Тормозной цилиндр вагона – ГОСТ 31402-2013 Цилиндры тормозные железнодорожного подвижного состава. Общие технические условия (Переиздание с Изменением N 1), ГОСТ от 22 ноября 2013 года №31402-2013

Тормозной цилиндр — Википедия

Материал из Википедии — свободной энциклопедии

Тормозной цилиндр тепловоза ТЭП70 Тормозной цилиндр в разрезе

Тормозной цилиндр — компонент тормозной системы, силовой орган, преобразующий давление сжатого воздуха в механическую энергию, которая передаётся через тормозную рычажную передачу на тормозные колодки, прижимая их к ободу колеса или к тормозным дискам.

Корпус и крышки тормозного цилиндра отливаются из чугуна или изготавливаются сварными из стали. Внутри корпуса находятся: поршень с резиновой уплотняющей манжетой и войлочным смазывающим кольцом, шток, отпускная пружина. Шток может быть жестко связан с поршнем, если соединённый с ним рычаг не передаёт на него изгибающего усилия, или шарнирно, если рычаг движется по дуге. В задней крышке тормозного цилиндра имеется отверстие для подвода сжатого воздуха и отверстие для установки манометра при испытаниях, заглушенное пробкой. В передней крышке имеется отверстие для слива конденсата, в горловине крышки установлена резиновая пылезащитная шайба.

Выход штока тормозного цилиндра должен находиться в установленных пределах. При выходе штока меньше нормы увеличивается износ тормозных колодок и создаётся дополнительное сопротивление движению, при выходе штока больше нормы увеличивается расход сжатого воздуха и снижается КПД тормозной рычажной передачи. Величина выхода штока определяется при полном служебном торможении. Если при проведении контрольной проверки тормозов на станции величина выхода штока превышает установленные нормативы, вагон при расчёте тормозного нажатия не учитывается.

Тормозные цилиндры рассчитываются на максимальное давление 0,6 МПа. Давление в тормозных цилиндрах грузовых вагонов на гружёном режиме не должно превышать 0,44 МПа, на порожнем режиме — 0,2 МПа, в тормозных цилиндрах пассажирских вагонов — 0,41 МПа.

Тормозные цилиндры

ТОРМОЗНЫЕ ЦИЛИНДРЫ

Тормозные цилиндры предназначены для передачи усилия сжатого воздуха, поступающего в них при торможении, тормозной рычажной передаче. В ТЦ происходит преобразование потенциальной энергии сжатого воздуха в механическое усилие на штоке поршня.

Конструктивно подавляющее большинство тормозных цилиндров имеют литой чугунный корпус, в котором расположены поршень со штоком и отпускная пружина. На подвижном составе применяются ТЦ с жестко закрепленным в поршне штоком, с самоустанавливающимся штоком, шарнирно соединенным с поршнем, и со встроенным автоматическим регулятором тормозной рычажной передачи.

Стандартный ТЦ усл.№ 188Б устанавливается на четырехосных грузовых вагонах, полувагонах, цистернах, платформах.

Тормозной цилиндр состоит из литого чугунного корпуса 14, передней крышки 8 с удлиненной горловиной и задней крышки 15, уплотненной резиновым кольцом. Задняя крышка крепится к корпусу большим количеством болтов, чем передняя, так как испытывает усилие сжатого воздуха до 4 тс, в то время, как передняя крышка нагружена только отпускной пружиной 5, имеющей предварительную затяжку 150 — 160 кгс.

На поршне 4 установлены резиновая манжета 1 и войлочное смазочное кольцо 2, удерживаемое в проточке поршня распорной пластинчатой пружиной 3. С поршнем жестко связана (посредством пальца 6) полая труба, являющаяся штоком 7. В горловине передней крышки расположены атмосферные каналы (Ат), в которых установлены сетчатые фильтры 9. Резиновая шайба 10, надетая на трубу штока, защищает внутреннюю полость ТЦ от пыли. В торец штока вставлена головка 13, в проточку которой входят винты 11, крепящие упорное кольцо 12 к штоку. Это упорное кольцо предназначено для снятия передней крышки в сборе с поршнем и отпускной пружиной.

На задней крышке имеются шпильки для крепления кронштейна мертвой точки и два резьбовых гнезда: одно для присоединения трубопровода для подвода сжатого воздуха, другое, заглушённое пробкой 16, — для установки манометра.

Тормозные цилиндры усл.№ 519Б имеют такое же конструктивное исполнение, что и ТЦ усл.№ 183Б. но больший внутренний диаметр корпуса — 16 дюймов вместо 14, и устанавливаются на шести- и восьмиосных вагонах.

Тормозной цилиндр усл.№ 502Б имеет самоустанавливающийся шток 7, шарнирно связанный с поршнем 4, и помещенный в направляющую трубу 17. Головка 13 штока закреплена не на трубе, как у ТЦ усл.№ 188Б, а на штоке 7. Зазор между штоком и стенками трубы позволяет головке 13 при торможении двигаться по дуге. Тормозные цилиндры с самоустанавливающимся штоком применяются на локомотивах.

Тормозные цилиндры усл.№ 501Б используются на пассажирских вагонах и на головных и прицепных вагонах электропоездов ЭР-2 и ЭР-9 и имеют на задней крышке фланец для крепления воздухораспределителя.

На некоторых видах подвижного состава, в частности на части тепловозов ТЭП-70. используются тормозные цилиндры ТЦР-3 со встроенным авторегулятором выхода штока.


Тормозной цилиндр ТЦР-3 состоит из корпуса 15 с приварным дном 17 и привалочного фланца 4. Внутри корпуса помещен стакан 1 регулятора, на который воздействует усилие возвратной пружины 2. Поршень 16 с резиновой манжетой и смазочным кольцом вставлен своей направляющей частью в стакан 1. Шток 6 поршня имеет несамотормозящую резьбу, на которую навернуты регулировочная 13 и вспомогательная 11 гайки. На цилиндрической части гаек 11 и 13 стопорными кольцами закреплены упорные шарикоподшипники 5 и 18. Коническая часть гаек 11 и 13 прижимается пружинами, действующими через шарикоподшипники. к конусным
втулкам 8 и 3. Стакан регулятора закрыт резьбовой крышкой 10, имеющей с внутренней стороны коническую фрикционную поверхность, через которую стакан опирается на вспомогательную гайку 11.

В горловину передней крышки ТЦ ввернуты упорные болты 7 и 12. Болт 12 после отвертывания может перемещаться в продольном направлении и устанавливаться на выбранном расстоянии «А» от кольцевой поверхности конусной втулки 8. Это расстояние определяет величину хода штока ТЦ, которая будет автоматически поддерживаться регулятором. Иными словами, это расстояние соответствует нормальному зазору между колодкой и колесом при неизношенных колодках. На горловину крышки надет защитный чехол 9.

При торможении поршень и стакан перемещаются вправо и усилие от поршня ТЦ передается на шток 6 через конусную втулку 3 и регулировочную гайку 13. Если выход штока ТЦ меньше или равен установленному расстоянию «А», то как при торможении, так и при отпуске сохраняется неизменным относительное положение стакана 1 регулятора и штока 6 ТЦ. При выходе штока ТЦ большем, чем расстояние «А», кольцевая поверхность конусной втулки 5 упирается в хвостовик болта 12, и после дальнейшего выхода штока происходит вращение вспомогательной гайки 11, которая свинчивается по штоку, оставаясь в соприкосновении с конической фрикционной поверхностью конусной втулки 8. При отпуске тормоза стакан 1 вместе с поршнем ТЦ перемещается пружиной 2 в исходное положение (влево), втулка 8 доходит до упора в хвостовик болта 7 и дальнейшее движение штока в отпускное положение прекращается. При последующем движении стакана под действием возвратной пружины до упора крышки 10 во вспомогательную гайку 11, происходит свинчивание со штока регулировочной гайки 13, сохраняющей под действием пружины 14 контакт с конусной втулкой 3.

