкое дело. Требуется учитывать много нюансов, чтобы не оказаться на обочине не только дороги, но и жизни. Важны дорожные изгибы, погодные условия, опыт вождения и многое другое. Автомобиль способен вести себя на дороге непредсказуемо. Утрата контроля может спровоцировать аварию. Как предотвратить такое развитие событий?

Содержание:

Это можно сделать с помощью ESP. Под этой аббревиатурой скрывается система, обеспечивающая курсовую устойчивость. С позиции английского языка расшифровывается так: Electronic Stability Program.

Что такое ESP

Под ней понимается система безопасности, которая посредством компьютера управляет автомобилем в нестандартных ситуациях. Если автомобиль теряет устойчивость на дороге, то есть начинает выписывать опасную траекторию, то его положение принудительно выравнивается.

ESP не является единым обозначением систем динамической стабилизации. Перед нами популярная торговая марка и не более. Поэтому будем рассматривать именно ее. Хотя своя популярность есть и у других подобных систем, например, ESC и DSC.

История

Первый патент на систему рассматриваемого вида был выдан в 1959 году. Разработка называлась «Управляющее устройство». Ее инициатором стал концерн Daimler-Benz. Результат оказался посредственным. Инженеры концерна не смогли предложить продукт, который мог бы стать реальным помощником водителя.

Все изменилась спустя много лет. В 1994 году премиальные Мерседесы получили оснащение полноценной системой безопасности. Несколько позднее курсовая стабилизация стала доступна на серийных машинах компании Mercedes-Benz.

Устройство

Блок ESP

Сама по себе ESP не способна выполнять возложенные на нее задачи. В помощь требуются электронные датчики. Обработкой поступающих от них сигналов занимается специальный блок. Электроника вовремя информирует систему о неадекватном поведении автомобиля, что дает возможность вернуть контроль над транспортным средством.

Перечень составных элементов формируется за счет:

  • основного блока, предназначенного для обработки сигналов от датчиков и управления конкретными устройствами;
  • датчиков, фиксирующих, с какой скоростью вращается каждое колесо;
  • датчиков, измеряющих скорость и отклонение транспортного средства по оси. Датчики этого вида находятся внутри одного корпуса;
  • контроллера, способного определить, как рулевое колесо изменяет угол поворота;
  • гидравлического блока, инициирующего тормозные усилия.

К помощникам также относят следующие системы:

  • ABS – исключение вероятности блокировки колес во время торможения;
  • EBD – распределение усилий при управлении тормозными дисками;
  • ASR – контроль того, насколько проскальзывают колеса, с последующим перераспределением крутящего момента. Исключается пробуксовка;
  • EDS – дополнение к ASR. Блокировка дифференциального механизма.

Как это работает

Курсовая стабилизация посредством ESP невозможна без ABS. Антиблокировочная система – это важный момент корректировки поведения автомобиля. Процесс стабилизации также обеспечивается за счет функциональности антипробуксовочной системы и блока, способного изменять режим работы двигателя.

Автомобиль без ESP

ESP определяет развитие заноса по нескольким параметрам. Например, при малом угле поворота колес может фиксироваться превышение поперечного ускорения и значительное изменение угла поворота транспортного средства. Это выходит за рамки «правильной езды», поэтому система начинает действовать.

На практике происходит подтормаживание конкретных колес или ослабление тормозного усилия. Гидромодулятор изменяет состояние тормозной системы в части ее давления. Работа силового агрегата корректируется. Блок-контроллер сокращает подачу топлива, что уменьшает крутящий момент, передающийся на колеса. В результате машине придается прежняя траектория.

В структуре имеется главный блок, принимающий и обрабатывающий информацию, поступающую от датчиков. Под такой информацией понимается несколько моментов: с какой скоростью вращаются колеса, в каком положении руль и насколько давление в тормозной системе соответствует норме. На основе подобных данных ESP принимает решение, как ей действовать. При этом наиболее важны сигналы от двух датчиков, считывающих поперечное ускорение и угловую скорость.

Рассмотрим на примере упрощенную схему того, как происходит курсовая стабилизация.

Занос

На блок-контроллер поступают данные:

  • задняя ось начинает смещаться по тому направлению, куда заносит;
  • величина скорости скольжения выходит за рамки допустимых значений.

