Трансмиссия пневматическая – Пояснения к ТН ВЭД 8481209001 — КЛАПАНЫ РЕГУЛИРУЮЩИЕ ДЛЯ ПНЕВМАТИЧЕСКИХ СИЛОВЫХ ТРАНСМИССИЙ ДЛЯ ПРОИЗВОДСТВА АВИАЦИОННЫХ ДВИГАТЕЛЕЙ /

Перечислите виды трансмиссий. Дайте их краткую характеристику. — КиберПедия

Трансмиссия (силовая передача) — механизм, передающий энергию двигателя к удалённому от него устройству-потребителю.

Виды:

1) механическая (в коробках передач содержат лишь шестерёнчатые и фрикционные устройства. Преимущества их состоят в высоком КПД, компактности и малой массе, надёжности в работе, относительной простоте в производстве и эксплуатации. Недостатком является ступенчатость изменения передаточных чисел, снижающая использование мощности двигателя. большое время на переключение передач рычагом усложняет управление машиной.)

2)гидростатическая (для передачи мощности используются аксиально-плунжерные гидромашины. Достоинства: малые габариты машин, малая масса и отсутствие механической связи между ведущим и ведомым звеньями трансмиссии, что позволяет разносить их на значительные расстояния и придавать большое число степеней свободы. Недостаток : значительное давление в гидролинии и высокие требования к чистоте рабочей жидкости.)

3)гидродинамическая (имеют гидромеханическую коробку передач, в состав которой входят гидродинамический преобразователь момента (гидротрансформатор, комплексная гидропередача) и механический редуктор. Преимущества этих трансмиссий состоят в автоматическом изменении крутящего момента в зависимости от внешних сопротивлений, возможности автоматизации переключения передач и облегчении управления, фильтрации крутильных колебаний и снижении пиковых нагрузок, действующих на агрегаты трансмиссии и двигатель, и в повышении вследствие этого надёжности и долговечности поршневого двигателя и трансмиссии. Основным недостатком этих трансмиссий является сравнительно низкий КПД из-за низкого КПД гидротрансформатора.)

4)электрическая (состоит из электрического генератора, тягового электродвигателя (или нескольких), электрической системы управления, соединительных кабелей. Основным достоинством электромеханических трансмиссий, является обеспечение наиболее широкого диапазона автоматического изменения крутящего момента и силы тяги, а также отсутствие жёсткой кинематической связи между агрегатами электротрансмиссии, что позволяет создать различные компоновочные схемы. Недостатком, препятствующим широкому распространению электрических трансмиссий, являются относительно большие габариты, масса и стоимость (особенно если используются электрические машины постоянного тока), сниженный КПД (по сравнению с чисто механической) )



5)пневматическая, (в такой трансмиссии имеется коробка передач с первичным и вторичным валами и несколькими парами зубчатых колёс, как и в обычной КПП, но включение нужной пары в работу выполняет не кулачковая или фрикционная муфта, а гидромуфта или гидротрансформатор, заполняемый для включения передачи. Достоинство: совершенно безударное включение передач и отсутствие механических муфт, ненадёжно работающих при передаче больших моментов)

6)комбинированная.

 

15.Какие трансмиссии передают движение с преобразованием энергии в другие формы, отличные от механической? Какие устройства обеспечивают эти преобразовния?

В механических и смешанных трансмиссиях на их механических участках механическое движение передается без его преобразования в другие формы энергии. Во всех других случаях вращательное движение выходного вала двигателя силовой установки с помощью электрогенераторов, гидравлических или пневматических насосов преобразуется соответственно в электрическую энергию, энергию движения рабочей жидкости или энергию сжатого воздуха, которая поступает к электро-, гидро- или пневмодвигателям, повторно преобразующим ее в механическое движение. Все указанные двигатели входят в состав трансмиссий. Соответственно различают электрические, гидравлические и пневматические трансмиссии.

 

16. Какой вид привода имеет преимущественное применение в строительных машинах? Обо­снуйте ответ. +17

Нет определенного ответа на этот вопрос. Выбор привода зависит от многих факторов. При оценке эффективности приводов строительных машин предпочтение следует отдавать тем приводам, которые имеют мень­шие габаритные размеры и массу, обладают высокой надежно­стью и готовностью к работе, высоким КПД, просты в управле­нии, более приспособлены к автоматизации управления, обеспе­чивают независимость рабочих движений и возможность их со­вмещения.



18. От чего зависит внешнее сопротивление на рабочем органе? Каков характер этого сопротивления? Приведите примеры.

Рассмотрим более подробно сущность понятия передачи дви­жения рабочему органу машины в условиях преодоления им внеш­них сопротивлений. Основная составляющая этих сопротивлений определяется, прежде всего, свойствами преобразуемого матери­ала и характером процесса преобразования. Например, при рабо­те водоотливной насосной установки внешними сопротивления­ми будут: сила тяжести поднимаемой воды и силы трения при ее передвижении по трубопроводам. В этом случае сопротивления практически неизменны во времени. При разработке грунта ков­шом экскаватора, отвалом бульдозера и другими машинами со­противления копанию нарастают от минимального до максималь­ного значения, многократно повторяясь в процессе каждой опе­рации копания.

