Турбина это – Что такое турбина? Виды турбин. Устройство и принцип действия турбины :: SYL.ru

ТУРБИНА — это… Что такое ТУРБИНА?

  • ТУРБИНА — ТУРБИНА, турбины, жен. (от лат. turbo вертящийся предмет) (тех.). Двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая турбина. Паровая турбина.… …   Толковый словарь Ушакова

  • турбина — турбинка, полукаплан Словарь русских синонимов. турбина сущ., кол во синонимов: 12 • газотурбина (1) • …   Словарь синонимов

  • ТУРБИНА — ТУРБИНА, вращающееся устройство, приводимое в движение потоком газа или жидкости. Турбины дают возможность преобразовать энергию ветра, воды, пара и других текучих сред в полезную работу. Простейший пример турбины ВОДЯНОЕ КОЛЕСО. В ранних… …   Научно-технический энциклопедический словарь

  • турбина — ы, ж. turbine f. < лат. turbo кружение, вращение. 1. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию. БАС 1. Машина, с лежащим водяным колесом. Даль. Тюрбины. Энц. Дельфина 1860 200. Турбины горизонтальныя… …   Исторический словарь галлицизмов русского языка

  • ТУРБИНА — ТУРБИНА, машина, с лежачим водяным колесом. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля

  • ТУРБИНА — (франц. turbine от лат. turbo вихрь, вращение с большой скоростью), первичный двигатель с вращательным движением рабочего органа ротора, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела пара, газа, воды. Струя… …   Большой Энциклопедический словарь

  • ТУРБИНА — ТУРБИНА, ы, жен. Двигатель, в к ром энергия пара, газа или движущейся воды преобразуется в механическую работу. Паровая, газовая, гидравлическая т. | прил. турбинный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Турбина — Turbine первичный двигатель с вращательным движением рабочего органа (ротора с лопатками), преобразующий кинетическую энергию рабочего тела (пара, газа, воды) в механическую работу. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

  • Турбина — – двигатель с вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию в механическую работу при помощи подводимого рабочего тела – пара, газа, воды. Струя рабочего тела воздействует …   Нефтегазовая микроэнциклопедия

  • турбина — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN turbine A fluid acceleration machine for generating rotary mechanical power from the energy in a stream of fluid. (Source: MGH) [http://www.eionet.europa.eu/gemet/alphabetic?lan… …   Справочник технического переводчика

  • турбина — это… Что такое турбина?

  • ТУРБИНА — (фр. turbine). В механике: колесо с вертикальной осью, приводимое в движение течением воды; горизонтальное водяное колесо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТУРБИНА водяные двигатели, устраиваемые в… …   Словарь иностранных слов русского языка

  • ТУРБИНА — ТУРБИНА, турбины, жен. (от лат. turbo вертящийся предмет) (тех.). Двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая турбина. Паровая турбина.… …   Толковый словарь Ушакова

  • турбина — турбинка, полукаплан Словарь русских синонимов. турбина сущ., кол во синонимов: 12 • газотурбина (1) • …   Словарь синонимов

  • ТУРБИНА — ТУРБИНА, вращающееся устройство, приводимое в движение потоком газа или жидкости. Турбины дают возможность преобразовать энергию ветра, воды, пара и других текучих сред в полезную работу. Простейший пример турбины ВОДЯНОЕ КОЛЕСО. В ранних… …   Научно-технический энциклопедический словарь

  • турбина — ы, ж. turbine f. < лат. turbo кружение, вращение. 1. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию. БАС 1. Машина, с лежащим водяным колесом. Даль. Тюрбины. Энц. Дельфина 1860 200. Турбины горизонтальныя… …   Исторический словарь галлицизмов русского языка

  • ТУРБИНА — ТУРБИНА, машина, с лежачим водяным колесом. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля

  • ТУРБИНА — (франц. turbine от лат. turbo вихрь, вращение с большой скоростью), первичный двигатель с вращательным движением рабочего органа ротора, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела пара, газа, воды. Струя… …   Большой Энциклопедический словарь

  • ТУРБИНА — ТУРБИНА, ы, жен. Двигатель, в к ром энергия пара, газа или движущейся воды преобразуется в механическую работу. Паровая, газовая, гидравлическая т. | прил. турбинный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Турбина — Turbine первичный двигатель с вращательным движением рабочего органа (ротора с лопатками), преобразующий кинетическую энергию рабочего тела (пара, газа, воды) в механическую работу. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

  • Турбина — – двигатель с вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию в механическую работу при помощи подводимого рабочего тела – пара, газа, воды. Струя рабочего тела воздействует …   Нефтегазовая микроэнциклопедия

  • турбина — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN turbine A fluid acceleration machine for generating rotary mechanical power from the energy in a stream of fluid. (Source: MGH) [http://www.eionet.europa.eu/gemet/alphabetic?lan… …   Справочник технического переводчика

  • Турбина — это… Что такое Турбина?