Если вы опытный водитель, то поддадите газу и постараетесь выйти из заноса. Ключевое слово здесь «опытный», но за рулем в большинстве своем оказываются те, кто не был в подобных ситуациях. Они могут растеряться. Также стоит учитывать невнимательность. Именно здесь и возникает необходимость в ESP.

Система возвращает автомобиль на прежний курс с помощью торможения переднего колеса с внешней стороны.

Снос

Автомобиль с ЕСП

Датчики сигнализируют о нестандартном поведении транспортного средства:

  • фиксируется смещение передней оси по такому направлению, как внешняя сторона поворота;
  • скорость рысканья определяется как небольшая.

Система стабилизирует автомобиль, что достигается торможением заднего колеса с внутренней стороны.

Обязательность наличия ESP

Занос машины с ESP и без него

Эксплуатируемые в странах ЕС автомобили оснащаются ESP, что узаконено с 2014 года. Это обязательно для минимальной комплектации. Что касается России, то такое правило также имеется, но оно действует лишь при сертификации новых авто. Для остальных машин усовершенствование этого плана возможно только за дополнительную плату.

Самостоятельная установка

При желании и определенном умении можно установить ESP самому. Для этого необходимо знать, какие элементы системы нужны, куда они устанавливаются, как использовать сканер и соответствующее ПО. В остальном надо будет приобрести:

  • блок-контроллер;
  • СИМ-модуль;
  • датчик рысканья;
  • штекер.

Неисправности

Сигнал о том, что ESP вышла из строя, поступает на приборную панель, где имеется контрольный указатель. Такая ситуация возможна в результате:

  • поломки блок-контроллера;
  • обрыва цепи, что преимущественно происходит с датчиками скорости;
  • выхода из строя датчика тормозного усилия и т. д.

В любом случае надо вовремя реагировать на сигнал неисправности. Для конкретизации проблемы требуется проведение компьютерной диагностики.

Вывод

Устройство ESP

Некоторые автолюбители считают, что ESP – это препятствование нормальному вождению и невозможность выхода из критических ситуаций. Последнее утверждение верно, но отчасти. Процент неадекватного поведения ESP ничтожно мал.

Система, обеспечивающая курсовую устойчивость, эффективна. Она не позволяет водителям вести себя на дроге слишком вольготно. Пресекаются попытки вождения, выходящие за рамки дозволенного. Потеря же мощности на скользких покрытиях в условиях бездорожья покрывается электронной имитацией блокировок, что помогает преодолевать препятствия, когда происходит диагональное вывешивание.

Видео

Поделитесь с друзьями!

Система динамической стабилизации (VDC) — общая информация, принцип функционирования

Система динамической стабилизации (VDC) — общая информация, принцип функционирования

Схема расположения компонентов VDC и смежных систем

Принцип функционирования VDC при заносе на повороте

Принцип функционирования VDC при недостаточной реакции автомобиля на поворот руля

Функционирование гидромодулятора VDC в режиме нормального торможения (на примере контура одного колеса)

Функционирование гидромодулятора VDC в режиме сброса давления при выжатой педали ножного тормоза (на примере контура одного колеса)

Функционирование гидромодулятора VDC в режиме удержания давления при выжатой педали ножного тормоза (на примере контура одного колеса)

Функционирование гидромодулятора VDC в режиме повышения давления при выжатой педали ножного тормоза (на примере контура одного колеса)

Функционирование гидромодулятора VDC в режиме повышения давления при отпущенной педали ножного тормоза (на примере контура одного колеса)

Функционирование гидромодулятора VDC в режиме удержания давления при отпущенной педали ножного тормоза (на примере контура одного колеса)

Функционирование гидромодулятора VDC в режиме сброса давления при отпущенной педали ножного тормоза (на примере контура одного колеса)

Система VDC представляет собой систему с обратной связь, позволяющую сохранить курсовую устойчивость при движении транспортного средства в различных режимах (полное или частичное торможение, движение накатом, разгон, торможение двигателем, изменение нагрузок, выполнение экстремальных маневров, и пр.) VDC объединена с ABS и антипробуксовочной системой/системой контроля тяги (TCS), логически развивая предоставляемые ими преимущества.

Схема размещения компонентов VDC и смежных систем представлена на иллюстрации.