18. Что такое сопротивление движению рабочего органа? Из чего оно складывается? Что является источником динамического сопротивления? Как влияет на его формирование механическая характеристика приво­да? Как влияет динамическая составляющая на общее внешнее сопро­тивление?

В условиях постоянных или слабо изменяющихся во времени внешних сопротивлений привод работает в спокойном режиме практически с постоянной скоростью на его выходном звене. При изменяемых во времени внешних сопротивлениях, кроме внут­ренних сопротивлений, к ним добавляются динамические со­ставляющие, обусловленные внешней (механической) характери­стикой привода — функциональной зависимостью между его силовым и скоростным факторами на выходном звене. Обычно эти факторы связаны между собой обратной зависимостью — чем больше внешнее сопротивление, тем меньше скорость движения выходного звена. Такая зависимость представлена на рис. 3.1 для случая вращательного движения выходного звена привода, где через Г, со и л обозначены соответственно вращающий момент, угловая скорость и частота враще­ния выходного звена. Если, напри­мер, на временном интервале Д/ со­противление возрастает от Г, до

Т2, то, согласно внешней характери­стике привода, угловая скорость снижается за то же время с со ] до со2 — выходное звено вращается с замедлением. Согласно второму за­кону механики этому замедлению соответствует пропорциональный ему динамический момент проти­воположного внешнему сопротив­лению направления. Складываясь с внешним сопротивлением, ди­намический момент уменьшает его значение. Природа этого явле­ния заключается в том, что движущаяся система при снижении скорости расходует накопленную в ней энергию на преодоление возрастающих внешних сопротивлений.

19. Что такое жесткость механической характеристики привода? Ка­кие характеристики называют жесткими? мягкими?

С уменьшением внешних сопротивлений скорость со возраста­ет, ускорение положительно, а поэтому динамический момент также положителен, т.е. с возрастанием скорости энергия приво­да расходуется на преодоление внешних сопротивлений и на на­копление энергии в движущейся системе. Таким образом, при­вод как бы выравнивает приведенное к его выходному звену со­противление с одновременным снижением скорости при возраста­нии внешнего сопротивления и ее увеличением при снижении пос­леднего. Такая приспособленность привода к условиям его нагру-жения будет тем больше, чем больше момент инерции враща­ющихся масс привода и чем меньше первая производная/=

dT/d(a, называемая жесткостью механической характеристики привода. Ха­рактеристики с высокими значениями этой величины называют жесткими, а с низкими значениями — мягкими. Степень жест­кости механической характеристики определяется, прежде всего, типом двигателя. Жесткость/может быть понижена за счет вклю­чения в состав привода дополнительных устройств, в частности — гидротрансформатора (см. гл. 5).

Системы управления и трансмиссии

Категория:

   Путевые и дорожные машины

Публикация:

   Системы управления и трансмиссии

Читать далее:



Системы управления и трансмиссии

Системой управления называется совокупность отдельных деталей и узлов, предназначенных для управления двигателем и включения механизмов машины (подъема, вращения, передвижения и др.). В путевых, дорожных и строительных машинах применяются следующие системы управления: рычажная (механическая), гидравлическая (насосная и безнасосная), пневматическая, электрическая и комбинированная.

Рычажная система применяется для управления с помощью рычагов муфтами и тормозами машин малой мощности, приводимых в движение рукоятками и педалями. Нормальное усилие на рычагах не должно превышать 3—4 кг при ходе не более 25 см, а на педали не более 8 кг при ходе педали не более 20 см. Усилие, прикладываемое к рукоятке или педали, усиливается посредством рычагов трансмиссии и передается к исполнительным органам. На рис. 41, а показана рычажная схема управления ленточным тормозом лебедки. Усилие от педали, расположенной на оси, передается тормозной ленте через тяги, вал и рычаги. Пружина служит для растормаживания.

Управление ленточным тормозом от рукоятки показано на рис. 41,6. Движение от рычага через регулировочную тягу и рычаг передается толкателю, который через рычаг затягивает ленту. Недостатками ручной рычажной системы являются большой расход мускульной энергии человека (особенно при частых включениях), утомляемость оператора и большой свободный ход рычагов и педалей, увеличивающийся по мере износа шарнирных соединений.

Рекламные предложения на основе ваших интересов:

Рис. 41. Системы рычажного управления а — от педали; б — от рукоятки

Гидравлическая система управления может быть безнасосной и насосной (рис. 42). В безнасосной системе (см. рис. 42, от) давление жидкости в командном и исполнительном цилиндрах создается усилием руки или ноги машиниста по принципу сообщающихся сосудов. При нажиме на педаль кулачок, вращаясь, оказывает давление на шток поршня 8, который, перемещаясь по цилиндру, давит на рабочую жидкость. Под действием поршня жидкость вытесняется из командного ццлиндра и по трубке попадает в исполнительный цилиндр. Созданное давление приводит к перемещению поршня и штока исполнительного цилиндра и рычага, затягивающего ленту тормоза. При прекращении торможения система под действием пружины возвращается в исходное положение. Утечка масла в системе компенсируется поступлением ее из бачка.

Рис. 42. Гидравлические системы
а — безнасосная; 6 — насосная (следящая)

Безнасосная гидравлическая система управления непосредственного действия при длительной работе требует от машиниста значительных затрат энергии. Для облегчения работы и создания возможности машинисту чувствовать нагрузку исполнительного органа применяют гидравлические следящие системы. В этих системах используют насосы, развивающие давление до 30 МПа (300 кгс/см2). Пример применения следящей системы для управления рулевым механизмом показан на рис. 42, б.