  • ТУРБИНА — (фр. turbine). В механике: колесо с вертикальной осью, приводимое в движение течением воды; горизонтальное водяное колесо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТУРБИНА водяные двигатели, устраиваемые в… …   Словарь иностранных слов русского языка

  • ТУРБИНА — ТУРБИНА, турбины, жен. (от лат. turbo вертящийся предмет) (тех.). Двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая турбина. Паровая турбина.… …   Толковый словарь Ушакова

  • турбина — турбинка, полукаплан Словарь русских синонимов. турбина сущ., кол во синонимов: 12 • газотурбина (1) • …   Словарь синонимов

  • ТУРБИНА — ТУРБИНА, вращающееся устройство, приводимое в движение потоком газа или жидкости. Турбины дают возможность преобразовать энергию ветра, воды, пара и других текучих сред в полезную работу. Простейший пример турбины ВОДЯНОЕ КОЛЕСО. В ранних… …   Научно-технический энциклопедический словарь

  • турбина — ы, ж. turbine f. < лат. turbo кружение, вращение. 1. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию. БАС 1. Машина, с лежащим водяным колесом. Даль. Тюрбины. Энц. Дельфина 1860 200. Турбины горизонтальныя… …   Исторический словарь галлицизмов русского языка

  • ТУРБИНА — ТУРБИНА, машина, с лежачим водяным колесом. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля

  • ТУРБИНА — (франц. turbine от лат. turbo вихрь, вращение с большой скоростью), первичный двигатель с вращательным движением рабочего органа ротора, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела пара, газа, воды. Струя… …   Большой Энциклопедический словарь

  • ТУРБИНА — ТУРБИНА, ы, жен. Двигатель, в к ром энергия пара, газа или движущейся воды преобразуется в механическую работу. Паровая, газовая, гидравлическая т. | прил. турбинный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Турбина — Turbine первичный двигатель с вращательным движением рабочего органа (ротора с лопатками), преобразующий кинетическую энергию рабочего тела (пара, газа, воды) в механическую работу. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

  • Турбина — – двигатель с вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию в механическую работу при помощи подводимого рабочего тела – пара, газа, воды. Струя рабочего тела воздействует …   Нефтегазовая микроэнциклопедия

  • турбина — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN turbine A fluid acceleration machine for generating rotary mechanical power from the energy in a stream of fluid. (Source: MGH) [http://www.eionet.europa.eu/gemet/alphabetic?lan… …   Справочник технического переводчика

  • турбина — это… Что такое турбина?

  • ТУРБИНА — (фр. turbine). В механике: колесо с вертикальной осью, приводимое в движение течением воды; горизонтальное водяное колесо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ТУРБИНА водяные двигатели, устраиваемые в… …   Словарь иностранных слов русского языка

  • ТУРБИНА — ТУРБИНА, турбины, жен. (от лат. turbo вертящийся предмет) (тех.). Двигатель с вращательным движением, в котором используется энергия пара, газа или движущейся воды, преобразуемая в механическую работу. Гидравлическая турбина. Паровая турбина.… …   Толковый словарь Ушакова

  • турбина — турбинка, полукаплан Словарь русских синонимов. турбина сущ., кол во синонимов: 12 • газотурбина (1) • …   Словарь синонимов

  • ТУРБИНА — ТУРБИНА, вращающееся устройство, приводимое в движение потоком газа или жидкости. Турбины дают возможность преобразовать энергию ветра, воды, пара и других текучих сред в полезную работу. Простейший пример турбины ВОДЯНОЕ КОЛЕСО. В ранних… …   Научно-технический энциклопедический словарь

  • турбина — ы, ж. turbine f. < лат. turbo кружение, вращение. 1. Лопаточный двигатель, преобразующий энергию воды, пара, газа в механическую энергию. БАС 1. Машина, с лежащим водяным колесом. Даль. Тюрбины. Энц. Дельфина 1860 200. Турбины горизонтальныя… …   Исторический словарь галлицизмов русского языка