Система VDC упреждает «опережение» или «запаздывание» входа автомобиля в поворот при движении по дорогам со скользким покрытием. Модуль управления VDC выявляет намерения водителя по совершению маневров на основании анализа информации, поступающей от датчиков угла поворота рулевого колеса, тормозного давления, отслеживания рабочих параметров силового агрегата и пр. Одновременно, ориентируясь на показания датчиков ABS, поперечных перегрузок (G), уводящего момента, и пр., система оценивает реакцию автомобиля на действия водителя. Сравнивая поступающую информацию с заложенными в память процессора базовыми параметрами, модуль управления выявляет тенденции к заносам, связанным с недостаточностью или чрезмерностью чувствительности транспортного средства, и своевременно обеспечивает создание противодействующих усилий за счет индивидуальной активации тормозных механизмов, корректировки тягового усилия двигателя и управления подключением полного привода (через TCM автоматической трансмиссии), т.е., активируя соответствующие функции ABS и TCS.

Принцип функционирования VDC

Подавление «чрезмерной» реакции автомобиля поворот руля («опережение»)

В момент начала увода (заноса) задней части автомобиля в результате чрезмерной реакции на поворот руля модуль управления VDC активирует колесные цилиндры тормозных механизмов обоих наружных колес, что приводит к возникновению силы, противодействующей уводящему моменту.

Подавление «недостаточной» реакции автомобиля на поворот руля («запаздывание»)

Если при входе автомобиля в поворот передок начинает уводить (сносить) в курсовом направлении, модуль управления VDC активирует тормозные механизмы обоих «внутренних» колес, создавая силу реакции, компенсирующую связанный со сносом передка уводящий момент.

Модуль управления VDC

На основании данных, поступающих от соответствующих информационных датчиков, модуль осуществляет управление функционированием гидромодулятора VDC, а также производит активацию отдельных устройств ABS и антипробуксовочной системы/системы контроля тяги (TCS).

Обмен данными модуля управления VDC с TCM автоматической трансмиссии и датчиком поворота рулевого колеса осуществляется по шине CAN.

В случае выявления нарушений исправности функционирования VDC модуль управления обеспечивает отключение системы и активацию соответствующей контрольной лампы на приборном щитке автомобиля. Коды выявленных отказов сохраняются в памяти процессора.

Гидромодулятор VDC

Гидромодулятор по команде модуля управления обеспечивает активацию насосной сборки и переключение электромагнитных клапанов, контролирующих подачу тормозной жидкости к колесным цилиндрам.

Принцип функционирования гидромодулятора

Режим нормального торможения (ABS не активирована)

В режиме нормального торможения ни один из электромагнитных клапанов не активирован (порты впускного и отсечного клапанов открыты, выпускного и всасывающего — закрыты). Развиваемый в ГТЦ напор гидравлической жидкости полностью передается на колесный цилиндр через открытые порты отсечного и впускного клапанов.

Режим сброса давления при выжатой педали ножного тормоза

Впускной и выпускной электромагнитные клапаны активированы, все прочие — нет. Таким образом, порты впускного и всасывающего клапанов закрыты, выпускного и отсечного — открыты. Несмотря на то, что напор ГТЦ передается через открытый порт всасывающего клапана, дальнейшее распространение давление блокируется закрытым впускным клапаном, с другой стороны, пока порт выпускного клапана открыт, тормозная жидкость из колесного цилиндра свободно перетекает в резервуар, что приводит к сбросу гидравлического давления и ослаблению тормозного усилия.

Из резервуара тормозная жидкость перекачивается насосом обратно в ГТЦ.

Режим удержания давления при выжатой педали ножного тормоза

В данном режиме активирован лишь впускной электромагнитный клапан, т.е. порты всех клапанов кроме отсечного закрыты. Напор жидкости от ГТЦ через открытый порт отсечного клапана подается на впускной клапан, но дальше не проходит. Так как порт выпускного клапана также закрыт, давление продолжает удерживаться в колесном цилиндре.

В течение всего цикла данного режима насос продолжает срабатывать по командам модуля управления VDC.

Режим повышения давления при выжатой педали ножного тормоза

Все электромагнитные клапаны деактивированы, как и в режиме нормального торможения. Напор гидравлической жидкости от ГТЦ через открытые порты отсечного и впускного клапанов передается в колесный цилиндр, обеспечивая повышение давления.

Насос продолжает срабатывать по командам модуля управления VDC в течение всего цикла.