При вращении штурвала вправо или влево золотник, перемещаясь, попеременно открывает отверстия А или Б подачи масла в цилиндр, в результате чего поршень начинает двигаться вместе со штоком и рейкой, вращая зубчатый сектор. Зубчатый сектор в свою очередь поворачивает рулевую сошку и соединенную с ней продольную рулевую тягу. Движение последней передается управляемым колесам. Нейтральное положение золотника (отверстия А и Б закрыты) соответствует прямолинейному движению машины. Данные системы являются высокочувствительными и значительно облегчают труд водителя.

Для управления многими механизмами применяют также усилители пневматического действия, которые, в отличие от гидравлических, имеют большую плавность в работе, простоту изготовления и надежность действия. Однако давление воздуха в пневматических системах значительно ниже давления жидкости в гидросистемах. Это приводит к тому, что для получения заданных рабочих усилий необходимо создавать исполнительные органы (пневмокамеры) значительных конструктивных размеров и массы.

Электрическую систему управления используют только в машинах, имеющих электрический или дизель-электрический привод. Электрическая система отличается компактностью конструкции, надежностью действия и возможностью применения автоматики и блокировки. Электродвигатели мощностью до 15 кВт включают контроллерами или кнопками. Более мощные двигатели включают обычно при помощи магнитных станций-контакторов, управляемых специальными ко-мандоаппаратами.

Трансмиссии. Трансмиссией называется система, кинематически связывающая отдельные узлы машины, при помощи которой трансформируется движение и усилие от двигателя к исполнительному органу.

Трансмиссии бывают механические, гидравлические, пневматические, электрические и комбинированные.

На рис. 43 представлены схемы канатно-блочной и гидравлической трансмиссии привода управления отвалом бульдозера.

Канатно-блочная трансмиссия (рис. 43, а) с применением полиспастных устройств проста в изготовлении и удобна в эксплуатации, передает движение к рабочему органу, расположенному на значительном расстоянии от двигателя.

Вращением рукоятки нажимная гайка, перемещаясь по нарезанной части оси барабана, передвигает внутреннюю полумуфту конусного фрикциона до упора в конусную часть барабана. Вращающий момент от зубчатого колеса передается на барабан за счет сил трения, возникающих на контактируемых поверхностях. Канат навивается на барабан и совершается подъем отвала.

Поворотом рукоятки в обратную сторону нажимная гайка перемещается по нарезке обратно, увлекая за собой внутренний конус фрикциона, и фрикционный механизм выключается.

Недостатком канатно-блочных систем является то, что они не создают напорных усилий. Опускание и заглубление отвала происходит под действием сил тяжести отвала и толкающей рамы.

Рис. 43. Схемы трансмиссий а — канатно-блочная; б — гидравлическая

Гидравлическая трансмиссия (рис. 43, б) лишена этого недостатка, так как имеет цилиндры двухстороннего действия. Насос, работающий от двигателя, нагнетает жидкость по трубопроводам в гидроцилиндры. Направление движения жидкости в пространство над поршнем или под поршнем регулируется золотником. Подъем и опускание отвала осуществляется штоками гидроцилиндров. Масло поступает в магистраль из бачка через фильтр. При давлении жидкости в системе больше номинального срабатывает предохранительный клапан. Преимущество такой системы — возможность передавать движение нескольким гидроцилиндрам и создавать принудительное заглубление отвала.

Пневматические трансмиссии работают аналогично гидравлическим приводам.

Обладают большой плавностью в работе, но в силу небольших давлений (0,6— 0,7 МПа) не могут реализовать больших усилий.

Электрическая трансмиссия служит для передачи энергии электрического тока от его источника к исполнительному органу. В трансмиссиях этого типа исполнительный орган приводится в движение механизмом, управляемым электродвигателем.

Комбинированная трансмиссия может быть электрогидравлической, электропневматической, дизель-электрической и дизель-пневматической. Трансмиссии этого типа применяются в тех случаях, когда режимы работы двигателей не соответствуют режимам работы рабочих органов машины.

Рекламные предложения:


Читать далее: Ходовое оборудование путевых машин

Категория: — Путевые и дорожные машины

Главная → Справочник → Статьи → Форум


Урок 11. трансмиссия: электрическая, гидравлическая, пневматическая — Технология — 6 класс

Технология, 6 класс

Урок 11. Трансмиссия: электрическая, гидравлическая, пневматическая

Перечень вопросов, рассматриваемых на уроке

  1. Урок посвящён изучению устройства и схемы работы электрической, гидравлической, пневматической трансмиссий в технических системах.

Тезаурус

Электрическая трансмиссия – передаточный механизм с передачей энергии с помощью электричества.

Гидравлическая трансмиссия – передаточный механизм с передачей энергии с помощью жидкости.

Пневматическая трансмиссия – передаточный механизм с передачей энергии с помощью сжатого газа.