  • ТУРБИНА — ТУРБИНА, машина, с лежачим водяным колесом. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля

  • ТУРБИНА — (франц. turbine от лат. turbo вихрь, вращение с большой скоростью), первичный двигатель с вращательным движением рабочего органа ротора, преобразующий в механическую работу кинетическую энергию подводимого рабочего тела пара, газа, воды. Струя… …   Большой Энциклопедический словарь

  • ТУРБИНА — ТУРБИНА, ы, жен. Двигатель, в к ром энергия пара, газа или движущейся воды преобразуется в механическую работу. Паровая, газовая, гидравлическая т. | прил. турбинный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • Турбина — Turbine первичный двигатель с вращательным движением рабочего органа (ротора с лопатками), преобразующий кинетическую энергию рабочего тела (пара, газа, воды) в механическую работу. Термины атомной энергетики. Концерн Росэнергоатом, 2010 …   Термины атомной энергетики

  • Турбина — – двигатель с вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию в механическую работу при помощи подводимого рабочего тела – пара, газа, воды. Струя рабочего тела воздействует …   Нефтегазовая микроэнциклопедия

  • турбина — — [http://www.eionet.europa.eu/gemet/alphabetic?langcode=en] EN turbine A fluid acceleration machine for generating rotary mechanical power from the energy in a stream of fluid. (Source: MGH) [http://www.eionet.europa.eu/gemet/alphabetic?lan… …   Справочник технического переводчика

  • ПАРОВАЯ ТУРБИНА • Большая российская энциклопедия

    ПАРОВА́Я ТУРБИ́НА, тур­би­на, в ко­то­рой в ка­че­ст­ве ра­бо­че­го те­ла ис­поль­зу­ет­ся во­дя­ной пар; слу­жит для пре­об­ра­зо­ва­ния те­п­ло­вой энер­гии па­ра в ме­ха­нич. ра­бо­ту. В от­ли­чие от па­ро­вой ма­ши­ны, в П. т. ис­поль­зу­ют не по­тен­ци­аль­ную, а ки­не­тич. энер­гию па­ра. Осн. на­зна­че­ние П. т. – при­вод (пер­вич­ный дви­га­тель) для ге­не­ра­то­ров элек­трич. то­ка на те­п­ло­вых и атом­ных элек­тро­стан­ци­ях. П. т. и элек­тро­ге­не­ра­тор со­став­ля­ют тур­бо­агре­гат.

    Конструкция паровых турбин

    Схематический продольный разрез активной паровой турбины с тремя ступенями давления: 1 – кольцевая камера свежего пара; 2 – сопла первой ступени; 3 – лопатки первой ступени; 4 – сопла второй ступени; …

    П. т. со­сто­ит из двух осн. час­тей – ро­то­ра с ло­пат­ка­ми (под­виж­ная часть тур­би­ны) и ста­то­ра с со­пла­ми (не­под­виж­ная часть). По­ток па­ра, об­ра­зую­щий­ся в па­ро­вом кот­ле, под вы­со­ким дав­ле­ни­ем по­сту­па­ет че­рез на­прав­ляю­щие (ста­тор с со­пла­ми) на кри­во­ли­ней­ные ло­пат­ки тур­би­ны, за­кре­п­лён­ные по ок­руж­но­сти ро­то­ра, и, воз­дей­ст­вуя на них, при­во­дит ро­тор, за­кре­п­лён­ный на од­ном ва­лу с элек­тро­гене­ра­то­ром, во вра­ще­ние (про­ис­хо­дит пре­об­ра­зо­ва­ние те­п­ло­вой энер­гии па­ра в ме­ха­нич. ра­бо­ту). Ка­ж­дый ряд на­прав­ляю­щих и ло­па­ток на­зы­ва­ет­ся сту­пе­нью тур­би­ны (как пра­ви­ло, П. т. име­ет неск. сту­пе­ней). Кор­пус П. т. с не­сколь­ки­ми сту­пе­ня­ми дав­ле­ния раз­де­ля­ют диа­фраг­ма­ми на отд. ка­ме­ры, в ка­ж­дой из ко­то­рых по­ме­щён один из дис­ков с ло­пат­ка­ми (рис.). Пар мо­жет про­ни­кать из од­ной ка­ме­ры в дру­гую толь­ко че­рез со­пла, рас­по­ло­жен­ные по ок­руж­но­сти диа­фрагм. Дав­ле­ние па­ра сни­жа­ет­ся по­сле ка­ж­дой сту­пе­ни, а ско­ро­сти ис­те­че­ния па­ра ос­та­ют­ся при­мер­но оди­на­ко­вы­ми, что дос­ти­га­ет­ся вы­бо­ром со­от­вет­ст­вую­щих раз­ме­ров со­пел.