Режим повышения давления при отпущенной педали ножного тормоза

В данном режиме активируются только отсечной и всасывающий клапаны, впускной и выпускной остаются деактивированными. Таким образом, порты отсечного и выпускного клапанов закрыты, впускного и отсечного — открыты и насос обеспечивает перекачивание тормозной жидкости из резервуара ГТЦ в колесный цилиндр через открытые порты всасывающего и впускного клапанов, что приводит к активации тормозного механизма.

Режим удержания давления при отпущенной педали ножного тормоза

Активированы все электромагнитные клапаны, кроме выпускного. Таким образом, порты всех клапанов, кроме всасывающего закрыты. насос обеспечивает перекачивание тормозной жидкости резервуара ГТЦ через открытый порт всасывающего клапана, однако далее проходное сечение тракта перекрывается закрытым портом впускного клапана. Закрытый порт выпускного клапана предотвращает сброс давления в колесном цилиндре, более того, за счет функционирования насоса оно продолжает расти, так как порт впускного клапана остается закрытым. При достижении давлением некоторой определенной величины происходит открывание встроенной в сборку отсечного клапана редукционной сборки, обеспечивающее возврат избытка жидкости назад в резервуар ГТЦ.

Режим сброса давления при отпущенной педали ножного тормоза

Все электромагнитные клапаны активированы, т.е., порты отсечного и впускного клапана закрыты, всасывающего и выпускного — открыты. При этом насос обеспечивает забор тормозной жидкости из резервуара и подачу ее к ГТЦ через открытый порт всасывающего клапана. Поскольку впускной клапан закрыт, жидкость не попадает в колесный цилиндр, в то время как отток ее из цилиндра в резервуар обеспечивается через открытый порт выпускного клапана. В результате давление в колесном цилиндре сбрасывается. Из резервуара тормозная жидкость перекачивается к ГТЦ через открытый всасывающий клапан. При этом напор подаваемой насосом жидкости на закрытый отсечной клапан продолжает расти и по достижении предельного допустимого значения сбрасывается через редукционную сборку в резервуар ГТЦ.

Датчик поворота рулевого колеса

Датчик выдает на модуль управления информацию о направлении и величине угла поворота рулевого колеса.

Датчик поперечных перегрузок (G) и уводящего момента

На основании поступающей от датчика информации модуль управления VDC оценивает реакцию автомобиля на действия водителя при выполнении маневров.

Колесные датчики ABS

Датчики ABS выполняют свою штатную функцию по контролю частоты вращения оборотов каждого из колес автомобиля.

Модуль управления двигателем (ECM)

ECM осуществляет управление выходными параметрами двигателя в соответствии с данными, поступающими с модуля управления VDC, а также поставляет на последний информацию о текущих рабочих параметрах и оборотах силового агрегата.

Модуль управления АТ (TCM)

TCM осуществляет управление муфтами сцепления АТ, корректируя тяговое усилие в соответствии с данными, поступающими с модуля управления VDC.

Контрольная лампа ABS

Контрольная лампа служит для предупреждения водителя об отказах системы антиблокировки тормозов (ABS).

Контрольная лампа VDC

Данная контрольная лампа предупреждает водителя о неисправностях в системах динамической стабилизации (VDC) и TCS.

Сигнальный индикатор активации VDC

Активируясь в проблесковом (VDC) или постоянном (TCS) режиме, индикатор предупреждает водителя о срабатывании соответствующей системы.

Сигнальный индикатор отключения VDC (VDC OFF)

Индикатор активируется при принудительном отключении систем VDC/TCS по команде пользователя.

Выключатель деактивации VDC

 

Выключатель помещается на консольной секции панели приборов под сборкой радиоприемником и позволяет водителю произвести временное принудительное отключение системы динамической стабилизации.

 Отключение VDC возможно только при скоростях движения автомобиля ниже 60 км/ч (38 миль/ч).


Удерживание кнопки выключателя VDC нажатой в течение более 10 секунд приводит к отключению сигнального индикатора «VDC OFF», после чего кнопка блокируется и пользование ею становится возможным лишь после перезапуска двигателя.

Автоматическая активация отключенной системы VDC происходит при повышении скорости движения автомобиля до 60 км/ч (38 миль/ч).

Необходимость в отключении VDC, когда определенное пробуксовывание колес оказывается полезным, может возникать в следующих случаях:

a) При начале движения по обледенелой или идущей круто в гору дороге;
b) При попытках выбраться из грязи или сугроба в случае увязания всех четырех колес.

Отправить ответ

avatar
  Подписаться  
Уведомление о