Основная и дополнительная литература по теме урока

  1. Технология. 6 класс: учеб. пособие для общеобразовательных организаций / В. М. Казакевич, Г. В. Пичугина, Г. Ю. Семенова и др.; под ред. В. М. Казакевича. – М.: Просвещение, 2017.
  2. Технология. 6 класс: учеб. пособие для общеобразовательных организаций / Бешенков С. А., Лабутин В. Б., Миндзаева Э. В., Рягин С. Н. под редакцией С. А. Бешенкова – М.: БИНОМ. Лаборатория знаний, 2016.
  3. Технология: 6 класс: учебник для учащихся общеобразовательных учреждений / Н. В. Синица, П. С. Самородский, В. Д. Симоненко, О. В Лковенко. – 3-е изд., перераб. – М.: Вентана — Граф, 2014.

Теоретический материал для самостоятельного изучения

Механические трансмиссии устанавливают преимущественно в небольшие технические системы, так как машины больших размеров приходится оснащаться громоздким тяжёлым передаточным механизмом, который трудно разместить и которым сложно управлять. Для уменьшения размеров трансмиссий используют немеханические трансмиссии: электрические, гидравлические, пневматические.

Трансмиссия бывает механической, электрической, гидравлической или пневматической. Электрическая, гидравлическая или пневматическая трансмиссии используются в крупных технических системах. Электрическая трансмиссия передает энергию с помощью электричества, гидравлическая трансмиссия передает энергию при помощи жидкости, пневматическая трансмиссия передает энергию при помощи сжатого газа.

Примеры и разбор решения заданий тренировочного модуля

Задание 1. Установите соответствие между элементом технической системы и его назначением.

Варианты ответа:

Элемент технической системы

Назначение

Рабочий орган

даёт энергию

Двигатель

передаёт энергию от двигателя к рабочему органу

Передаточное устройство

выполняет полезную для человека работу

Правильный вариант ответа:

Элемент технической системы

Назначение

Рабочий орган

выполняет полезную для человека работу

Двигатель

даёт энергию

Передаточное устройство

передаёт энергию от двигателя к рабочему органу

Задание 2. Выберите правильный вариант ответа: Какую функцию не выполняет трансмиссия? Выберите один вариант ответа.

Варианты ответа:

  1. Передает крутящий момент от двигателя к ведущим колесам.
  2. Изменяет крутящий момент по величине и направлению.
  3. Длительно разъединяет двигатель и ведущие колеса.
  4. Обеспечивает движение автомобиля в заданном направлении.

Правильный ответ:

Длительно разъединяет двигатель и ведущие колеса.

Гидростатическая трансмиссия как прорывная конкурентная технология

А. Платонов, фото «ДСТ-УРАЛ»

В предыдущей статье мы рассмотрели основные этапы роста ООО «ДСТ-УРАЛ» от небольшого частного предприятия по ремонту и восстановлению техники и до сегодняшнего дня, когда завод является одним из лидеров отечественного тракторостроения. В сегодняшней статье речь пойдет об одном из важнейших решений, позволивших заводу достичь таких результатов.

Конец 2010-х годов: мировой финансовый кризис ударил по России, курс доллара вырос в 1,5 раза. Объем рынка строительно-дорожной техники в целом и в бульдозерной тематике, в частности, упал в 5–7 раз, впоследствии начав расти только в 2011 г. Но как известно, кризис – это и лучшее время для роста, и для принятия нестандартных решений. Руководство «ДСТ-УРАЛ» принимает решение о разработке нового серийного бульдозера, способного полностью заменить устаревшую конструкцию с механической трансмиссией.

В то время на рынке бульдозеров легкого и среднего класса, как в мире, так и России, преобладали машины с классической гидромеханической трансмиссией либо с устаревшей механической. Конструкторами завода был проведен глубокий анализ преимуществ и недостатков всех видов трансмиссий. В результате выбор пал на гидростатическую трансмиссию (по-научному правильно называть ее гидрообъемным приводом передачи мощности, но из-за перевода с английского языка прижился термин именно ГСТ – гидростатическая трансмиссия).

В тот момент в России были попытки сделать массовый бульдозер с ГСТ: в начале 2000-х годов был разработан ТС10 «Добрыня» производства ЧСДМ (г. Челябинск), позже документация на эту машину была передана на ХТЗ (г. Харьков) и в «Орёлдормаш» (г. Орёл), где появилась модернизированная версия Б-100. Но эти машины не выдержали проверку временем и к 2010 г. уже практически не выпускались.

Среди мировых производителей полностью на ГСТ-приводе свои трактора делали фирмы Liebherr, Case, John Deere и New Holland. Крупнейшие производители в лице Caterpillar и Komatsu, а также массовые производители китайских тракторов данную трансмиссию на тот момент всячески критиковали и в своей технике практически не использовали. Но как показало время, гидростатический привод доказал свою конкурентоспособность как в экономическом, так и в эксплуатационном плане, и сейчас все больше новых тракторов выпускается с таким видом трансмиссии, увеличивается их общая доля рынка.