    Ро­то­ры П. т., пред­на­зна­чен­ные для при­во­да элек­трич. ге­не­ра­то­ров, ра­бо­таю­щих на элек­трич. сеть, име­ют фик­си­ро­ван­ную час­то­ту вра­ще­ния – 3000 об/мин в Рос­сии и 3600 об/мин в США и др. стра­нах. Ро­то­ры П. т., пред­на­зна­чен­ных для др. по­тре­би­те­лей мощ­но­сти, мо­гут иметь др. час­то­ту вра­ще­ния, со­от­вет­ст­вую­щую ха­рак­те­ри­сти­кам обо­ру­до­ва­ния по­тре­би­те­ля (напр., транс­порт­ные тур­би­ны). Дав­ле­ние и темп-ра па­ра пе­ред тур­би­ной оп­ре­де­ля­ют­ся её на­зна­че­ни­ем.

    Мощ­ные П. т. име­ют слож­ную кон­струк­цию и боль­шие раз­ме­ры (см. рис. к ст. Кон­ден­са­ци­он­ная тур­би­на). Дли­на все­го аг­ре­га­та мо­жет дос­ти­гать 30 м. П. т. рас­по­ла­га­ет­ся на фун­да­мен­те, пред­став­ляю­щем со­бой мно­го­опор­ную жел.-бе­тон. кон­ст­рук­цию, опи­раю­щую­ся на об­щую фун­да­мент­ную пли­ту. Кон­ст­рук­ция П. т. раз­де­ля­ет­ся на неск. ци­лин­д­ров (час­тей) – вы­со­ко­го дав­ле­ния (ЦВД), сред­не­го дав­ле­ния (ЦСД) и низ­ко­го дав­ле­ния (ЦНД). Обыч­но мощ­ная П. т. име­ет один ЦВД, один или два ЦСД и неск. ЦНД. Пар по­сту­па­ет в тур­би­ну, про­хо­дит че­рез ЦВД по­сле­до­ва­тель­но все сту­пе­ни, да­лее че­рез ЦСД (од­ним или дву­мя па­рал­лель­ны­ми по­то­ка­ми), за­тем, раз­ветв­ля­ясь ещё на неск. па­рал­лель­ных по­то­ков, про­хо­дит ЦНД и сбра­сы­ва­ет­ся в кон­ден­са­тор. Раз­ветв­ле­ние по­то­ков пе­ред кон­ден­са­то­ром не­об­хо­ди­мо для уве­ли­че­ния еди­нич­ной мощ­но­сти тур­би­ны, т. к. од­но­по­точ­ная тур­би­на мо­жет вы­ра­ба­ты­вать ог­ра­ни­чен­ную мощ­ность, ко­то­рая за­ви­сит от дли­ны ра­бо­чих ло­па­ток по­след­ней сту­пе­ни. Для обес­пе­че­ния на­дёж­ной экс­плуа­та­ции П. т. ос­на­ща­ет­ся сис­те­мой безо­пас­но­сти, пре­дот­вра­щаю­щей воз­ник­но­ве­ние и раз­ви­тие ава­рий­ных си­туа­ций. Осн. пре­иму­ще­ст­ва П. т.: вы­со­кая еди­нич­ная мощ­ность, ши­ро­кий диа­па­зон мощ­но­стей, вы­со­кий ре­сурс ра­бо­ты. Не­дос­тат­ки П. т.: вы­со­кая инер­ци­он­ность (дол­гое вре­мя пус­ка и ос­та­но­ва), до­ро­го­виз­на строи­тель­ст­ва и ре­мон­та. В П. т., ис­поль­зуе­мых на ТЭС, дав­ле­ние па­ра мо­жет дос­ти­гать 24 МПа и бо­лее, темп-ра – 545–600 °C; мощ­но­сти П. т., ра­бо­таю­щих на ТЭС, – до 1200 МВт, АЭС – до 1900 МВт. Кпд со­вре­мен­ных П. т. дос­ти­га­ет 40–42%.

