Системы питания назначение – схемы подачи питания бензиновых и дизельных двигателей автомобиля, а также устройство и принцип работы, что такое обратка

Содержание

Система питания двигателя в современных автомобилях

Система питания автомобиля используется для подготовки топливной смеси. Она состоит из двух элементов: топлива и воздуха. Система питания двигателя выполняет сразу несколько задач: очищение элементов смеси, получение смеси и ее подача к элементам двигателя. В зависимости от используемой системы питания автомобиля различается состав горючей смеси.

Система питания двигателяСистема питания двигателя

Типы систем питания

Различают следующие виды систем питания двигателя, отличающиеся местом образования смеси:

  1. внутри двигательных цилиндров;
  2. вне двигательных цилиндров.

Топливная система автомобиля при образовании смеси за пределами цилиндра разделяется на:

  • топливную систему с карбюратором
  • с использованием одной форсунки (с моно впрыском)
  • инжекторную

Назначение и состав топливной смеси

Для бесперебойной работы двигателя автомобиля необходима определенная топливная смесь. Она состоит из воздуха и топлива, смешанных по определенной пропорции. Каждая из этих смесей характеризуется количеством воздуха, приходящегося на единицу топлива (бензина).

Для обогащенной смеси характерно наличие 13-15 частей воздуха, приходящихся на часть топлива. Такая смесь подается при средних нагрузках.

Богатая смесь содержит менее 13 частей воздуха. Применяется при больших нагрузках. Наблюдается увеличенный расход бензина.

У нормальной смеси характерно наличие 15 частей воздуха на часть топлива.
Обедненная смесь содержит 15-17 частей воздуха и применяется при средних нагрузках. Обеспечивается экономный расход топлива. Бедная смесь содержит более 17 частей воздуха.

Общее устройство системы питания

Система питания двигателя

Система питания двигателя

В системе питания двигателя имеются следующие основные части:

  • бак для топлива. Служит для хранения топлива, содержит насос для закачки топлива и иногда фильтр. Имеет компактные размеры
  • топливопровод. Это устройство обеспечивает поступление топлива в специальное смесеобразующее устройство. Состоит из различных шлангов и трубок
  • устройство смесеобразования. Предназначено для получения топливной смеси и подачи в двигатель. Такими устройствами могут быть инжекторная система, моновпрыск, карбюратор
  • блок управления (для инжекторов). Состоит из электронного блока, управляющего работой системы смешения и сигнализирующего о возникающих сбоях в работе
  • топливный насос. Необходим для поступления топлива в топливопровод
  • фильтры для очистки. Необходимы для получения чистых составляющих смеси

Карбюраторная система подачи топлива

Эта система отличительна тем, что смесеобразование происходит в специальном устройстве – карбюраторе. Из него смесь попадает в нужной концентрации в двигатель. Устройство системы питания двигателя содержит такие элементы: бак для топлива, очищающие фильтры для топлива, насос, фильтр для воздуха, два трубопровода: впускной и выпускной, карбюратор.

схема системы питания двигателясхема системы питания двигателя

Схема системы питания двигателя реализуется так. В баке находится топливо, которое будет использоваться для подачи в двигатель внутреннего сгорания. Оно попадает в карбюратор через топливопровод. Процесс подачи может быть реализован с помощью насоса или естественным способом с помощью самотека.

Чтобы топливная подача осуществлялась в камеру карбюратора самотеком, то его (карбюратор) необходимо размещать ниже топливного бака. Такую схему не всегда можно реализовать в автомобиле. А вот использование насоса дает возможность не зависеть от положения бака относительно карбюратора.

Топливный фильтр очищает топливо. Благодаря ему из топлива удаляются механические частички и вода. Воздух попадает в камеру карбюратора через специальный фильтр для воздуха, очищающий его от частиц пыли. В камере происходит смешение двух очищенных составляющих смеси. Попадая в карбюратор, топливо поступает в поплавковую камеру. А после направляется в камеру смесеобразования, где соединяется с воздухом. Через дроссельную заслонку смесь поступает во впускной коллектор. Отсюда она направляется к цилиндрам.