Таким образом, поддержание стабильного хода штока ТЦ обеспечивается соответствующим выходом штока из стакана в исходном положении.

На штоке поршня ТЦ пассажирских вагонов, оборудованных композиционными колодками, устанавливается и закрепляется специальный хомут длиной 70 мм. Таким образом, при отпуске поршень не доходит до исходного положения (до задней крышки) на длину хомута, увеличивая объем «вредного» пространства ТЦ примерно на 7 л. Следовательно, при полном выходе штока ТЦ 130 — 160 мм при полном служебном торможении перемещение поршня составит 60 — 90 мм. Этим обеспечивается рабочий объем ТЦ такой же, как и при чугунных колодках, а также нормальный зазор между колодками и колесом в отпущенном состоянии тормоза.

Выход штока ТЦ является важным эксплуатационным показателем состояния тормоза.
Для каждого типа подвижного состава нормы верхнего и нижнего пределов выхода штока, а также величина максимально допустимого выхода штока ТЦ в эксплуатации устанавливается специальными инструкциями МПС. При увеличенном выходе штока увеличивается рабочий объем ТЦ и, следовательно, уменьшается давление в ТЦ и замедляется его наполнение, что в конечном итоге ведет к снижению эффективности тормозов. При малом выходе штока возможно заклинивание колесных пар из-за повышения давления в ТЦ, а в зимнее время — и из-за примерзания колодок к колесам после стоянки, вследствие уменьшения расстояния между колодкой и колесом.

Инструкция по эксплуатации тормозов подвижного состава железных дорог ЦТ-ЦВ-ЦЛ-ВНИИЖТ/277 для электровозов и тепловозов (кроме тепловозов ТЭП-60 и ТЭП-70) устанавливает нормы нижнего и вехнего пределов выхода штока ТЦ 75 — 100 мм, а максимально допустимый в эксплуатации — 125 мм. Для грузовых вагонов с чугунными колодками при первой ступени торможения 40 — 100 мм, а максимально допустимый в эксплуатации — 175 мм; для грузовых вагонов с композиционными колодками соответственно 40 — 80 мм и 130 мм. Для пассажирских вагонов с чугунными и композиционными колодками при первой ступени торможения 80 — 120 мм, максимально допустимый в эксплуатации — 180 мм. (для пассажирских вагонов с композиционными колодками выход штока ТЦ указан с учетом длины хомута, установленного на штоке, а максимально допустимый выход штока ТЦ в эксплуатации для всех вагонов указан при отсутствии на вагоне авторегулятора рычажной передачи).

Другим важным эксплуатационным показателем, оказывающим влияние на эффективность работы тормоза, является плотность ТЦ. При давлении сжатого воздуха в ТЦ не менее 3,5 кгс/см2 падение давление в ТЦ допускается не более 0,2 кгс/см2 за 1 мин.

Для проверки плотности ТЦ необходимо:

  • на локомотивах с блокировкой тормозов усл.№ 367 разрядить ТМ экстренным торможением до 0, перевести КВТ в VI положение, наполнив ТЦ до полного давления, и выключить блокировку. По манометру ТЦ следить за падением давления;
  • на локомотивах, не оборудованных устройством блокировки тормозов усл.№ 367, разрядить ТМ до 0 экстренным торможением, перевести КВТ в VI положение, наполнив ТЦ до полного давления, и перекрыть разобщительный кран на трубопроводе от КВТ к ТЦ. По манометру ТЦ следить за падением давления;
  • на электровозах ЧС разрядить ТМ до 0 экстренным торможением, наполнив ТЦ до полного давления. По манометру ТЦ следить за падением давления. КВТ остается в поездном положении, разобщительный кран на трубопроводе от КВТ к ТЦ не перекрывается.

Тормозной цилиндр № ТЦР-3

Анимация (мультик) по схемам прямодействующего, непрямодействующего тормоза и ЭПТ. Для скачивания проги кликните по картинке

Тормозной цилиндр № ТЦР-3

Отличное пособие по новому воздухораспределителю пассажирских вагонов № 242.
С анимацией и дикторским сопровождением. Для скачивания PDF кликните по картике

Крылов Автоматические тормоза

Справочник по тормозам

Локомотивные устройства безопасности

Тормозные цилиндры

Тормозные цилиндры предназначены для передачи усилия сжатого воздуха, поступающего в них при торможении, тормозной рычажной передаче. В ТЦ происходит преобразование потенциальной энергии сжатого воздуха в механическое усилие на штоке поршня.

Конструктивно подавляющее большинство тормозных цилиндров имеют литой чугунный корпус, в котором расположены поршень со штоком и отпускная пружина. На подвижном составе применяются ТЦ с жестко закрепленным в поршне штоком, с самоустанавливающимся штоком, шарнирно соединенным с поршнем, и со встроенным автоматическим регулятором тормозной рычажной передачи.

Стандартный ТЦ усл.№ 188Б (Рис.5.14 а) устанавливается на четырехосных грузовых вагонах, полувагонах, цистернах, платформах.

Тормозной цилиндр состоит из литого чугунного корпуса 14, передней крышки 8 с удлиненной горловиной и задней крышки 15, уплотненной резиновым кольцом. Задняя крышка крепится к корпусу большим количеством болтов, чем передняя, так как испытывает усилие сжатого воздуха до 4 тс, в то время, как передняя крышка нагружена только отпускной пружиной 5, имеющей предварительную затяжку 150 — 160 кгс.

На поршне 4 установлены резиновая манжета 1 и войлочное смазочное кольцо 2, удерживаемое в проточке поршня распорной пластинчатой пружиной 3. С поршнем жестко связана (посредством пальца 6) полая труба, являющаяся штоком 7. В горловине передней крышки расположены атмосферные каналы (Ат), в которых установлены сетчатые фильтры 9. Резиновая шайба 10, надетая на трубу штока, защищает внутреннюю полость ТЦ от пыли. В торец штока вставлена головка 13, в проточку которой входят винты 11, крепящие упорное кольцо 12 к штоку. Это упорное кольцо предназначено для снятия передней крышки в сборе с поршнем и отпускной пружиной.

На задней крышке имеются шпильки для крепления кронштейна мертвой точки и два резьбовых гнезда: одно для присоединения трубопровода для подвода сжатого воздуха, другое, заглушённое пробкой 16, — для установки манометра.

Тормозные цилиндры усл.№ 519Б имеют такое же конструктивное исполнение, что и ТЦ усл.№ 183Б. но больший внутренний диаметр корпуса — 16 дюймов вместо 14, и устанавливаются на шести- и восьмиосных вагонах.

Тормозной цилиндр усл.№ 502Б имеет самоустанавливающийся шток 7 (Рис.5.14 б), шарнирно связанный с поршнем 4, и помещенный в направляющую трубу 17. Головка 13 штока закреплена не на трубе, как у ТЦ усл.№ 188Б, а на штоке 7. Зазор между штоком и стенками трубы позволяет головке 13 при торможении двигаться по дуге.

Тормозные цилиндры с самоустанавливающимся штоком применяются на локомотивах.

 

 

Тормозные цилиндры усл.№ 501Б используются на пассажирских вагонах и на головных и прицепных вагонах электропоездов ЭР-2 и ЭР-9 и имеют на задней крышке фланец для крепления воздухораспределителя.

