Устройство регулирующий клапан – виды запорного вентиля (ручной, фланцевый, шаровый), отличия от крана и задвижки, монтаж своими руками

Содержание

Регулирующий клапан – электропривод, МИМ или позиционер?

Многие задачи автоматизации технологических процессов в той или иной мере требуют плавного изменения параметров рабочей среды. Это может быть поддержание нужного расхода теплоносителя на входе в теплообменник, или заданного давления воздуха внутри рабочей камеры пневмоцилиндра для регулировки усилия прижима, или поддержание соотношения газ/воздух при подаче топлива в горелку котла и т. д. Эти и многие другие задачи требуют применения регулирующих клапанов для их решения.

1. Клапаны с электроприводом и трёхпозиционным управлением

Шаровый клапан с электроприводомРисунок 1 — Регулирующий шаровый клапан с электроприводом VALMA0

Одним из наиболее распространённых типов регулирующих клапанов являются клапаны с электроприводом и трёхпозиционным управлением, который в народе часто называют «больше/меньше». Данный способ управления характеризуется наличием трёх состояний клапана: открывается (сигнал «больше»), закрывается (сигнал «меньше») и не изменяет состояния (оба сигнала: и «больше» и «меньше» отсутствуют).

Электроприводы с таким способом управления применяются как совместно с запорно-регулирующими клапанами (линейное перемещение рабочего органа), так и совместно с регулирующими шаровыми кранами или заслонками (поворот рабочего органа). В обои случаях принцип работы электропривода одинаковый: подача одного из сигналов «больше» или «меньше» приводит к вращению электромотора в различных направлениях, а редуктор преобразует это вращение в линейное (для клапанов) или поворотное (для кранов) движение. При этом необходимость обеспечения высокого выходного момента заставляет использовать редукторы с большим передаточным отношением, что приводит к уменьшению скорости работы привода.

Время полного хода регулирующих клапанов с электроприводом составляет, как правило, от нескольких десятков до нескольких сотен секунд. Для многих медленно протекающих процессов быстродействие не является критичным и на первый план при выборе выходят цена и общая надёжность конструкции. Примером таких процессов может служить задача поддержания температуры в контурах отопления или горячего водоснабжения в индивидуальных тепловых пунктах (ИТП).

2. Клапаны с мембранным исполнительным механизмом (МИМ)

Рисунок 2 — Регулирующий клапан с МИМ

Использование клапанов с электроприводом и управлением «больше/меньше» требует применения специальных регуляторов. Однако, данные регуляторы не являются редкостью, а их настройка не вызывает больших трудностей, так что этот факт следует отнести скорее к особенностям таких клапанов, а не к их недостаткам.

Впрочем, некоторые процессы для качественного управления требуют быстродействующих клапанов со временем полного хода не более нескольких секунд. Примерами таких процессов могут служить пастеризационно-охладительные установки (ПОУ) или уже упоминаемый процесс поддержания оптимального соотношения газ/воздух. Для решения этих задач используют клапаны с пропорциональным способом управления и одними из наиболее распространённых клапанов такого типа являются клапаны с мембранным исполнительным механизмом (МИМ).

электропневмопреобразователиРисунок 3 — ЭПП ASCO Sentronic LP

В качестве входного сигнала управления, определяющего положение рабочего органа клапана чаще всего выступает унифицированный пневматический сигнал 20…100 кПа. При этом для подключения к электронной системе автоматики используют специальные электропневмопреобразователи (ЭПП). С помощью этих устройств унифицированный электрический сигнал 4…20 мА или 0…10 В преобразуется в пневматический сигнал управления 20…100 кПа.

Клапаны с МИМ совместно с ЭПП имеют на порядок большее быстродействие по сравнению с клапанами с электроприводом, что позволяет обеспечивать большую точность в динамическом режиме работы. Однако, такой подход при построении системы управления несёт в себе одну скрытую угрозу.

Дело в том что в цепи управления присутствует преобразование без обратной связи (ЭПП ➝ МИМ ➝ процент открытия клапана) и на обоих этапах этого преобразования возможны нелинейности, вызывающие уменьшение динамической точности. Таким образом одна и та же величина сигнала управления генерируемая регулятором может приводить к различному проценту открытия клапана и, как следствие, к отличающемуся от ожидаемого воздействию на объект управления.