    Классификация паровых турбин

    По прин­ци­пу дей­ст­вия вы­де­ля­ют ак­тив­ные тур­би­ны и ре­ак­тив­ные тур­би­ны. По ко­ли­че­ст­ву сту­пе­ней П. т. под­раз­де­ля­ют на од­но­сту­пен­ча­тые и мно­го­сту­пен­ча­тые тур­би­ны. В од­но­сту­пен­ча­той П. т. не уда­ёт­ся дос­та­точ­но пол­но ис­поль­зо­вать энер­гию па­ра, по­это­му совр. П. т. стро­ят мно­го­сту­пен­ча­ты­ми. По на­прав­ле­нию по­то­ка ра­бо­че­го те­ла вы­де­ля­ют осе­вые (ак­си­аль­ные) П. т. (на­прав­ле­ние по­то­ка сов­па­да­ет с на­прав­ле­ни­ем оси ро­то­ра, наи­бо­лее рас­про­стра­нён­ный тип П. т., ис­поль­зуе­мых для при­во­да элек­тро­ге­не­ра­то­ров) и ра­ди­аль­ные П. т. (по­ток осу­ще­ст­в­ля­ет­ся в ра­ди­аль­ном на­прав­ле­нии ли­бо от оси ро­то­ра к пе­ри­фе­рии дис­ков, ли­бо на­обо­рот – от пе­ри­фе­рии к оси). В за­ви­си­мо­сти от дав­ле­ния па­ра П. т. бы­ва­ют: низ­ко­го (не вы­ше 0,9 МПа), сред­не­го (не вы­ше 4 МПа), вы­со­ко­го (9–14 МПа) и сверх­кри­тич. дав­ле­ния (24 МПа и бо­лее).

    В за­ви­си­мо­сти от ха­рак­те­ра те­п­ло­во­го про­цес­са П. т. под­раз­де­ля­ют на 3 груп­пы: кон­ден­са­ци­он­ные тур­би­ны, те­п­ло­фи­ка­ци­он­ные и спец. на­зна­че­ния.

    Те­п­ло­фи­ка­ци­он­ные П. т. слу­жат для од­но­врем. по­лу­че­ния элек­трич. и те­п­ло­вой энер­гии. Осн. ко­неч­ный про­дукт та­ких П. т. – те­п­ло­та. ТЭС, на ко­то­рых ус­та­нов­ле­ны те­п­ло­фи­ка­ци­он­ные П. т., на­зы­ва­ют­ся те­п­ло­элек­тро­цен­тра­ля­ми. К те­п­ло­фи­ка­ци­он­ным П. т. от­но­сят­ся тур­би­ны с про­ти­во­дав­ле­ни­ем, с ре­гу­ли­руе­мым от­бо­ром па­ра, а так­же с от­бо­ром и про­ти­во­дав­ле­ни­ем. У тур­бин с про­ти­во­дав­ле­ни­ем от­сут­ст­ву­ет кон­ден­са­тор. От­ра­бо­тав­ший пар, имею­щий дав­ле­ние вы­ше ат­мо­сфер­но­го, по­сту­па­ет в спец. сбор­ный кол­лек­тор, от­ку­да на­прав­ля­ет­ся к те­п­ло­вым по­тре­би­те­лям для тех­но­ло­гич. це­лей (вар­ка, суш­ка, ото­пле­ние и др.). В тур­би­нах с ре­гу­ли­руе­мым от­бо­ром часть па­ра от­во­дит­ся из пер­вой или вто­рой про­ме­жу­точ­ных сту­пе­ней, а ос­таль­ной пар идёт в кон­ден­са­тор. Дав­ле­ние от­би­рае­мо­го па­ра на всех ре­жи­мах ра­бо­ты тур­бо­аг­ре­га­та ав­то­ма­ти­че­ски под­дер­жи­ва­ет­ся по­сто­ян­ным или же ре­гу­ли­ру­ет­ся в за­дан­ных пре­де­лах, с тем что­бы по­тре­би­тель по­лу­чал пар оп­ре­де­лён­но­го ка­че­ст­ва. Су­ще­ст­ву­ет два ви­да те­п­ло­вых по­тре­би­те­лей: про­мыш­лен­ные, где тре­бу­ет­ся пар с дав­ле­ни­ем до 1,3–1,5 МПа (про­из­водств. от­бор), и ото­пи­тель­ные, с дав­ле­ни­ем 0,05–0,25 МПа (те­п­ло­фи­ка­ци­он­ный от­бор). Ес­ли тре­бу­ет­ся пар как про­из­вод­ст­вен­но­го, так и ото­пит. на­зна­че­ния, то в од­ной тур­би­не мо­гут быть осу­ще­ст­в­ле­ны два ре­гу­ли­руе­мых от­бо­ра; ме­сто от­бо­ра (сту­пень тур­би­ны) вы­би­ра­ют в за­ви­си­мо­сти от нуж­ных па­ра­мет­ров па­ра. У тур­бин с от­бо­ром и про­ти­во­дав­ле­ни­ем часть па­ра от­во­дит­ся из пер­вой или вто­рой про­ме­жу­точ­ных сту­пе­ней, а весь от­ра­бо­тав­ший пар на­прав­ля­ет­ся из вы­пу­ск­но­го пат­руб­ка в ото­пит. сис­те­му или к се­те­вым по­до­гре­ва­те­лям.