В чем же преимущества гидростатической трансмиссии? Начать стоит с описания принципа работы: ГСТ бульдозера – это гидрообъемная передача с закрытым замкнутым гидроконтуром (в этом основное отличие от популярного экскаваторного варианта трансмиссии, где контур открытый). В состав трансмиссии входят два гидронасоса и два гидромотора (по одному на каждый борт, в более тяжелых бульдозерах, начиная от 40 т, количество агрегатов может быть увеличено). Насосы преобразуют механическую энергию вращения вала ДВС в энергию потока масла под определенным давлением, передавая мощность посредством рукавов высокого давления гидромоторам. Те преобразуют энергию обратно в механическое вращение, приводя в действие исполнительный механизм – приводной редуктор. Сам гидравлический контур закрыт, жидкость в нем обновляется примерно на 10% каждую минуту с помощью специальных клапанов промыва и насосов подпитки, тем самым контур охлаждается и очищается. Это помогает избежать больших сечений РВД подвода и отвода жидкости от приводного контура и компактно разместить всю трансмиссию.

Одним из ключевых достоинств ГСТ является возможность плавного бесступенчатого изменения передаточного отношения в широком диапазоне частот вращения, что позволяет намного эффективнее использовать крутящий момент двигателя машины по сравнению со ступенчатым приводом во всем диапазоне нагрузок и скоростей машины. Объем насосов регулируется пропорционально от нуля до максимума, что делает возможным плавный разгон машины с места без применения сцепления. А пропорциональное уменьшение объема гидромоторов позволяет реализовать разгон машины до транспортной скорости без разрыва потока мощности, рывков и потерь.

Благодаря электронному контролю всей трансмиссии и топливоподачи ДВС даже значительное и резкое изменение нагрузки не влияет на выходную частоту вращения, поэтому машина сама держит обороты ДВС на нужном уровне согласно требуемой нагрузке, что позволяет существенно экономить топливо в условиях высокой маневренности бульдозера и непрерывности тягового усилия. Когда нагрузка с бульдозера снимается, обороты двигателя автоматически падают до холостых. При этом ГСТ позволяет обеспечить максимальную тягу машины даже на низкой скорости и низких оборотах ДВС.

Большим достоинством гидростатической трансмиссии является простота реверсирования гусениц с возможностью разворота на месте с нулевым радиусом, что дает исключительную маневренность машине.

Отсутствие механической связи ДВС и приводных редукторов позволяет сильно упростить кинематическую схему, существенно облегчить компоновку машины на этапе разработки, упростить ремонтные и обслуживающие мероприятия, значительно повысить надежность. Количество элементов сведено к минимуму – их всего два: гидронасос и гидромотор, тогда как в ГТР это сам гидротрансформатор, планетарная коробка передач, главная передача, многодисковый бортовой фрикцион и гидравлический привод дифференциального поворота. В случае поломки весь ремонт осуществляется путем замены гидронасоса или гидромотора в сборе (что достаточно быстро), а затем дефектовки вышедшего из строя агрегата на стенде. Учитывая, что данные агрегаты производит множество мировых компаний, обеспечивается поддержание конкурентной среды среди поставщиков, а значит, низкий уровень цены при высоком уровне качества.

Недостатком гидростатической трансмиссии можно считать более низкий КПД по сравнению с механической или гидромеханической передачей. Однако по сравнению с трансмиссиями, включающими коробки передач, ГСТ оказывается экономичнее, проще и быстрее. Также ранее применение ГСТ ограничивали цена изделия, требования к маслам и сложность реализации электронного управления. Однако со временем совершенствование технологий механообработки и широкое распространение синтетических масел, производимых под заранее заданные параметры использования, развитие микроэлектроники, позволившее реализовывать сложные алгоритмы управления ГСТ, позволили значительно снизить себестоимость такого вида привода.

Еще одним недостатком ГСТ-привода можно считать предвзятое отношение к нему со стороны эксплуатирующих организаций. Но опробовав новые технологии, назад уже никто не хочет возвращаться. Еще недавно все автолюбители боялись ставить автоматическую коробку передач, предпочитая механику. Сейчас механических коробок передач практически не осталось, а автоматы используют не только на легковом транспорте, но и на большегрузных машинах, внедорожных самосвалах, автобусах и т. д. Причем эти машины успешно работают в диапазоне температур от +50 до –50 °С. В аналогичных условиях работает и бульдозер ГСТ, причем проблем не возникает как в трансмиссии, так и в электронной системе управления.

Бытует также ошибочное мнение, что для ГСТ необходимо только иностранное, самое дорогое и специализированное масло. Это не так, качество отечественных масел давно подтверждено, они соответствуют мировым стандартам качества, и эксплуатация возможна во всем температурном диапазоне. Заводом была проведена большая работа по изучению темы смазочных материалов, на текущий момент руководством по эксплуатации разрешается применение масел около 50-ти производителей, из которых пять отечественных. В качестве дополнительной меры защиты работа бульдозера с ГСТ построена таким образом, что контроллер запрещает движение на слишком холодном масле, а подогрев от –50° до оптимальной температуры происходит в автоматическом режиме в течение 15–20 минут.

Эксплуатация бульдозера с гидростатической трансмиссией при температуре –41°С в Ханты-Мансийском автономном округе

Выбор ГСТ с электронным управлением, с учетом всех описанных преимуществ, подтолкнул завод «ДСТ-УРАЛ» разработать полностью электронную систему управления всеми остальными системами машины, что позволило легко реализовывать и внедрять любые программы по управлению машиной, получать удаленный доступ и контроль параметров, существенно упростить управление машиной, адаптировать ее под оператора. Все это помогло существенно снизить требования к квалификации бульдозериста, и теперь для управления машиной ему достаточно лишь двух джойстиков: левый отвечает за все движение, правый за навесное оборудование.