На некоторых видах подвижного состава, в частности на части тепловозов ТЭП-70. используются тормозные цилиндры ТЦР-3 со встроенным авторегулятором выхода штока. (Рис. 5.15).

Тормозной цилиндр ТПР-3 состоит из корпуса 15 с приварным дном 17 и привалочного фланца 4. Внутри корпуса помещен стакан 1 регулятора, на который воздействует усилие возвратной пружины 2. Поршень 16 с резиновой манжетой и смазочным кольцом вставлен своей направляющей частью в стакан 1. Шток 6 поршня имеет несамотормозящую резьбу, на которую навернуты регулировочная 13 и вспомогательная 11 гайки. На цилиндрической части гаек 11 и 13 стопорными кольцами закреплены упорные шарикоподшипники 5 и 18. Коническая часть гаек 11 и 13 прижимается пружинами, действующими через шарикоподшипники. к конусным втулкам 8 и 3. Стакан регулятора закрыт резьбовой крышкой 10, имеющей с внутренней стороны коническую фрикционную поверхность, через которую стакан опирается на вспомогательную гайку 11.

В горловину передней крышки ТЦ ввернуты упорные болты 7 и 12. Болт 12 после отвертывания может перемещаться в продольном направлении и устанавливаться на выбранном расстоянии «А» от кольцевой поверхности конусной втулки 8. Это расстояние определяет величину хода штока ТЦ, которая будет автоматически поддерживаться регулятором. Иными словами, это расстояние соответствует нормальному зазору между колодкой и колесом при неизношенных колодках. На горловину крышки надет защитный чехол 9.

При торможении поршень и стакан перемещаются вправо и усилие от поршня ТЦ передается на шток 6 через конусную втулку 3 и регулировочную гайку 13. Если выход штока ТЦ меньше или равен установленному расстоянию «А», то как при торможении, так и при отпуске сохраняется неизменным относительное положение стакана 1 регулятора и штока 6 ТЦ. При выходе штока ТЦ большем, чем расстояние «А», кольцевая поверхность конусной втулки 5 упирается в хвостовик болта 12, и после дальнейшего выхода штока происходит вращение вспомогательной гайки 11, которая свинчивается по штоку, оставаясь в соприкосновении с конической фрикционной поверхностью конусной втулки 8. При отпуске тормоза стакан 1 вместе с поршнем ТЦ перемещается пружиной 2 в исходное положение (влево), втулка 8 доходит до упора в хвостовик болта 7 и дальнейшее движение штока в отпускное положение прекращается. При последующем движении стакана под действием возвратной пружины до упора крышки 10 во вспомогательную гайку 11, происходит свинчивание со штока регулировочной гайки 13, сохраняющей под действием пружины 14 контакт с конусной втулкой 3.

Таким образом, поддержание стабильного хода штока ТЦ обеспечивается соответствующим выходом штока из стакана в исходном положении.

На штоке поршня ТЦ пассажирских вагонов, оборудованных композиционными колодками, устанавливается и закрепляется специальный хомут длиной 70 мм. Таким образом, при отпуске поршень не доходит до исходного положения (до задней крышки) на длину хомута, увеличивая объем «вредного» пространства ТЦ примерно на 7 л. Следовательно, при полном выходе штока ТЦ 130 — 160 мм при полном служебном торможении перемещение поршня составит 60 — 90 мм. Этим обеспечивается рабочий объем ТЦ такой же, как и при чугунных колодках, а также нормальный зазор между колодками и колесом в отпущенном состоянии тормоза.

Выход штока ТЦ является важным эксплуатационным показателем состояния тормоза. Для каждого типа подвижного состава нормы верхнего и нижнего пределов выхода штока, а также величина максимально допустимого выхода штока ТЦ в эксплуатации устанавливается специальными инструкциями МПС. При увеличенном выходе штока увеличивается рабочий объем ТЦ и, следовательно, уменьшается давление в ТЦ и замедляется его наполнение, что в конечном итоге ведет к снижению эффективности тормозов. При малом выходе штока возможно заклинивание колесных пар из-за повышения давления в ТЦ, а в зимнее время — и из-за примерзания колодок к колесам после стоянки, вследствие уменьшения расстояния между колодкой и колесом.

Инструкция по эксплуатации тормозов подвижного состава железных дорог ЦТ-ЦВ-ЦЛ-ВНИИЖТ/277 для электровозов и тепловозов (кроме тепловозов ТЭП-60 и ТЭП-70) устанавливает нормы нижнего и вехнего пределов выхода штока ТЦ 73 — 100 мм, а максимально допустимый в эксплуатации — 125 мм. Для грузовых вагонов с чугунными колодками при первой ступени торможения 40 — 100 мм, а максимально допустимый в эксплуатации — 175 мм; для грузовых вагонов с композиционными колодками соответственно 40 — 80 мм и 130 мм. Для пассажирских вагонов с чугунными и композиционными колодками при первой ступени торможения 80 — 120 мм, максимально допустимый в эксплуатации — 180 мм. (для пассажирских вагонов с композиционными колодками выход штока ТЦ указан с учетом длины хомута, установленного на штоке, а максимально допустимый выход штока ТЦ в эксплуатации для всех вагонов указан при отсутствии на вагоне авторегулятора рычажной передачи).

Другим важным эксплуатационным показателем, оказывающим влияние на эффективность работы тормоза, является плотность ТЦ. При давлении сжатого воздуха в ТЦ не менее 3,5 кгс/см2 падение давление в ТЦ допускается не более 0,2 кгс/см2 за 1 мин.

 

Для проверки плотности ТЦ необходимо:

     на локомотивах с блокировкой тормозов усл.№ 367 разрядить ТМ экстренным торможением до 0, перевести КВТ в VI положение, наполнив ТЦ до полного давления, и выключить блокировку. По манометру ТЦ следить за падением давления;

на локомотивах, не оборудованных устройством блокировки тормозов усл.№ 367, разрядить ТМ до 0 экстренным торможением, перевести КВТ в VI положение, наполнив ТЦ до полного давления, и перекрыть разобщительный кран на трубопроводе от КВТ к ТЦ. По манометру ТЦ следить за падением давления;

на электровозах ЧС разрядить ТМ до 0 экстренным торможением, наполнив ТЦ до полного давления. По манометру ТЦ следить за падением давления. КВТ остается в поездном положении, разобщительный кран на трубопроводе от КВТ к ТЦ не перекрывается.

Тормозные цилиндры

Применяемые на подвижном составе железных дорог тормозные цилиндры предназначены для передачи давления сжатого воздуха, поступающего в них при торможении и прижатии тормозных колодок к колесам Цилиндры обеспечивают работоспособность при температуре ±55 °С. Их герметичность проверяют при давлениях воздуха 0,5; 4,0 и 6,0 кгс/см2. Гарантийный срок работы 2 года со дня эксплуатации (со знаком качества 4 года).
Таблица 1. Характеристика и конструктивные особенности тормозных цилиндров


Номер
цилиндра

Диаметр цилиндра, дюйм/мм

Конструкция соединения штока с поршнем

Конструкция задней крышки

Место установки

10тцг

10/254

Самоуста-
навливаю-
щаяся

Крышки нет, корпус с глухим дном

На тепловозах

430

12/305

Жесткая

С кронштейном мертвой точки

На паровозах и тендерах

431

12/305

»

С кронштейнами мертвой точки и для тройного клапана

На электросекциях н пассажирских вагонах

450

12/305

С кронштейнами мертвой точки

На электросекциях

351

13/330

Самоуста-
навлива-
ющаяся

Крышки нет Корпус с глухим дном

На паровозах (503Б с 1962 г.)