После отработки смеси газы из цилиндров удаляются с помощью выпускного коллектора. Далее из коллектора они направляются в глушитель, который подавляет их шум. Из него они поступают в атмосферу.

Подробно об инжекторной системе

В конце прошлого столетия карбюраторные системы питания стали интенсивно заменяться новыми системами, работающими на инжекторах. И не просто так. Такое устройство системы питания двигателя обладало рядом преимуществ: меньшая зависимость от свойств окружающей среды, экономная и надежная работа, выхлопы менее токсичны. Но у них есть недостаток – это высокая чувствительность к качеству бензина. Если этого не соблюдать, то могут возникнуть неполадки в работе некоторых элементов системы.

устройство системы питания двигателяустройство системы питания двигателя

«Инжектор» переводится с английского, как форсунка. Одноточечная (моновпрысковая) схема системы питания двигателя выглядит так: топливо подается на форсунку. Электронный блок подает на нее сигналы, и форсунка открывается в нужный момент. Топливо направляется в камеру смесеобразования. Далее все происходит как в карбюраторной системе: образуется смесь. Затем она проходит впускной клапан и попадает в цилиндры двигателя.

Устройство системы питания двигателя, организованное с помощью инжекторов, следующее. Эта система характеризуется наличием нескольких форсунок. Данные устройства получают сигналы от специального электронного блока и открываются. Все эти форсунки соединены друг с другом с помощью топливопровода. В нем всегда имеется в наличии топливо. Лишнее топливо удаляется по обратному топливопроводу назад в бак.

Электронасос подает топливо в рампу, где образуется избыточное давление. Блок управления направляет сигнал на форсунки, и, они открываются. Топливо впрыскивается во впускной коллектор. Воздух, проходя дроссельный узел, попадает туда же. Полученная смесь поступает в двигатель. Количество необходимой смеси регулируется с помощью открытия дроссельной заслонки. Как только такт впрыска заканчивается, форсунки снова закрываются, прекращается подача топлива.

Электронный блок является своеобразным «мозговым» элементом системы. Этот сложный механизм обрабатывает поступающие на него сигналы от различных датчиков. Так происходит управление всеми устройствами топливной системы. Такая схема системы питания двигателя дает возможность водителю во время узнать о сбоях в работе, так как блок управления сигнализирует о них с помощью специальной лампы и кодов ошибки. Данные коды позволяют специалистам быстро выявить неполадки. Для этого им достаточно подключить внешнее диагностическое устройство, которое сможет распознать возникшие проблемы и назвать их.

Также на эту тему вы можете почитать:

Поделитесь в социальных сетях

Alex S 11 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

14.Назначение, принцип действия, конструкция системы питания дизеля.

Система питания дизеля служит для подачи в цилиндры двигателя воздуха и топлива и отвода отработавших газов. Топливо подается под большим давлением, в определенные моменты (характеризуемые углом опережения по. дачи топлива) и в определенном количестве в зависимости от нагрузки двигателя.

ПРИНЦИП РАБОТЫ. На первый взгляд дизельный двигатель почти не отличается от обычного бензинового — те же цилиндры, поршни, шатуны. Главные и принципиальные отличия заключаются в способе образования и воспламенения топливо-воздушной смеси. Способ образования и воспламенения топливо-воздушной смеси – непосредственно в цилиндре. В дизеле топливо воспламеняется не от искры, а вследствие высокой температуры воздуха в цилиндре. Рабочий процесс в дизеле происходит следующим образом: вначале в цилиндр попадает чистый воздух, который за счет большой степени сжатия разогревается до 700-900°С. Дизтопливо впрыскивается под высоким давлением в камеру сгорания при подходе поршня к верхней мертвой точке. А так как воздух уже сильно разогрет, после смешивания с ним происходит воспламенение топлива. Самовоспламенение сопровождается резким нарастанием давления в цилиндре — отсюда повышенная шумность и жесткость работы дизеля.