Схема контура регулирования при использовании клапана с МИМ и ЭППРисунок 4 — Схема контура регулирования при ипользовании клапана с МИМ и ЭПП

Неточная передача управляющих воздействий на объект управления связана с естественными отклонениями реальных устройств от их идеального представления. Эти отклонения присущи любым устройствам, хотя разные модели разных производителей могут иметь различную величину данных отклонений. Применительно к пропорциональным клапанам отклонение реальных устройств от их идеальных моделей обычно характеризуют четырьмя параметрами: линейность, чувствительность, гистерезис и повторяемость.

Линейность

Характеризует отклонение реального положения рабочего органа клапана от расчётного, соответствующего текущему уровню входного сигнала. Идеальная зависимость между управляющим сигналом и положением рабочего органа клапана представляет из себя прямую линию. Однако, фактическое положение может отличаться от расчётного по ряду причин. Максимальное отклонение фактического положения от расчётного выражают в процентах и называют линейностью (или нелинейностью). На рисунке 5 характеристика идеального клапана показана чёрной линией, а реального зелёной. Для клапанов с трёхпозиционным управлением значение линейности не указывают, т. к. однозначная зависимость между сигналами управления и положением рабочего органа клапана отсутствует.

Чувствительность

Если придерживаться формального подхода, определяет минимально возможное перемещение рабочего органа клапана. Выражается в процентах от общего перемещения. Чем меньше значение чувствительности, тем более незначительные изменения управляющего сигнала может отработать регулирующий клапан. Однако, не следует забывать что частые перемещения рабочего органа на малые расстояния приводят к повышенному износу и сокращают срок службы клапана. Поэтому, чаще всего, чувствительность клапана обозначает максимально возможную точность остановки рабочего органа в требуемом положении, а для того что-бы избежать микроперемещений при работе клапана в устройстве управления Рисунок 6 – Чувствительность вводится зона нечувствительности, превышающая чувствительность клапана и предотвращающая повышенный износ.

Гистериз

Под гистерезисом регулирующих клапанов понимают разность положений рабочего органа, которые он занимает при одной и той-же величине управляющего сигнала но при движении в разных направлениях – при закрытии и открытии. Наибольшее влияние на процесс регулирования гистерезис оказывает при изменении направления движения рабочего органа. Допустим, система управления открывает клапан. При этом рабочий орган движется по нижней кривой от точки 0 до точки 1. Если в этот момент требуется изменить направление движения, система управления уменьшает величину входного сигнала, однако, положение рабочего органа клапана не изменится до тех пор пока не будет достигнута точка 2.

Линейность

Рисунок 5 — Линейность

Чувствительность

Рисунок 6 — Чувствительность

Гистериз

Рисунок 7 — Гистериз

Высококачественные клапаны имеют небольшой гистерезис, 1…2%, который не оказывает существенного влияния на процесс управления. Однако, гистерезис некоторых типов регулирующих клапанов может достигать 10…15%, что заставляет инженеров внедрять в систему управления дополнительные устройства или программные модули для компенсации влияния гистерезиса. В процессе эксплуатации, значение гистерезиса клапана может сильно увеличиваться вследствие износа. При критическом увеличении гистерезиса его называют люфтом.

Повторяемость это способность рабочего органа клапана занимать одинаковые положения при многократной подаче на него одинаковых входных сигналов. В отличии от измерительных приборов для клапанов значение повторяемости, обычно не является критичным, т. к. повторяемости почти любого современного клапана оказывается достаточно высокой чтобы не оказывать сколько-нибудь существенного влияния на процесс регулирования. Все эти отклонения возникают в разомкнутой части системы управления (ЭПП ➝ МИМ ➝ процент открытия клапана) и их качественная компенсация без введения обратной связи является сложным процессом, требующим применения нетрадиционных регуляторов и длительной настройки на этапе пусконаладочных работ.

В связи с высокой сложностью компенсации нелинейностей в цепи управления при использовании клапанов с МИМ и ЭПП от неё часто отказываются. При этом оценить точность системы управления в динамическом режиме работы становится практически невозможно и при построении системы приходится опираться на личный опыт проектировщиков, а представления о применимости тех или иных клапанов для решения поставленных задач формируются исходя из успехов (или неудач) уже реализованных проектов. Избежать неясностей при построении подобных систем управления позволяет введение в цепь управления обратной связи по положению штока клапана с формированием второго, стабилизирующего, контура. В качестве регулятора в этом контуре используется позиционер.