В итоге все вышеописанные преимущества позволили технике «ДСТ-УРАЛ» прочно занять свою нишу на дорожно-строительном рынке СНГ, с каждым годом завод наращивает выпуск конкурентной продукции и внедряет передовые технологии контроля и управления машинами.

механические, гидравлические, электрические. — Студопедия.Нет

Трансмиссией называют систему устройств, посредством которых передается движение от силовой установки к механизмам и рабочим органам машины. Трансмиссии позволяют изменять по величине и направлению развиваемые силовой установкой скорости, крутящие моменты и усилия.

По способу передачи энергии трансмиссии МЗР подразделяют на механические, электрические, гидравлические, пневматические и комбинированные. Все они, кроме механических трансмиссий, имеют участки, на которых механическая энергия первичной силовой установки преобразуется в энергию других видов (электрического тока, рабочей жидкости, сжатого воздуха), а затем снова в механическую. В комбинированных трансмиссиях такое преобразование может происходить неоднократно. Любая трансмиссия представляет собой разомкнутую систему, имеющую вход и выход. Вход ее соединен с силовой установкой, а выход- с исполнительным механизмом рабочего органа. К основным параметрам входа и выхода относятся: момент Мвхвых) или усилие Рвхвых), угловая скорость ωвхвых) или линейная Vвх  (Vвых), а также мощность Nвх (Nвых).

Показателем, оценивающим эффективность работы трансмиссии как системы является коэффициент полезного действия: 

; ; ;                (3.4)

К важным показателям трансмиссии относится степень прозрачности. Под которой понимают ее способность передавать колебания внешней нагрузки силовой установке.

Механические трансмиссии подразделяют на редукторные и канатно-блочные. Первые представляют собой системы редукторов в сочетании с муфтами, тормозами и различными передачами (зубчатыми, планетарными зубчатыми, карданными, цепными, ременными и др.). Составными частями вторых служат лебедки и канатные полиспасты с направляющими блоками.

Редукторные трансмиссии могут передавать движения только на короткие расстояния. При относительно больших размерах передач (на экскаваторах) используются канатно-блочные трансмиссии.

Положительными качествами механических трансмиссий является относительная простота конструкций, сравнительно небольшая стоимость, а также достаточная надежность в работе. К их недостаткам следует отнести значительные потери энергии в муфтах и тормозах, зубчатых и других передачах, ступенчатое изменение скоростей и моментов, сложность компоновки передач при большом числе скоростей, затруднительность автоматизации управления рабочим процессом машины. Существенным недостатком механических трансмиссий является их полная прозрачность.

Значительный эффект дает совмещение механических трансмиссий с гидромеханическими. Последние обеспечивают быстрый разгон и торможение, хорошо гасят крутильные колебания, выполняют функции автоматических бесступенчатых коробок скоростей, согласовывают работу механизмов, получающих энергию от одного приводного двигателя.

Гидравлические трансмиссии. К гидравлическим трансмиссиям относят гидродинамические и гидрообъемные передачи.

Гидродинамические трансмиссии выполняют с гидромуфтами или гидротрансформаторами. Их особенность в отсутствии жесткой связи между ведущей и ведомой частями. Мощность предается за счет кинетической энергии рабочей жидкости, воздействующей на лопасти рабочих колес.

Гидромуфта состоит только из двух колес (рис. 3.3 а): ведущего (насосного) 3 и ведомого (турбинного) 2. Первое соединяют с двигателем, второе – с ведомым элементом 1 трансмиссии. Оба колеса образуют замкнутое кольцевое пространство – рабочую полость, которую заполняют жидкостью. Лопатками насосного колеса, приводимого во вращение двигателем, жидкость отбрасывается к периферии рабочей полости и попадая на лопатки турбинного колеса, приводит его во вращение. Затем жидкость снова поступает к насосному колесу.

Гидромуфта не предназначена для преобразования величины и направления крутящего момента. Она может служить лишь надежной защитой механических трансмиссий и силовых установок МЗР от перегрузок.

 

Рис. 3.3 Принципиальные схемы гидродинамических трансмиссий: а – гидромуфты; б – гидротрансформатора.

Гидротрансформатор (рис. 3.3 б) состоит из 3-х рабочих элементов: насосного колеса 3, закрепленного на ведущем валу, турбинного колеса 2, жестко посаженного на ведомый вал и неподвижного направляющего аппарата (реактора) 7. Межлопаточные каналы этих рабочих элементов заполняют, как и в гидромуфте, циркуляционной жидкостью. Благодаря наличию направляющего аппарата при изменении внешней нагрузки в гидротрансформаторе преобразуется не только скорость вращения, но и крутящий момент. Коэффициент трансформации может меняться в пределах от 2 до 6.

Гидротрансформаторы в трансмиссиях МЗР могут выполнять роль бесступенчатых редукторов, плавно и автоматически изменяющих величины крутящих моментов. Гидротрансформатор надежно предохраняет двигатель от перегрузок. Однако из-за сравнительно низкого КПД гидротрансформатора возникает необходимость увеличивать мощность силовой установки на 10-15%, что снижает экономичность машины. Гидродинамические трансмиссии широко применяют на экскаваторах, самоходных скреперах, колесных бульдозерах и погрузчиках.