Дизель имеет больший КПД и крутящий момент. К недостаткам дизельных двигателей обычно относят повышенную шумность и вибрацию, меньшую литровую мощность и трудности холодного пуска.

ТИПЫ КАМЕР СГОРАНИЯ

Камеры сгорания дизельных двигателей разделяются на два основных типа: неразделенные и разделенные

. При форкамерном процессе топливо впрыскивается в специальную предварительную камеру, связанную с цилиндром несколькими небольшими каналами или отверстиями, ударяется об ее стенки и перемешивается с воздухом. Воспламенившись, смесь поступает в основную камеру сгорания, где и сгорает полностью. Сечение каналов подбирается так, чтобы при ходе поршня вверх (сжатие) и вниз (расширение) между цилиндром и форкамерой возникал большой перепад давления, вызывающий течение газов через отверстия с большой скоростью. Во время вихрекамерного процесса сгорание также начинается в специальной отдельной камере, только выполненной в виде полого шара. В период такта сжатия воздух по соединительному каналу поступает в предкамеру и интенсивно закручивается (образует вихрь) в ней. Дизельные двигатели с неразделенной камерой называют также дизелями с непосредственным впрыском. Топливо впрыскивается непосредственно в цилиндр, камера сгорания выполнена в днище поршня ( на низкооборотистых дизелях – грузовики).
СИСТЕМЫ ПИТАНИЯ

Важнейшим звеном дизельного двигателя является система топливоподачи, обеспечивающая поступление необходимого количества топлива в нужный момент времени и с заданным давлением в камеру сгорания.

Система питания Common Rail . Common Rail – это метод впрыска топлива в камеру сгорания под высоким давлением, не зависящим от частоты вращения двигателя или нагрузки. Главное отличие системы Common Rail от классической дизельной системы заключается в том, что ТНВД предназначен только для создания высокого давления в топливной магистрали. Он не выполняет функций дозировки цикловой подачи топлива и регулировки момента впрыска.

ТУРБОДИЗЕЛЬ

Эффективным средством повышения мощности и гибкости работы дизеля является турбонаддув. Он позволяет подать в цилиндры дополнительное количество воздуха и соответственно увеличить подачу топлива на рабочем цикле, в результате чего увеличивается мощность двигателя.

Конструкция и работа системы питания дизеля воздухом

Система питания воздухом служит для забора окружающего воздуха, его очистки от пыли и распределения по цилиндрам двигателя.

Система питания воздухом (рис. 7) включает воздушный фильтр и впускной трубопровод. Она может быть с турбонаддувом или без турбонаддува.

Воздух поступает через сетку колпака 5 и трубу 4 воздухозаборника в воздушный фильтр 1. В фильтре воздух проходит через инерционную решетку 3 и резко изменяет направление движения. Сначала воздух освобождается от крупных частиц пыли, которые под действием инерции и вакуума выбрасываются через эжектор 6, установленный в выпускной трубе глушителя, в окружающий воздух. Более мелкие частицы пыли задерживаются в картонном фильтрующем элементе 2. Очищенный воздух по впускному трубопроводу подается в цилиндры 7 двигателя.

Воздушный фильтр (рис. 8) состоит из корпуса 3, крышки 1 и сменного фильтрующего элемента 2, состоящего из двух перфорированных стальных кожухов и гофрированного картона между ними. Патрубок 7 предназначен для отсоса пыли из корпуса фильтра.

Воздух поступает в фильтр через патрубок 5, очищается в нем и выходит через патрубок 6.

Наддув представляет собой подачу воздуха в цилиндры двигателя при такте впуска под давлением, создаваемым компрессором. При наддуве увеличивается количество воздуха, поступающего в цилиндры двигателя, количество сжигаемого топлива и повышается на 20…40 % мощность двигателя.

Рис. 8. Воздушный фильтр:

1 — крышка; 2 — фильтрующий элемент; 3 — корпус; 4 — диффузор; 5, 6, 7 — патрубки

В дизелях обычно применяется газотурбинный наддув (рис. 9) турбокомпрессором. При работе двигателя воздух в цилиндры 1 нагнетается под давлением центробежным компрессором 6, рабочее колесо которого приводится во вращение турбиной 5.