435

14/356

Жесткая

С кронштейном мертвой точки

На паровозах, тендерах и четырехосных грузовых вагонах

Номер
Цилиндра

Диаметр
цилиндра,
дюйм/мм

Конструкция соединения штока с поршнем

Конструкция задней крышки

Место установки

436

14/356

Жесткая

С кронштейнами мертвой точки и для тройного клапана

На тендерах пассажирских паровозов, электросекциях и пассажирских вагонах

455

14/356

Самоуста-
навливающаяся

С кронштейном мертвой точки

На электровозах

501, 501Б (рис. 188)

14/356

Жесткая

С кронштейнами мертвой точки и для тройного клапана

На тендерах пассажирских паровозов, вагонах электропоездов и пассажирских вагонах (501Б с 1962 г.)

502, 502Б

14/356

Самоуста-
навливающаяся

С кронштейном мертвой точки

На электровозах (502Б с 1962 г.)

504, 504Б

12/305

То же

То же

На паровозах и тендерах (504Б с 1962 г.)

505, 505Б

12/305

 

С кронштейном мертвой точки и для тройного клапана

На пассажирских вагонах и вагонах электропоездов (505Б с 1962 г.)

507, 507Б

10/254

»

Без кронштейна

На тепловозах (507Б с 1962 г.)

Тормозной цилиндр № 501Б
Рис. 188. Тормозной цилиндр № 501Б диаметром 14″ (356 мм)

Номер
цилиндра

Диаметр
цилиндра,
дюйм/мм

Конструкция соединения штока с поршнем

Конструкция задней крышки

Место установки

507В

10/254

То же

То же

На электропоездах с регулятором выхода штока

509, 509Б

10/254

Самоуста
навлива-
ющаяся,
жесткая

С кронштейном мертвой точки и для тройного клапана

На пассажирских вагонах (509Б с 1962 г.)

510Б

10/254

Самоуста-
навлива-
ющаяся

С кронштейном мертвой точки

На грузовых вагонах (с 1962 г.)

188, 188Б (рис. 189)

14/356

Самоуста-
навлива-
ющаяся,
жесткая

То же

На четырехосных грузовых вагонах (188Б с 1962 г.) и на электросекциях

519Б
(рис. 190)

16/400

То же

 

На шести — и восьмиосных грузовых полувагонах и цистернах с 1962 г.

ТЦР-3

8/203

Со встро-

Сварной, штампо-

На электропоездах

(рис. 191, о)

 

енным регулятором

ванный

с) Ρ??χ). Максимальный ход поршня 50 мм, рабочий — до 25 мм

ТЦР-10 (рис. 191, б)

10/254

То же

То же

На некоторых тепловозах

45, 45А

10/254

Шарнир
ная

 

На дизель-поездах ДР

316-30-40

10/254

То же

 

То же

553

8/203

»

»

На тепловозах М62 с 1964 г.

578

10/254

*

»

На электропоездах ЭР25 с 1968 г. (на экспорт)

503Б

12/305

Жесткая

С кронштейном мертвой точки

На электросекциях

511Б

3/203

»

То же

На промышленных локомотивах

Примечания. 1. Тормозные цилиндры № ТЦР-10, 351 и от 425 до 455 с производства сняты.

  1. Тормозные цилиндры № 501 — 509 без индекса Б с производства сняты и заменены номерацией с индексом Б (с манжетами кольцевого типа).
  2. Новые тормозные цилиндры выпускают с канавками для выпуска влаги (конденсата).
  3. Штампованные тормозные цилиндры приведены в табл. 118а.
  4. Новые тормозные цилиндры должны отвечать требованиям ГОСТ 3036 — 69.
  5. При давлении в тормозном цилиндре 0,5 кгс/см2 в течение 1 мин и при давлении 4 — 6 кгс/см в течение 3 мин падения давления не должно быть более 0,1 кгс/см2.
  6. Ресурс работы тормозного цилиндра 1,5 млн. двойных ходов. Наработка на отказ не менее 200 тыс. двойных ходов.
  7. Тормозные цилиндры со встроенным регулятором и для дисковых тормозов приведены на рис. 191 и 192.
  8. Тормозные цилиндры (рис. 193) применяются на вагонах постройки ПНР и СРР.

Тормозной цилиндр № 188Б
Рис. 189 Тормозной цилиндр № 188Б диаметром 14″ (356 мм)
Тормозной цилиндр № 519Б
Рис 190. Тормозной цилиндр № 519Б диаметром 16″ (400 мм)

Тормозной цилиндр ТЦР-3

Рис 191 Тормозной цилиндр ТЦР-3 со встроенным авторегулятором:
1 — штампованный корпус с приварным дном, 2 — поршень, 3 — стакан регулятора, 4 — пружины, 5 — привалочный фланец, 6 — винт с выходом 120 мм, 7 — сальник, 8 — предохранительный чехол, 9 — винт для регулировки зазора между накладкой и диском
Тормозной цилиндр ТЦР-3
Примечания 1 Максимальный ход поршня у всех тормозных цилиндров 240 мм

  1. Технические условия 24-95-801 — 83.
  2. Опытная партия выпущена в 1983 г белевским заводом «Трансмаш»

Таблица 118а Характеристика штампованных тормозных цилиндров
Таблица 119. Объем тормозного цилиндра при разных ходах поршня


Диаметр цилиндра, мм (дюйм)

Площадь
поршня.
см

Объем вредного пространства, л

Объем цилиндра, л, при ходе поршня мм (с учетом пространства между крышкой и поршнем)

75

100

125

150

175

200

203(8)

324

0,7

3,13

3,84

4,75

5,56

6,37

7,18

254(10)

506

1,0

4,80

6,06

7,32

8,60

9,86

11.12

305(12)

730

1,7

7,17

9,00

10,83

12,64

14,47

16,30

330(13)

855

2,0

8,41

10,55

12,69

24,82

16,96

19,10

354(14)

994

2,2

9,65

12,14

14,63

17,10

19,59

22,08

400(16)

1257

2,5

11,93

15,07

18,21

21,35

24,49

27,64

Тормозной цилиндр № 45а
Рис. 192. Тормозной цилиндр № 45а диаметром 10″ (254 мм) для дисковых тормозов:
а — литой фланцевый; б — штампованный сварной

Штампованный тормозной цилиндр
Рис. 193. Штампованный тормозной цилиндр диаметром 14″ (356 мм) на вагонах постройки ПНР и СРР (европейского типа)

Штампованный тормозной цилиндр
Рис. 194. Штампованный тормозной цилиндр № 002 диаметром 14″ (356 мм)
Штампованный тормозной цилиндр
Таблица 121. Давление, при котором перемещается поршень тормозного цилиндра


Номер цилиндра

Перемещение от задней крышки на торможение, кгс/см2

Перемещение от передней крышки на отпуск, кгс/см2

в начале

в конце

в начале

в конце

553

0,3-0,5

0,5-0,8

0,4 — 0,65

0,15 — 0,25

507Б — 510Б, 007, 011

0,2 — 0,3

0,4 — 0,6

0,3-0,45

0,15-0,25

504 Б, 505Б

0,15 — 0,3

0,3 — 0,5

0,3 — 0,45

0,1 — 0,2

503Б

0,1 — 0,2

0,35 — 0,45

0.25 — 0,4

0,05 — 0,1

188, 501Б — 504Б, 002, 012

0,15-0,3

0,3 — 0,4

0,25-0,35

0,1 — 0,2

519 Б, 008

0,1 — 0,25

0,25 — 0,35

0,2 — 0,3

0,05 — 0,15

Примечание. При температуре -55°С указанные давления при перемещениях могут изменяться в пределах ±0,05 кгс/см2.
Таблица 122. Резиновые детали тормозных цилиндров
Штампованный тормозной цилиндр