Более совершенны по сравнению с гидродинамическими трансмиссиями гидрообъемные трансмиссии. В конструкцию такой трансмиссии входят насосы, гидромоторы, гидроцилиндры, соединяющие их рабочие линии высокого и низкого давления, а также регулирующие и вспомогательные устройства.

По возможности регулирования различают трансмиссии нерегулируемые и регулируемые. В последних, количество жидкости поступающей в гидродвигатель в единицу времени, может изменяться за счет изменения сопротивления участка трубопровода (дросселированием) и регулированием производительности насоса путем изменением рабочего объема (объемное регулирование).

По количеству насосов (потоков) различают трансмиссии однопоточные и многопоточные. В однопоточных питание гидродвигателей происходит от одного насоса или группы их, подающих жидкость в одну линию. В многопоточных гидродвигатели питаются двумя и более насосами, которые подают жидкость в несколько напорных линий.

Схему гидрообъемной трансмиссии с нерегулируемыми насосами и дроссельным регулированием скорости применяют в приводах рабочих органов и механизмов, движение которых имеет остановочный характер (привод подъема отвалов бульдозеров и автогрейдеров, ковшей скреперов и одноковшовых экскаваторов).

Закрытую схему с объемным регулированием скорости движения применяют для привода рабочих органов, постоянно работающих во время технологического цикла машин (привод рабочего хода экскаваторов непрерывного действия, многоковшовых погрузчиков и конвейеров, грейдер — элеваторов).

Применение насосов переменной производительности с регуляторами мощности позволяет автоматически изменять скорости рабочих органов в зависимости от внешней нагрузки. С увеличением скорости при уменьшении нагрузки повышается производительность машины. Уменьшение скорости при увеличении нагрузки снижает динамические нагрузки и повышает надежность машины.

Силовая передача путевых машин, трансмиссия путевых машин

Силовая передачаСиловая передача, или трансмиссия, это механизм, предназначенный для передачи энергии от двигателя к рабочему механизму или машине с одновременным преобразованием усилий (вращающих моментов) и скоростей (угловых скоростей вращения).

Рабочими механизмами на путевой машине являются рабочие органы, механизмы передвижения (для самоходных машин), вспомогательные механизмы. Современная путевая машина является комбинированной, поэтому содержит трансмиссии разного вида.

Привод, включающий двигатель, трансмиссию и систему управления, бывает индивидуальным, групповым и многодвигательным.

При индивидуальном приводе каждый механизм имеет собственный двигатель и трансмиссию; групповой привод характеризуется одним двигателем и сложной трансмиссией, передающей энергию к нескольким рабочим механизмам, и, наконец, многодвигательный привод включает несколько двигателей для привода одного механизма.

В конструкциях путевых машин представлены все виды приводов.

На путевых машинах применяются механические, гидравлические (объемные и гидродинамические), электрические и пневматические трансмиссии. Механическая трансмиссия включает в себя устройства для передачи усилий и моментов, а также устройства для преобразования вращательного в поступательное движение.

Крутящие моменты передаются через зубчатые, червячные, цепные и ременные силовые передачи, а преобразование вида движения осуществляется, в основном винтовыми и реечными передачами. В сложных силовых передачах эти структурные элементы сочетаются, образуя единую систему.

Элементы трансмиссии могут быть закрытыми, когда они помещены в корпус с масляной ванной (картер).

Смазка осуществляется либо путем разбрызгивания масла при работе с образованием тумана, либо принудительно специальной смазочной системой, если скорость вращения элементов недостаточна для образования масляного тумана.

Открытые элементы трансмиссии находятся вне корпуса и поэтому должны смазываться консистентной смазкой. Для открытой силовой передачи характерен абразивный износ элементов, а для закрытой – контактно-усталостный износ.

Закрытая силовая передача обеспечивает лучшие условия работы элементам, позволяет при прочих равных условиях, передать большую мощность.

Открытая силовая передача дает возможность в эксплуатации наблюдать за состоянием элементов без трудоемкой переборки.

Основной характеристикой силовой передачи крутящего момента является передаточное число:

передаточное число

где ωвх, ωвых– угловые скорости вращения входного и выходного валов, рад/с. Для многоступенчатой передачи, которая, как правило, структурирована по последовательной схеме, общее передаточное число равно произведению передаточных чисел составляющих зубчатых пар:

произведение передаточных чисел

Закрытая зубчатая силовая передача, которая дает возможность производить ступенчато изменения угловой скорости вращения выходного вала ωвых  при неизменной скорости входного вала ωвх, называется коробкой перемены передач, или коробкой скоростей (в отличие от редуктора – замедляющей передачи или мультипликатора – ускоряющей передачи).

На путевых машинах (ВПР, ДСП, ПБ, моторно-рельсовый транспорт) в основном применяются коробки перемены передач автомобильного типа с переключением передач (включая задний ход) через зубчатые муфты с коническими фрикционными синхронизаторами, обеспечивающими плавное выравнивание угловых скоростей элементов муфт перед их включением.

На путевых машинах передачи заднего хода блокируются от включения, т.к. изменение направления движения (реверсирование) производится в других элементах общей силовой передачи машины. Увеличение скорости движения при включенной передаче производится путем увеличения подачи топлива.