Рис. 9. Схема наддува дизеля воздухом:

1 – цилиндр двигателя; 2 — мембрана; 3 – пружина; 4 — клапан; 5 — турбина; 6 — компрессор

Назначение, основные части системы питания. топливо для питания карбюраторных двигателей

Категория:

   Устройство и работа двигателя

Публикация:

   Назначение, основные части системы питания. топливо для питания карбюраторных двигателей

Читать далее:



Назначение, основные части системы питания. топливо для питания карбюраторных двигателей

Система питания карбюраторного двигателя служит для приготовления горючей смеси, при сгорании которой в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую. Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом.

Рис. 1. Основные части системы питания карбюраторного двигателя

В систему питания карбюраторного двигателя входят: топливный бак, топливный насос, топливный фильтр, топливопроводы, карбюратор, воздухоочиститель, впускной трубопровод. Выпуск отработавших газов осуществляется через выпускной трубопровод и глушитель.

Рекламные предложения на основе ваших интересов:

Топливо из бака насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, проходящим через воздухоочиститель. Полученная горючая смесь по впускному трубопроводу поступает в цилиндры двигателя, где и сгорает. За счет давления образовавшихся при этом газов осуществляется работа двигателя. Отработавшие газы из цилиндров отводятся через выпускной трубопровод и глушитель.

Для карбюраторных автомобильных двигателей в качестве топлива применяют бензин. Бензин является легким жидким топливом и представляет собой светлую жидкость, быстро испаряющуюся на воздухе и хорошо воспламеняющуюся.

Бензин получают из нефти. По способу получения различают бензин прямой гонки и крекинг-бензин. Бензин прямой гонки получают путем нагревания сырой нефти и охлаждения (конденсации) выделяющихся из нее паров при определенной температуре. Крекинг-бензин получают путем разложения нефти или ее тяжелых погонов (мазута) под действием высокой температуры и давления (крекинг-процесс). При крекинг-процессе увеличивается количество бензина, получаемого из нефти.

Основными свойствами бензина являются испаряемость, теплотворность и антидетонационная стойкость.

Антидетонационная стойкость является очень важным свойством бензина и определяет возможную степень сжатия двигателя.

Детонация представляет особый вид сгорания рабочей смеси, протекающего с явлениями взрыва частичных объемов смеси при чрезвычайно высоких скоростях распространения фронта пламени в камере сгорания (2000 м!сек и выше против 20—40 м/сек при нормальном сгорании) и сопровождающегося возникновением волн высокого давления и значительным повышением давления в зоне детонации.

При детонационном сгорании смеси в двигателе слышны резкие металлические стуки и звон, объясняемые ударами волн высокого давления о стенки камер сгорания, цилиндров и днищ поршней и возникновением вибрации в деталях. Кроме того, наблюдается дымный выпуск с искрами вследствие неполного сгорания топлива и закипание воды в системе охлаждения из-за усиленной теплоотдачи стенкам камер сгорания и цилиндров. При этом в результате неполного сгорания топлива, усиленной теплоотдачи и увеличения механических потерь мощность и экономичность двигателя резко снижаются. Длительная работа при детонационном сгорании может привести не только к повышенному износу деталей двигателя, но даже и к их поломке или образованию крупных дефектов в виде трещин и изгиба деталей с последующим их разрушением.

Детонация обычно возникает в случае применения топлива несоответствующего сорта, а также при перегрузках и перегревах двигателя. Возникшая в двигателе детонация при работе автомобиля, не имеющая систематического характера, может быть устранена уменьшением нагрузки на двигатель (путем перехода на низшую передачу) и прикрытием дроссельной заслонки. Систематическая детонация при работе двигателя с правильно установленным зажиганием свидетельствует о недостаточно высоких антидетонационных свойствах применяемого топлива.

Показателем, характеризующим антидетонационные свойства бензина, является его октановое число. Чем больше октановое число бензина, тем меньше он детонирует и тем большая степень сжатия может быть принята для двигателя.