Таблица 123. Размеры резиновых бортовых воротников тормозных цилиндров
Штампованный тормозной цилиндр

Таблица 124. Диаметр резиновых манжет кольцевого типа тормозных цилиндров и канавок на поршнях


Диаметр цилиндра, мм (дюйм)

Номер
манжеты

Диаметр манжеты (рис. 1 96), мм

Масса
манжеты,
г

Диаметр канавки на поршне (высота канавки
Н=21 + 52), мм

наружный

внутренний

D

D1

d

d1

203(8)

511 — 06А

205

191

157

163

220

170

254(10)

508-12А

256

242

208

214

260

221

305(12)

504-07А

303

293

259

265

312

272

330(13)

503-11А

332

318

284

290

340

297

356(14)

188-22Б

358

344

310

316

370

323

400(10)

519-6

402

388

354

360

450

367

Примечания. 1. Манжеты изготавливают из резины марки 7.6659 по ТУ 38-105-1070-76 или марки 7130, группа I.
2 Цилиндр обрабатывают по седьмому классу шероховатости, а канавку под манжету — по пятому классу шероховатости.

Таблица 125. Диаметр резиновых прокладок задних крышек тормозных цилиндров


Диаметр цилиндра, мм (дюйм)

Номер
прокладки

Диаметр, мм (±2,0)

Масса 1 шт., г

наружный

внутренний

203 (8)

511 — 09

217

197

15

254 (10)

508-08

268

248

19

305 (12)

504-08

319

299

23

330 (13)

503-12

344

324

25

356 (14)

188-23

370

350

27

400 (16)

519-07

412

392

84

Примечание. Толщина прокладок (1,5±0,3) мм.

Бортовой воротник тормозного цилиндра
Рис. 195. Бортовой воротник тормозного цилиндра

Манжета кольцевого типа тормозного цилиндра
Рис. 196. Манжета кольцевого типа тормозного цилиндра и ее расположение в цилиндре
Таблица 126. Характеристика пружин тормозных цилиндров
Манжета кольцевого типа тормозного цилиндра

Цилиндры тормозные

Цилиндры тормозные железнодорожного подвижного состава

Тормозной цилиндр — компонент тормозной системы, силовой орган, преобразующий давление сжатого воздуха в механическую энергию, которая передаётся через тормозную рычажную передачу на тормозные колодки, прижимая их к ободу колеса или к тормозным дискам.

Корпус и крышки тормозного цилиндра отливаются из чугуна или изготавливаются сварными из стали. Внутри корпуса находятся: поршень с резиновой уплотняющей манжетой и войлочным смазывающим кольцом, шток, отпускная пружина. Шток может быть жестко связан с поршнем, если соединённый с ним рычаг не передаёт на него изгибающего усилия, или шарнирно, если рычаг движется по дуге. В задней крышке тормозного цилиндра имеется отверстие для подвода сжатого воздуха и отверстие для установки манометра при испытаниях, заглушенное пробкой. В передней крышке имеется отверстие для слива конденсата, в горловине крышки установлена резиновая пылезащитная шайба.

Выход штока тормозного цилиндра должен находится в установленных пределах. При выходе штока меньше нормы увеличивается износ тормозных колодок и создаётся дополнительное сопротивление движению, при выходе штока больше нормы увеличивается расход сжатого воздуха и снижается КПД тормозной рычажной передачи. Величина выхода штока определяется при полном служебном торможении. Если при проведении контрольной проверки тормозов на станции величина выхода штока превышает установленные нормативы, вагон при расчёте тормозного нажатия не учитывается.

Тормозные цилиндры рассчитываются на максимальное давление 0,6 МПа. Давление в тормозных цилиндрах грузовых вагонов на гружёном режиме не должно превышать 0,44 МПа, на порожнем режиме — 0,2 МПа, в тормозных цилиндрах пассажирских вагонов — 0,41 МПа.

Предъявляемые требования к техническому состоянию. Отсутствие механических повреждений и утечек воздуха в соединениях и по штоку. Надежность действия возвратной пружины

Предъявляемые требования  к установке на подвижном составе и применению. Соответствие величины выхода штока поршня тормозного цилиндра установленным нормам.

2.1 Определение усилия, развиваемого поршнем тормозного цилиндра

Усилие по штоку поршня тормозного цилиндра рассчитываем по формуле 2.1:

, (2.1)

где F– площадь поршня тормозного цилиндра, см2;

Рт.ц– давление сжатого воздуха в тормозном цилиндре при торможении, кгс/см2;

т.ц– коэффициент полезного действия тормозного цилиндра;

Рпр– усилие отпускной пружины тормозного цилиндра при максимальном ходе поршня, кгс;

Рр– реактивное усилие возвратной пружины авторегулятора рычажной передачи, приведенное к штоку тормозного цилиндра, кгс.

для грузовых вагонов на гружёном режиме воздухораспределителя (чугунные колодки) равно 3,7-4,3 кгс/см2.

т.ц=0,98

Площадь поршня тормозного цилиндра Fрассчитываем по формуле 2.2:

, (2.2)

где — диаметр тормозного цилиндра.

Для 4-осного крытого вагона =35,6 см.

Подставляем данное значение в формулу 2.2:

см2

Усилие отпускной пружины тормозного цилиндра при максимальном ходе поршняРпррассчитываем по формуле (2.3):

, (2.3)

где— усилие предварительного сжатия пружины тормозного цилиндра при отпущенном тормозе, кгс;

ж – жёсткость отпускной пружины тормозного цилиндра, кгс/см;

l– полный ход поршня тормозного цилиндра, см

=159 кгс, ж=6,54 кгс/см

lв соответствии с заданием равняется 100 мм.

Подставляем соответствующие значения в формулу 2.3:

Рпр=159+6,54×10=224,4 кгс

Реактивное усилие возвратной пружины авторегулятора рычажной передачи, приведенное к штоку тормозного цилиндраРррассчитываем по формуле 2.4:

, (2.4)

где k– коэффициент, учитывающий вид привода;

Nр– реактивное усилие возвратной пружины авторегулятора, кгс;

а, б – размеры плеч горизонтального рычага, мм;

жр– жесткость пружины авторегулятора, кгс/см;

lр– величина сжатия пружины авторегулятора, см

Для грузового вагона с рычажным приводом при чугунных колодках k=0,67,lр=3 см.

Nр=180 кгс, жр=15 кгс/см.

Размеры плеч по заданию: а=260 мм, б=400 мм.

Подставляем соответствующие значения в формулу 2.4:

кгс

Полученные значения подставляем в формулу 2.1:

кгс

2.2 Определение передаточного числа тормозной рычажной передачи вагона

Передаточное число тормозной рычажной передачи– это безразмерная величина, показывающая, во сколько раз с помощью рычагов рычажной передачи изменяется сила, реализуемая на штоке тормозного цилиндра, при передаче ее к тормозным колодкам.

Определяется передаточное число тормозной рычажной передачи как произведение отношений длины ведущих плеч к длине ведомых плеч всех рычагов, используемых для передачи усилия от штока тормозного цилиндра к тормозным колодкам.