    П. т. спе­ци­аль­но­го на­зна­че­ния обыч­но ра­бо­та­ют на от­брос­ном те­п­ле ме­тал­лур­гич., ма­ши­но­стро­ит. и хи­мич. пред­при­ятий. К ним от­но­сят­ся П. т. «мя­то­го па­ра», с про­ме­жу­точ­ным под­во­дом па­ра (тур­би­ны двух дав­ле­ний) и пред­вклю­чён­ные. П. т. «мя­то­го па­ра» ис­поль­зу­ют от­ра­бо­тав­ший пар низ­ко­го дав­ле­ния по­сле тех­но­ло­гич. про­цес­сов (пар порш­не­вых ма­шин, па­ро­вых мо­ло­тов и прес­сов), ко­то­рый по к.-л. при­чи­нам не мо­жет быть ис­поль­зо­ван для ото­пит. или тех­но­ло­гич. нужд. Дав­ле­ние та­ко­го па­ра обыч­но несколько вы­ше ат­мо­сфер­но­го, и он на­прав­ля­ет­ся в спец. кон­ден­сац. тур­би­ну (тур­би­ну «мя­то­го па­ра»). П. т. двух дав­ле­ний ра­бо­та­ют как на све­жем, так и на от­ра­бо­тав­шем па­ре па­ро­вых ме­ха­низ­мов, под­во­ди­мом в од­ну из про­ме­жу­точ­ных сту­пе­ней. Пред­вклю­чён­ные П. т. пред­став­ля­ют со­бой тур­би­ны с вы­со­ким на­чаль­ным дав­ле­ни­ем и вы­со­ким про­ти­во­дав­ле­ни­ем; весь от­ра­бо­тав­ший пар этих П. т. на­прав­ля­ют да­лее в обыч­ные кон­ден­са­ци­он­ные тур­би­ны.

    Историческая справка. 

    Пер­вое уст­рой­ст­во, при­во­ди­мое в дви­же­ние па­ром (эо­ли­пил), бы­ло опи­са­но Ге­ро­ном Алек­сан­д­рий­ским. В Рос­сии П. Д. Кузь­мин­ский в нач. 1890-х гг. по­стро­ил и оп­ро­бо­вал су­до­вую П. т. собств. кон­ст­рук­ции.

    П. т. по­лу­чи­ла прак­тич. при­ме­не­ние лишь в кон. 19 в., ко­гда та­кие от­рас­ли, как тер­мо­ди­на­ми­ка, ма­ши­но­строе­ние и ме­тал­лур­гия, дос­тиг­ли не­об­хо­ди­мо­го уро­в­ня. К. Г. П. де Ла­валь (1878) и Ч. А. Пар­сонс (1884) соз­да­ли пер­вые про­мыш­лен­но при­год­ные па­ро­вые тур­би­ны. В П. т. Пар­со­нса ис­поль­зо­ван прин­цип по­сту­пен­ча­то­го рас­ши­ре­ния па­ра, ко­то­рый ле­жит в ос­но­ве кон­ст­рук­ции совр. па­ро­вых тур­бин.

    В Ев­ро­пе П. т. по­лу­чи­ли все­об­щее при­зна­ние в ка­че­ст­ве при­во­да элек­тро­ге­не­ра­то­ров толь­ко с 1899, ко­гда на элек­тро­стан­ции г. Эль­бер­фельд (Гер­ма­ния) впер­вые бы­ли при­ме­не­ны две П. т. Пар­сон­са мощ­но­стью по 1000 кВт ка­ж­дая.