Для повышения октанового числа и уменьшения возможности детонации в двигателях, имеющих повышенные степени сжатия, к бензину подмешивают различные вещества — антидетонаторы. Наиболее сильным антидетонатором является этиловая жидкость, добавляемая к бензину в очень малых количествах. Такой бензин называется этилированным. Этилированный бензин ядовит, поэтому для отличия от простого бензина ему придают обычно специальную окраску. Обращаться с этилированным бензином следует очень осторожно, соблюдая правила техники безопасности.

Для автомобилей с карбюраторными двигателями выпускаются бензины А-72, А-76, АИ-93 и АИ-98. Буква А означает «Автомобильный», а число — октановое число бензина. Для двигателя ЗИЛ-111 выпускается специальный бензин «Экстра».

Рекламные предложения:


Читать далее: Смесеобразование и составы горючей смеси

Категория: — Устройство и работа двигателя

Главная → Справочник → Статьи → Форум


Система питания карбюраторных двигателей.


Система питания карбюраторного двигателя




Система питания карбюраторного бензинового двигателя с искровым зажиганием служит для хранения топлива, его очистки от механических примесей, приготовления горючей смеси, а также для подачи горючей смеси в цилиндры двигателя и отвода из них отработавших газов. Кроме того, в функции системы питания входит очистка воздуха, используемого для приготовления горючей смеси.

Горючая смесь состоит из топлива и воздуха, соединенных в определенной пропорции и тщательно перемешанных друг с другом. При сгорании горючей смеси в цилиндрах двигателя выделяется тепловая энергия, преобразуемая затем в механическую энергию.

Система питания карбюраторного двигателя (Рис. 1) состоит из топливного бака 6, топливного насоса 7, воздушного фильтра 1, карбюратора 4, топливопроводов 5, впускного 2 и выпускного 3 трубопроводов, приемной трубы 8 глушителей и собственно глушителей 9 и 10.

Основным топливом, используемым для работы карбюраторных двигателей с принудительным воспламенением, является бензин – жидкий продукт переработки нефти, горючая смесь лёгких углеводородов.

***



Схема работы карбюраторной системы питания

Топливо (бензин) из бака подается насосом 7 по топливопроводам 5 в карбюратор 4. Через воздушный фильтр 1 в карбюратор поступает воздух. Приготовленная в карбюраторе из топлива и воздуха горючая смесь подается в цилиндры двигателя по впускному трубопроводу 2. Отработавшие газы отводятся из цилиндров двигателя в окружающую среду через выпускной трубопровод 3, приемную трубу 8 глушителей, основной 10 и дополнительный 9 глушители.

В системе питания бензиновых двигателей автомобилей обязательными элементами являются фильтры очистки топлива (у двигателей грузовых автомобилей — фильтры грубой и тонкой очистки), а также воздушный фильтр.

Топливо из бака через фильтры насосом подается к карбюратору, где смешивается в определенной пропорции с воздухом, поступающим через воздухоочиститель. Полученная горючая смесь из-за разрежения в цилиндрах двигателя с большой скоростью перемещается по впускному трубопроводу, при этом дополнительно перемешиваясь, и попадает в цилиндры двигателя, где и сгорает посредством искрового воспламенения от электрической свечи.

За счет давления образовавшихся при сгорании горючей смеси газов, воздействующих на детали и узлы кривошипно-шатунного механизма, осуществляется работа двигателя.

***

Автомобильный бензин



Принцип работы системы питания автомобиля

МегаПредмет 

Обратная связь

ПОЗНАВАТЕЛЬНОЕ

Сила воли ведет к действию, а позитивные действия формируют позитивное отношение


Как определить диапазон голоса — ваш вокал


Как цель узнает о ваших желаниях прежде, чем вы начнете действовать. Как компании прогнозируют привычки и манипулируют ими


Целительная привычка


Как самому избавиться от обидчивости


Противоречивые взгляды на качества, присущие мужчинам


Тренинг уверенности в себе


Вкуснейший «Салат из свеклы с чесноком»


Натюрморт и его изобразительные возможности


Применение, как принимать мумие? Мумие для волос, лица, при переломах, при кровотечении и т.д.