Рычаг – это элемент рычажной передачи, имеющий три точки: приложения усилия от штока поршня тормозного цилиндра, поворота и передачи усилия на тормозную колодку. Ближняя точка у рычага по рычажной передаче к тормозному цилиндру – всегда точка приложения усилия к нему. Если тормозная колодка не прижата к колесу, то ближняя точка у рычага к колодке – точка передачи усилия. Когда тормозная колодка прижимается к колесу (при определении силы нажатия на следующую колодку), то точка передачи усилия на следующую колодку и точка поворота рычага меняются местами. Зная эти правила, всегда можно правильно определить у каждого рычага рычажной передачи положение его точки поворота.

Ведущее плечо рычага – это расстояние от точки приложения силы к рычагу до точки поворота рычага.

Ведомое плечо рычага – это расстояние от точки поворота рычага до точки, в которой через рычаг передаётся усилие.

Определим передаточное число для каждой тормозной колодки, изображенной на схеме рычажной передачи (приложение А).

Подсчет передаточного числа на каждую тормозную колодку начинаем всегда от штока поршня тормозного цилиндра (при этом все передаточные числа должны быть равны между собой).

;

;

;

Общее передаточное число для всего вагона

, (2.5)

где n1,n2,ni– передаточные числа к отдельным тормозным колодкам;

 – угол между направлением силы, действующей в точке передачи на колодку, и направлением нормального давления на колесо.

Для грузовых вагонов = 10.

В 4-осном вагоне , тогда формула 2.5 приобретает вид:

(2.6)

Подставляем значения а, б, в и г в формулу 2.6:

Правда о железнодорожных тормозах: часть 2 / Habr

Вижу, что первая, историческая часть моего повествования публике понравилась, а поэтому не грех и продолжить.

Высокоскоростные поезда, вроде TGV уже не обходятся пневматическим торможением

Сегодня мы поговорим о современности, а именно о том, какие подходы к созданию тормозных систем подвижного состава используются в XXI веке, буквально через месяц разменяющему свой третий десяток.


Исходя из физического принципа создания тормозного усилия все железнодорожные тормоза можно разделить на два основных типа: фрикционные, использующие силу трения, и динамические, использующие тяговый привод для создания тормозящего момента.

К фрикционным тормозам относятся колодочные тормоза всех конструкций, в том числе и дисковые, а также магниторельсовый тормоз, который применяется на высокоскоростном магистральном транспорте, в основном в Западной Европе. На колее 1520 этот вид тормоза применялся исключительно на электропоезде ЭР200. Что касается того же «Сапсана», РЖД отказались от использования магниторельсового тормоза на нем, хотя прототип этого электропоезда, немецкий ICE3 таким тормозом оснащен.

Тележка поезда ICE3 с магниторельсовым тормозом

Тележка поезда «Сапсан»

К динамическим, а точнее электродинамическим тормозам относятся все тормоза, действие которых основано на переводе тяговых электродвигателей в генераторный режим (рекуперативный и реостатный тормоз), а так же торможение противовключением

С рекуперативным и реостатным тормозом все относительно понятно — двигатели тем или иным способом переводятся в генераторный режим, и в случае с рекуперацией отдают энергию в контактную сеть, а в случае с реостатом, выработанная энергия сжигается на специальных резисторах. И тот и другой тормоз применяется как на поездах с локомотивной тягой, так и на моторвагонном подвижном составе, где электродинамический тормоз является основным рабочим тормозом, в виду большого количества тяговых электродвигателей, распределенных по всему поезду. Единственным недостатком электродинамического торможения (ЭДТ) является невозможность торможения до полной остановки. При снижении эффективности ЭДТ выполняется его автоматические замещение пневматическим фрикционным тормозом.

Что касается торможения противовключением, то оно обеспечивает торможение до полной остановки, так как заключается оно в реверсировании тягового двигателя на ходу. Однако этот режим, в большинстве случаев является аварийным — его штатное применение чревато повреждением тягового привода. Если взять, для примера, коллекторный двигатель, то при изменении полярности напряжения, подаваемого на него, противо-ЭДС, возникающая во вращающемся двигателе, не вычитается из питающего напряжения а складывается с ним — колеса как вращались так и вращаются в туже сторону что и в тяговом режиме! Это приводит к лавинообразному нарастанию тока, и самое лучшее что может случиться — сработают электрические аппараты защиты.

По этой причине на локомотивах и электропоездах принимаются все меры к недопущению реверсирования двигателей на ходу. Реверсивная рукоятка блокируется механически при нахождении контроллера машиниста на ходовых положениях. А на тех же «Сапсанах» и «Ласточках» поворот реверсивного переключателя при скорости выше 5 км/ч приведет к немедленному экстренному торможению.

Однако, некоторые отечественные локомотивы, например электровоз ВЛ65, используют реверсивное торможение как штатный режим на малых скоростях движения.

Реверсивное торможение — штатный, обеспечиваемый системой управления режим торможения на электровозе ВЛ65

Надо сказать, что несмотря на высокую эффективность электродинамического торможения, любой поезд, всегда, подчеркиваю — всегда оснащается пневматическим тормозом автоматического действия, то есть срабатывающего за счет выпуска воздуха из тормозной магистрали. Как в России, так и во всем мире старые-добрые колодочные фрикционные тормоза стоят на страже безопасности движения.

По функциональному назначению тормоза фрикционного типа подразделяются на

  1. Стояночные, ручные или автоматические
  2. Поездные — пневматические (ПТ) или электропневматические (ЭПТ) тормоза, устанавливаемые на каждую единицу подвижного состава в поезде и управляемые централизовано из кабины машиниста
  3. Локомотивные — пневматические прямодейсвующие тормоза, предназначенные для затормаживания локомотива, без затормаживания состава. Управляются они отдельно от поездных.


Ручной тормоз с механическим приводом никуда не делся с подвижного состава, он устанавливается как на локомотивах, так и на вагонах — просто сменил специальность, а именно превратился в стояночный тормоз, позволяющий исключить самопроизвольное движение подвижного состава в случае выхода воздуха из его пневмосистемы. Красное колесо, похожее на корабельный штурвал — привод ручного тормоза, один из вариантов его исполнения.

Штурвал ручного стояночного тормоза в кабине электровоза ВЛ60пк

Ручной тормоз в тамбуре пассажирского вагона

Ручной тормоз на современном грузовом вагоне

Ручной тормоз с помощью механического привода прижимает к колесам те же самые колодки, что используются при обычном торможении.

На современном подвижном составе, в частности на электропоездах ЭВС1/ЭВС2 «Сапсан», ЭС1 «Ласточка», а так же на электровозе ЭП20, стояночный тормоз автоматический и прижатие колодок к тормозным диском там выполняется пружинными энергоаккумуляторами. Часть клещевых механизмов, прижимающих колодки к тормозным дискам снабжена мощными пружинами, причем такими мощными, что отпуск выполняется пневматическим приводом давлением 0,5 МПа. Пневмопривод, в данном случае, противодействует пружинам, прижимающим колодки. Управление таким стояночным тормозом выполняется кнопками на пульте машиниста.

Кнопки управления стояночным пружинным тормозом (СПТ) на электропоезде ЭС1 «Ласточка»

По своему устройству такой тормоз аналогичен тому, что применяется на мощных грузовиках. Но в качестве основного тормоза в поездах такая система совершенно непригодна, а почему, я подробно объясню после рассказа о работе поездных пневматических тормозов.