    В до­ре­во­люц. Рос­сии строи­лись как ста­цио­нар­ные, так и су­до­вые П. т. Осо­бен­но боль­шие ус­пе­хи бы­ли дос­тиг­ну­ты рос. кон­ст­рук­то­ра­ми и тех­но­ло­га­ми в 1910–14 в про­ек­ти­ро­ва­нии и из­го­тов­ле­нии П. т. для круп­ных во­ен. ко­раб­лей. Впер­вые отеч. ста­цио­нар­ные П. т. по­строи­ли на ме­тал­лич. за­во­де в С.-Пе­тер­бур­ге (позд­нее Ле­нингр. ме­тал­лич. за­вод, ЛМЗ), на ко­то­ром в 1907 из­го­тови­ли П. т. для при­во­да элек­тро­ге­не­ра­то­ра мощ­но­стью 200 кВт. В 1937 на ЛМЗ вы­пу­ще­на пер­вая кон­ден­са­ци­он­ная двух­ци­лин­д­ро­вая од­но­валь­ная тур­би­на мощ­но­стью 100 МВт; в 1977 по­строе­на и сда­на в экс­плуа­та­цию са­мая круп­ная отеч. кон­ден­са­ци­он­ная тур­би­на мощ­но­стью 1200 МВт. На­чи­ная с 1964 в СССР ос­во­ен вы­пуск П. т. для АЭС.

    Газовая турбина — это… Что такое Газовая турбина?

    Промышленная газовая турбина в разобранном виде.

    Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

    Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

    История

    Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

    Принцип работы

    Question book-4.svg В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 11 ноября 2011.

    Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

    Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

    Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

    Типы газовых турбин

    Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

    Промышленные газовые турбины для производства электричества

    Question book-4.svg Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

    Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения — ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

    Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

    Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

    Микротурбины

    Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

    Преимущества и недостатки газотурбинных двигателей

    Question book-4.svg В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 11 ноября 2011.

    Преимущества газотурбинных двигателей

    • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
    • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
    • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
    • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
    • Меньшее количество движущихся частей, чем у поршневого двигателя.
    • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
    • Низкие эксплуатационные нагрузки.
    • Низкая стоимость и потребление смазочного масла.
    • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

    Недостатки газотурбинных двигателей

    • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
    • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям — 41-42%)
    • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
    • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
    • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
    • Задержка отклика на изменения настроек мощности.
    • Медленный запуск и выход на режим
    • Существенное влияние пусков-остановов на ресурс

    Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают — излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

    Примечания

    1. ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
    2. Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
    3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

    Литература

    • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
    • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.

    См. также

    Ссылки

    Question book-4.svg В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
    Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
    Эта отметка установлена 13 мая 2011.

    Что такое и зачем нужна турбина, и что такое турбонаддув?

    Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу) , тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением) , а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом) , то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает больше давящей силы на поршень. Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)) , и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л) , что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя. Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер) , представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя. <img src=»//otvet.imgsmail.ru/download/8b2f6bf1f1a4a50498edb0e876dbc2d5_i-9.jpg» >

    Турбина нужна для получения электричества. На Саяно-Шушенской ГЭС так наддуло, что ГЭС развалилась!

    Турбина это лопатки на роторе из спец. материала- термостойкого.. . она нагнетает воздух в цилиндры двигателя, соответственно чем больше воздуха, тем больше нужно топлива. Поэтому при одном обьеме двигателя можно добиться большей мощьности двигла- это и есть тюнинг. Также в зависимости от конструкции турбина одновременно помогает отработанным газам покинуть цилиндры быстрее.. . ну это все в двух словах и грубо… но смысл такой

    Турбины бывают нескольких типов и отличаются способом приведения в действие. От выхлопных газов – это турбокомпрессор, посредством механического (ременного) привода – турбонагнетатель и т. д. Наиболее широкое применение в автомобильной промышленности получил турбокомпрессор из-за простоты конструкции и эксплуатационных характеристик. Турбоннаддув позволяет повысить мощность двигателя на 20-35%, при этом двигатель обладает более высоким крутящим моментом на средних и высоких оборотах, что делает автомобиль более динамичным и экономичным при движении

    Отправить ответ

    avatar
      Подписаться  
    Уведомление о