При приближении угловой скорости вращения вала дизеля к номинальному значению исчерпывается возможность дальнейшего разгона. В этом случае необходимо переключать коробку перемены передач на следующую ступень.

При переключении передачи муфта сцепления дизеля отключается и уменьшается подача топлива для уменьшения угловой скорости его вала. Одновременно производится включение следующей передачи, после чего опять включается муфта сцепления.

Дальнейшее наращивание скорости движения также производится увеличением подачи топлива. Устойчивая работа дизеля гарантирована при снижении угловой скорости вращения вала в пределах 40 % от номинального значения и соблюдения отношения передаточных чисел последующей и предыдущей передачи 1,4 пределах диапазона передач.

На путевых машинах, оснащенных объемным гидроприводом, механическая силовая передача в рабочем режиме используется для привода насосов. Для этого она содержит дополнительные устройства – коробки отбора мощности с блокировочными механизмами, исключающими включение насосов в транспортном режиме движения самоходной машины.

Зубчатые передачи обладают самым высоким КПД, поэтому широко используются в энергонасыщенных приводах путевых машин, обеспечивая экономически оправданный расход топлива.

Вместе с тем, для фиксирования приводимого рабочего органа требуется использование дополнительных тормозных устройств. Если во время работы машины не требуется постоянная работа привода, включения производятся кратковременно, то оправданным является применение червячных редукторов и винтовых передач.

Если КПД таких механизмов менее 0,5, то они обладают свойством самоторможения, т.е. свойством фиксировать приводимый рабочий орган под нагрузкой. Область применения червячных редукторов с винтовыми передачами сокращается ввиду дефицитности бронзы, из которой изготавливаются червячные колеса.

Вновь выпускаемые путевые машины для перемещения и фиксации рабочих органов под нагрузкой используют в основном гидропривод, реже пневмопривод со стопорными устройствами.

В случаях, когда угловая скорость вращения элементов рабочего органа относительно небольшая, при расположении привода в стесненных габаритных условиях, используются передачи со втулочно-роликовыми цепями (привод роторов-питателей и напольных пластинчатых транспортеров снегоуборочных машин).

Для привода вспомогательных механизмов малой и средней мощности до 10 – 15 кВт (компрессоры, генераторы систем автоматики и освещения) используются клиноременные передачи.

Помощь студентам железнодорожникам

Также на эту тему Вы можете почитать

Гидростатическая трансмиссия (ГСТ)

Гидростатическая трансмиссия (ГСТ) –это замкнутая гидросистема, которая состоит из одного либо нескольких гидронасосов и одного либо нескольких гидромоторов. Рассчитана на передачу механической энергии вращения от двигателя через насос к исполнительной конструкции (шнеку, колесу, бочке) посредством направления рабочей жидкости к бесступенчато регулируемому по размеру и направленности гидромотору. 

Проще говоря: идёт передача энергии от двигателя к колесу, плавно и без рывков через гидравлическую систему «насос-мотор».

Данная схема позволяет максимально использовать мощность двигателя для выполнения различных операция и одновременно сохранять заданную скорость перемещения и плавность хода.

 

Наиболее распространенные примеры применения ГСТ:

 

1. Самый простой пример применения ГСТ  — использование ее на автобетоносмесителях. Насос работает от автономного двигателя или от раздаточной коробки и создает постоянное давление в гидросистеме. Скорость и направление вращения мотора, который установлен на бочке, задается регулятором потока, установленным на самом насосе. Управление может быть механическим или электрическим. 

 

2. Привод ведущих колес на зерноуборочных комбайнах. 

Гидромотор установлен на ведущем мосту, а скорость и направление — задается оператором из кабины. Данная схема позволила отказаться от ременного привода, механической КПП с сопутствующими вариаторами. Повысился КПД двигателя, который стал отдавать почти 100% своей мощности на молотильный аппарат в независимости от того по какому грунту передвигается комбайн, в горку он одет или под уклон. Так же благодаря применению ГСТ комбайны стали резе «закапываться» в вязких грунтах, так как гидравлика не дает возможности колесам провернуться — забуксовать, а сохраняет, пускай минимальный, крутящий момент, благодаря которому колеса с минимальной скоростью вращаются и вытягивают машину.

 

3. Применение ГСТ на бульдозерах и на гусеничной технике позволило снизить вес самих бульдозеров — отпадает необходимость в механических КПП с бортовыми фрикционами. Гидромоторы вращают бортовые редукторы, которые приводят в действие приводные шестерни.

Если необходимо сделать независимыми правый и левый приводные колеса, то поступают таким образом: каждый борт машины является независимой ГСТ, управление которой происходит электронным процессором, чтобы при движении вперед или назад два борта двигались прямолинейно. 

 

Использование ГСТ на бульдозерах NewHolland, Liebherr, Komatsu.

 

Благодаря применению ГСТ на бульдозерах стало невозможно заглушить машину при медленном движении вперед и максимально опущенном отвале, как это было на бульдозерах с механической КПП. Гидравлика, вкупе с электроникой, не даст заглушить двигатель, а просто прекратят движение бульдозера. Оператор будет вынужден или увеличить скорость движения бульдозера, или поднять отвал повыше. 

 

Отправить ответ

avatar
  Подписаться  
Уведомление о