Каждый грузовой вагон оснащается следующим комплексом тормозного оборудования

Тормозное оборудование грузового вагона: 1 — тормозной соединительный рукав; 2 — концевой кран; 3 — стоп-кран; 5 — пылеуловитель; 6, 7, 9 — модули воздухораспределителя усл. №483; 8 — разобщительный кран; ВР — воздухораспределитель; ТМ — тормозная магистраль; ЗР — запасный резервуар; ТЦ — тормозной цилиндр; АР — грузовой авторежим

Тормозная магистраль (ТМ) — труба диаметром 1,25» идущая вдоль всего вагона, на концах она снабжена концевыми кранами, для разобщения тормозной магистрали при расцепке вагона перед разъединением гибких соединительных рукавов. В тормозной магистрали в нормальном режиме поддерживается, так называемое зарядное давление величиной 0,50 — 0,54 МПа, так что разъединять рукава без перекрытия концевых кранов занятие сомнительное, которое в прямом смысле слова может лишить вас головы.

Запас воздуха, непосредственно подаваемого в тормозные цилиндры хранится в запа́сном резервуаре (ЗР), объем которого в большинстве случаев равен 78 литрам. Давление в запасном резервуаре в точности равно давлению в тормозной магистрали. Но нет, это не 0,50 — 0,54 МПа. Дело в том, что такое давление будет в тормозной магистрали на локомотиве. И чем дальше от локомотива, тем меньше давление в тормозной магистрали, потому что в ней неизбежно имеются неплотности приводящие к утечкам воздуха. Так что давление в тормозной магистрали последнего вагона в поезде будет несколько меньше зарядного.

Тормозной цилиндр, а на большинстве вагонов он один, при наполнении его из запасного резервуара, через тормозную рычажную передачу прижимает к колесам все имеющиеся на вагоне колодки. Объем тормозного цилиндра около 8 литров, поэтому при полном торможении в нем устанавливается давление не более 0,4 МПа. До той же величины снижается давление и в запасном резервуаре.

Главным «действующим лицом» в этой системе является воздухораспределитель. Этот прибор реагирует на изменение давления в тормозной магистрали, выполняя ту или иную операцию в зависимости от направления и темпа изменения этого давления.

При снижении давления в тормозной магистрали происходит торможение. Но не при любом снижении давления — уменьшение давления должно происходить определенным темпом, называемым темпом служебного торможения. Этот темп обеспечивается краном машиниста в кабине локомотива и составляет от 0,01 до 0,04 МПа в секунду. При снижении давления меньшим темпом торможение не происходит. Сделано это для того, чтобы тормоза не срабатывали при нормативных утечках из тормозной магистрали, а так же не срабатывали при ликвидации сверхзарядного давления, о чем мы поговорим попозже.

При срабатывании воздухораспределителя на торможение он выполняет дополнительную разрядку тормозной магистрали служебным темпом на величину 0,05 МПа. Делается это для того, чтобы обеспечить устойчивое снижение давления по всей длине поезда. Если дополнительной разрядки не делать, то последние вагоны длинного поезда могут и не затормозить в принципе. Дополнительную разрядку тормозной магистрали выполняют все современные воздухораспределители, в том числе и пассажирские.

При срабатывании на торможение, воздухораспределитель отключает запасный резервуар от тормозной магистрали и подключает его к тормозному цилиндру. Происходит наполнение тормозного цилиндра. Происходит оно ровно столько времени, сколько продолжается падение давления в тормозной магистрали. При прекращении снижения давления в ТМ наполнение тормозного цилиндра прекращается. Наступает режим перекрыши. Давление, набранное в тормозной цилиндр зависит от двух факторов:

  1. глубины разрядки тормозной магистрали, то есть величины падения давления в ней относительно зарядного
  2. режима работы воздухораспределителя

Грузовой воздухораспределитель имеет три режима работы: груженый (Г), средний (С) и порожний (П). Различаются эти режимы максимальным давлением, набираемым в тормозные цилиндры. Переключение между режимами осуществляется вручную путем поворота специальной режимной рукоятки.

Если подытожить, то зависимость давления в тормозном цилиндре от глубины разрядки тормозной магистрали при 483-воздухораспределителе на различных режимах выглядит так


Недостатком использования режимного переключателя является то, что работник вагонного хозяйства должен пройти вдоль всего состава, залезть под каждый вагон и переключить режимный переключатель в нужное положение. Делается это, по слухам, доходящим из эксплуатации, далеко не всегда. Чрезмерное наполнение тормозных цилиндров на порожнем вагоне чревато юзом, снижением эффективности торможения и порчей колесных пар. Для выхода из подобной ситуации на грузовых вагонах между воздухораспределителем и тормозным цилиндром включают так называемый авторежим (АР), который, механически определяя массу вагона плавно регулирует максимальное давление в тормозном цилиндре. Если вагон оборудован авторежимом, то режимный переключатель на ВР устанавливают в положение «груженый».

Торможение обычно выполняют ступенчато. Минимальной ступенью разрядки тормозной магистрали для ВР483 будет 0,06 — 0,08 МПа. При этом в тормозных цилиндрах устанавливается давление в 0,1 МПа. При этом машинист ставит кран в положение перекрыши, при котором в тормозной магистрали сохраняется величина давления, установленного после торможения. Если тормозной эффективности от одной ступени недостаточно, выполняется следующая ступень. При этом воздухораспределителю уже все равно, каким темпом происходит разрядка — при снижении давления любым темпом происходит наполнение тормозных цилиндров пропорционально величине снижения давления.

Полный отпуск тормозов (полное опорожнение тормозных цилиндров на всем поезде) выполняется повышением давления в тормозной магистрали выше зарядного. Причем, на грузовых поездах выполняется существенное завышение давления в ТМ над зарядным, для того чтобы волна повышения давления дошла до самых последних вагонов. Полный отпуск тормозов в грузовом поезде процесс длительный и может занимать до минуты.

ВР483 имеет два режима отпуска: равнинный и горный. В равнинном режиме при повышении давления в тормозной магистрали происходит полный, бесступенчатый отпуск. В горном режиме возможен ступенчатый отпуск тормозов, что есть не полное опорожнение тормозных цилиндров. Применяется этот режим при движении по сложному профилю с большой величиной уклонов.

Воздухораспределитель 483 вообще очень интересный прибор. Подробный разбор его устройства и работы это тема для отдельной большой статьи. Здесь же мы рассмотрели общие принципы работы грузового тормоза.


Тормозное оборудование пассажирского вагона: 1 — соединительный рукав; 2 — концевой кран; 3, 5 — соединительные коробки линии электропневматического тормоза; 4 — стоп-кран; 6 — трубка с проводкой электропневматического тормоза; 7 — изолированная подвеска соединительного рукава; 8 — пылеуловитель; 9 — отвод к воздухораспределителю; 10 — разобщительный кран; 11 — рабочая камера электровоздухораспределителя; ТМ — тормозная магистраль; ВР — воздухораспределитель; ЭВР — электровоздухораспределитель; ТЦ — тормозной цилиндр; ЗР — запасный резервуар

В глаза сразу бросается большее количество оборудования, начиная с того что тут аж три стоп-крана (по одному в каждом тамбуре, и один в купе проводника), заканчивая тем, что отечественные пассажирские вагоны оборудованы как пневматическим, так и электропневматическим тормозом (ЭПТ).

Внимательный читатель сразу отметит главный недостаток пневматического управления тормозами — конечная скорость распространения тормозной волны, ограниченная сверху скоростью звука. На практике же эта скорость ниже и составляет 280 м/с при служебном, и 300 м/с при экстренном торможении. К тому же эта скорость сильно зависит от температуры воздуха и зимой, например, она ниже. Поэтому извечный спутник пневматических тормозов — неравномерность их срабатывания по составу.