Как научиться брать на себя ответственность


Зачем нужны границы в отношениях с детьми?


Световозвращающие элементы на детской одежде


Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия


Как слышать голос Бога


Классификация ожирения по ИМТ (ВОЗ)


Глава 3. Завет мужчины с женщиной


Оси и плоскости тела человека

Оси и плоскости тела человека — Тело человека состоит из определенных топографических частей и участков, в которых расположены органы, мышцы, сосуды, нервы и т.д.


Отёска стен и прирубка косяков Отёска стен и прирубка косяков — Когда на доме не достаёт окон и дверей, красивое высокое крыльцо ещё только в воображении, приходится подниматься с улицы в дом по трапу.


Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами) — В простых моделях рынка спрос и предложение обычно полагают зависящими только от текущей цены на товар.

Содержание

Введение……………………………………………………………………………4

1. Назначение, устройство, принцип работы системы питания двигателя

ВАЗ 21083 автомобиля ВАЗ 2112………………………………….………..……..5

2. Диагностика заданных неисправностей…….………………………………..9

3. Технологический процесс ремонта двигателя ВАЗ 21083

автомобиля ВАЗ 2112…………………………………….…………………..….10

4. Инструмент , применяемый при ремонте ..…………..……………………..14

5. Техника безопасности при выполнение работ …………………………..……….15

Заключение…………………………………………………………………….…17

Список литературы………………………………………………………………18

Введение

Система питания является технически сложным набором механизмов связанных в одну цепь и обеспечивающею правильную работу двигателя

Целью данной работы является закрепления практических знаний а также получения практических навыков по ремонту системы охлаждения. Для достижения этой цели мне необходимо углубить знания по устройству и работе системы питания, изучить техническую и справочную литературу, подобрать инструмент для ремонта и изучить технику безопасности при выполнении работ.

Назначение, устройство, принцип работы системы питания двигателя ВАЗ 21083 автомобиля ВАЗ 2112



Дифференциальные уравнения второго порядка (модель рынка с прогнозируемыми ценами)Устройство
1 – форсунки 2 – пробка штуцера для контроля давления топлива 3 – рампа форсунок 4 – кронштейн крепления топливных трубок 5 – регулятор давления топлива 6 – адсорбер с электромагнитным клапаном 7 – шланг для отсоса паров бензина из адсорбера 8 – дроссельный узел 9 – двухходовой клапан 10 – гравитационный клапан 11 – предохранительный клапан 12 – сепаратор 13 – шланг сепаратора 14 – пробка топливного бака 15 – наливная труба 16 – шланг наливной трубы 17 – топливный фильтр 18 – топливный бак 19 – электробензонасос 20 – сливной топливопровод 21 – подающий топливопровод

Назначение

Система питания автомобильного двигателя предназначена для обеспечения запаса топлива на автомобиле, очистке топлива и равномерного распределения его по цилиндрам двигателя строго дозированными порциями в соответствии с порядком работы, скоростным и нагрузочным режимом работы двигателя.

 

Принцип работы системы питания автомобиля

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление — не менее 3 бар (3 атм).

Бензонасос включается по команде контроллера системы впрыска (при включенном зажигании) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – «топливную» и «воздушную». «Воздушная» соединена вакуумным шлангом с ресивером, а «топливная» – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль «газа» разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.


Назначение, устройство и работа системы питания воздухом

Категория:

   Устройство эксплуатация камаз 4310

Публикация:

   Назначение, устройство и работа системы питания воздухом

Читать далее:



Назначение, устройство и работа системы питания воздухом

Система питания двигателя воздухом предназначена для забора воздуха из атмосферы, очистки от пыли и распределения его по цилиндрам двигателя.