Неравномерность срабатывания приводит к двум вещам — возникновению значительных продольных реакций в поезде, а так же увеличению тормозного пути. Первое не столь характерно для пассажирских поездов, хотя прыгающие на столике в купе емкости с чаем и другими напитками никого не обрадуют. Увеличение же тормозного пути является серьезной проблемой, особенно в пассажирском движении.

К тому же, отечественный пассажирский воздухораспределитель — как старый усл. №292, так и новый усл. №242 (которых, к слову, в парке пассажирских вагонов становится всё больше), оба эти прибора — прямые наследники того самого тройного клапана Вестингауза, и работают они на разности двух давлений — в тормозной магистрали и запасном резервуаре. От тройного клапана их отличает наличие режима перекрыши, то есть возможность ступенчатого торможения; наличие дополнительной разрядки тормозной магистрали при торможении; наличие в конструкции ускорителя экстренного торможения. Эти воздухораспределители не обеспечивают ступенчатого отпуска — они дают сразу полный отпуск как только давление в тормозной магистрали превысит давление в запасном резервуаре, установившееся там после торможения. А ступенчатый отпуск очень полезен при регулировочных торможениях для точной остановки у посадочной платформы.

Обе проблемы — неравномерность срабатывания тормозов и отсутствие ступенчатого отпуска, на колее 1520 мм решаются установкой на вагоны воздухораспределителя с электрическим управлением — электровоздухораспределителя (ЭВР), усл. №305.

Отечественный ЭПТ — электропневматический тормоз — прямодействующий, неавтоматического действия. На пассажирских поездах с локомотивной тягой ЭПТ работает по двухпроводной схеме.

Структурная схема двухпроводного ЭПТ: 1 — контроллер управления на кране машиниста; 2 — аккумуляторная батарея; 3 — статический преобразователь питания; 4 — панель контрольных ламп; 5 — блок управления; 6 — клемная колодка; 7 — соединительные головки на рукавах; 8 — изолированная подвеска; 9 — полупроводниковый вентиль; 10 — отпускной электромагнитный вентиль; 11 — тормозной электромагнитный вентиль.

Вдоль всего поезда протягиваются два провода: №1 и №2 на рисунке. На хвостовом вагоне эти провода электрически соединены между собой и по получившейся петле пускают переменный ток частотой 625 Гц. Делается это для контроля целостности линии управления ЭПТ. При разрыве провода цепь переменного тока разрывается, машинист получает сигнал в виде погасания в кабине контрольной лампы «О» (отпуск).

Управление же ведется постоянным током разной полярности. При этом проводом с нулевым потенциалом являются рельсы. При подаче на провод ЭПТ положительного (относительно рельс) напряжения срабатывают оба электромагнитных вентиля, установленных в электровоздухораспределителе: отпускной (ОВ), и тормозной (ТВ). Первый из них изолирует рабочую камеру (РК) электровоздухораспределителя от атмосферы, второй — наполняет её из запасного резервуара. Дальше в дело вступает установленное в ЭВР реле давления, работающее на разности давлений в рабочей камере и тормозном цилиндре. При превышении давления в РК над давлением в ТЦ происходит наполнение последнего воздухом из запасного резервуара, до давления, которое было набрано в рабочую камеру.

При подаче на провод отрицательного потенциала, тормозной вентиль выключается, так как ток к нему отрезается диодом. Остается активным только отпускной вентиль, удерживающий давление в рабочей камере. Так реализуется положение перекрыши.

При снятии напряжения отпускной вентиль теряет питание, открывает рабочую камеру в атмосферу. При снижении давления в рабочей камере реле давления выпускает воздух и из тормозных цилиндров. Если после кратковременного отпуска снова поставить кран машиниста в положение перекрыши, то падение давления в рабочей камере прекратится, прекратится и выпуск воздуха из тормозного цилиндра. Таким образом добиваются возможности ступенчатого отпуска тормоза.

Что произойдет при обрыве провода? Правильно — ЭПТ отпустит. Поэтому этот тормоз (на отечественном подвижном составе) является неавтоматическим. При выходе из строя ЭПТ машинист имеет возможность перейти на пневматическое управление тормозами.

ЭПТ отличается одновременным наполнением тормозных цилиндров и их опорожнением по всему поезду. Темп наполнения и опорожнения довольно высокий — 0,1 МПа за секунду. ЭПТ является неистощимым тормозом, так как при его работе обычный воздухораспределитель находится в режиме отпуска и питает запасные резервуары из тормозной магистрали, которая в свою очередь отпитывается краном машиниста на локомотиве из главных резервуаров. Поэтому тормозить ЭПТ можно с любой частотой, требуемой для оперативного управления тормозами. Возможность ступенчатого отпуска позволяет управлять скоростью поезда очень точно и плавно.

Пневматическое же управление тормозами пассажирского поезда мало чем отличается от грузового тормоза. Есть разница в приемах управления, например отпуск пневматического тормоза производится до зарядного давления, без завышения. Вообще же чрезмерные завышения давления в тормозной магистрали пассажирского поезда чреваты неприятностями, поэтому при полном отпуске ЭПТ давление в ТМ завышается максимум на 0,02 МПа над величиной установленного зарядного давления.

Минимальная глубина разрядки ТМ при торможении на пассажирском тормозе составляет 0,03 — 0,05 МПа, при этом в тормозных цилиндрах создается давление 0,1 — 0,15 МПа. Максимальное давление в тормозном цилиндре пассажирского вагона ограничивается объемом запасного резервуара и обычно не превышает 0,4 МПа.


Теперь я обращусь к некоторым комментаторам, которых удивляет (а по-моему, даже и возмущает, но утверждать не берусь) сложность поездного тормоза. В комментариях предлагается применить автомобильную схему с энергоаккумуляторами. Оно, конечно, с дивана, или компьютерного кресла в офисе, через окно браузера многие проблемы виднее и очевиднее их решение, но позволю себе заметить, что большинство технических решений, принятых в реальном мире, имеют под собой четкое обоснование.

Как уже говорилось, главная проблема пневматического тормоза в поезде — конечная скорость движения скачка падения давления по длинной (до 1,5 км в поезде из 100 вагонов) трубе тормозной магистрали — тормозной волны. Для ускорения этой тормозной волны требуется дополнительная разрядка, выполняемая воздухораспределителем. Не будет воздухораспределителя, не будет и дополнительной разрядки. То есть тормоза на энергоаккумуляторах будут очевидно заметно хуже по характеристикам равномерности срабатывания, возвращая нас во времена Вестингауза. Грузовой поезд — это не грузовой автомобиль, тут другие масштабы, а значит и другие принципы управления тормозами. Уверен, что это не просто так, и направление мировой тормозной науки не случайно пошло по тому пути, который привел нас к такого рода конструкциям. Точка.

Данная статья — своего рода обзор существующих на современном подвижном составе тормозных систем. Дальше, в других статьях этого цикла я подробнее остановлюсь на каждой из них. Мы узнаем, какие приборы используются для управления тормозами, как устроены воздухораспределители. Подробнее рассмотрим вопросы рекуперативного и реостатного торможения. Ну и конечно рассмотрим тормоза высокоскоростного транспорта. До новых встреч и спасибо за внимание!

P.S.: Друзья! Отдельное спасибо хочу сказать за массу личных сообщений с указанием ошибок и опечаток в статье. Да, я грешник, который не дружит с русским языком и путается на клавишах. Постарался исправить ваши замечания.

Отправить ответ

avatar
  Подписаться  
Уведомление о