Система питания двигателя воздухом (рис. 50) состоит из; воздухоочистителя, уплотнителя, колпака воздухозаборника, впускных коллекторов, патрубков и труб, соединяющих воздухозаборник с воздухоочистителем и воздухоочиститель с впускными коллекторами, индикатора засоренности.

Уплотнитель представляет собой гофрированный резиновый патрубок, в который вставлен нажимной диск, служащий опорой для распорной пружины. Последняя обеспечивает герметичность соединения уплотнителя с переходником.

Рекламные предложения на основе ваших интересов:

Воздухоочиститель сухого типа, двухступенчатый, предназначен для очистки поступающего в двигатель воздуха от пыли: (рис. 51).

Он состоит из корпуса с пылеотбойником, крышки, предварительного очистителя, надеваемого на фильтрующий элемент. Герметичность соединения крышки с корпусом обеспечивается уплотнительным кольцом 8. Крышка крепится к корпусу тягами. Корпус воздухоочистителя изготовлен из листовой освинцованной стали толщиной 1,2 мм. Очистка воздуха в воздухоочистителе двухступенчатая. Первая ступень очистки — моноциклон, имеющий пылеотбойник, обеспечивающий вращение воздушного потока вокруг фильтрующего элемента и очистку воздуха от крупной пыли, которая собирается в бункере. Пылеотборный бункер образован крышкой и съемной заглушкой.

Рис. 50. Система питания двигателя воздухом:
1 — воздухозаборник; 2 — труба; 3 — уплотнитель; 4 — воздухоочиститель

Вторая ступень очистки — фильтрующий элемент, состоящий из наружного и внутреннего кожухов. Кожухи изготовлены из перфорированной стали и гофрированного фильтрующего картона, соединены по торцам металлическими крышками, которые приклеены специальным клеем. Фильтрующий элемент плотно прижат к днищу корпуса и уплотнен двумя торцевыми резиновыми кольцами. Крепится фильтрующий элемент в корпусе па шпильке самостопорящейся гайкой.

Предварительно очищенный в первой ступени воздух поступает во вторую ступень со сменным картонным фильтрующим элементом, где, проникая через поры картона, оставляет на его поверхности мелкие частицы пыли.

Рис. 51. Воздухоочиститель:
1 — пылеотбойник; 2 — тяга; 3 — предварительный очиститель; 4 — гайка крепления фильтрующего элемента; 5 — заглушка; 6 — стягивающие шнурка предварительного очистителя; 7 — крышка; 8 — уплотнительное кольцо; 9 — корпус; 10 — фильтрующий элемент

Для повышения эффективности очистки воздуха, поступающего в двигатель, на фильтрующий элемент надевается предварительный очиститель-оболочка из нетканого фильтровального полотна.

Очищенный воздух через патрубок поступает во впускные коллекторы и далее в цилиндры двигателя.

Индикатор (рис. 52) регистрирует загрязненность воздухоочистителя. Он состоит из корпуса, красного барабана, пружины н штуцера. По мере засоренности воздухоочистителя повышается вакуум во впускных коллекторах двигателя и при достижении разрежения 0,007 МПа (0,07 кгс/см2) индикатор срабатывает, т. е. красный барабан закрывает окно индикатора, сигнализируя о необходимости очистки или замены картонного фильтрующего элемента.

Устанавливается индикатор в кабине слева над панелью приборов.

На автомобилях ранних выпусков устанавливался воздухоочиститель другой конструкции, а индикатор засоренности его размещался на левом впускном коллекторе.

Впускные коллекторы предназначены для распределения воздуха по цилиндрам двигателя. Коллекторы отлиты из алюминиевого сплава и крепятся на боковых поверхностях головок цилиндров со стороны развала при помощи болтов через уплотнительные паронитовые прокладки. Каждый впускной коллектор имеет резьбовое отверстие, предназначенное для установки свечи термостата (рис. 53).

Рекламные предложения:


Читать далее: Назначение, устройство и работа системы выпуска отработавших газов

Категория: — Устройство эксплуатация камаз 4310

Главная → Справочник → Статьи → Форум


Отправить ответ

avatar
  Подписаться  
Уведомление о