Схема контура регулирования при использовании клапана с позиционеромРисунок 8 — Схема контура регулирования при спользовании клапана с позиционером

3. Позиционер управления клапаном

Позиционер для пневмоклапана
Рисунок 9 — Позиционер

Это устройство которое полностью берёт на себя функцию управления клапаном. Примером может служить позиционер ASCO 60566318, который устанавливается на все регулирующие клапаны серий E290(резьбовой), S290(приварной) и T290(фланцевый). После установки позиционера на клапан запускается процедура инициализации, в процессе которой позиционер в автоматическом режиме собирает всю необходимую информацию о клапане и настраивает встроенный регулятор таким образом чтобы обеспечить оптимальное управление. После завершения инициализации из системы управления достаточно подать на позиционер пропорциональный сигнал с требуемым процентом открытия клапана, а позиционер приведёт клапан в нужное положение.

Регулирующий клапан с позиционеромРисунок 10 — Регулирующий клапан ASCO с позиционером

Использование клапанов с позиционером позволяет скомпенсировать нелинейности на этапах преобразования пропорционального электрического сигнала от регулятора в процент открытия клапана. Благодаря этому можно почти полностью отказаться от сложной процедуры ручной настройки регуляторов, управляющих пропорциональными клапанами.

Клапан с позиционером уже имеет в своём составе замкнутый контур управления с оптимально настроенным регулятором, среди прочего в автоматическом режиме компенсирующим гистерезис и нелинейность клапана. Таким образом время пусконаладочных работ сокращается до минимума, а расчёт точности упрощается и представляет из себя один параметр – зону нечувствительности встроенного в позиционер регулятора.

Для регулирующих клапанов ASCO с позиционером заводское значение зоны нечувствительности составляет 1%. Инженерам-проектировщикам следует, однако, помнить что даже такие высокие показатели точности не гарантируют высококачественного регулирования в случае неправильно выбранного регулирующего клапана. Так, например, часто встречающейся ошибкой при проектировании систем является выбор регулирующего клапана по диаметру трубопровода на котором он устанавливается.

При таком подходе реальный расход среды через регулирующий клапан может оказаться существенно ниже номинального расхода, а значит и показатели качества процесса регулирования ухудшатся в несколько раз. Поэтому при высоких требованиях к точности регулирования следует уделить особое внимание выбору клапана с коэффициентом расхода Kv соответствующим проектируемой системе.

4. Выводы

На современном рынке технических средств автоматизации представлено большое количество различных регулирующих клапанов. Наиболее распространёнными являются три типа: клапаны с электроприводом с трёхпозиционным способом управления («больше/меньше»), клапаны с МИМ и ЭПП, клапаны с позиционером. Преимущества и недостатки каждого из них можно резюмировать следующим образом.

Клапаны с электроприводом и управлением «больше меньше»

Клапаны с электроприводом и управлениемРисунок 11 — Клапаны с электроприводом и управлением «больше меньше»

Плюсы:

  • управление дискретными сигналами
  • простой и понятный принцип работы+ цена
  • требуют использования специальных регуляторов

Минусы:

  • низкая скорость работы
  • ограниченная применимость
  • высокое энергопотребление (вызывает сложности при построении систем с автономным резервированием питания)

Клапаны с МИМ и ЭПП

Клапаны с МИМ и ЭППРисунок 11 — Клапаны с МИМ и ЭПП

Плюсы:

  • высокое быстродействие
  • низкое энергопотребление
  • расширенная сфера применения
  • управление пропорциональным сигналом

Минусы:

  • чрезвычайно высокая сложность компенсации нелинейностей в контуре управления
  • сложность оценки точности, особенно в динамических режимах работы
  • требует для работы сжатый воздух

Клапаны с позиционером

Клапаны с МИМ и ЭППРисунок 11 — Клапаны с позиционером

Плюсы:

  • высокое быстродействие
  • низкое энергопотребление
  • автоматическая компенсация нелинейностей
  • лёгкое построение двухконтурной системы управления с минимумом трудозатрат
  • наиболее широкая сфера технологических применений
  • управление пропорциональным сигналом

Минусы:

  • требует для работы сжатый воздух

Инженер ООО «КИП-Сервис»
Быков А.Ю.

Дополнительные материалы:

Читайте также:

Регулирующие клапаны на электроприводе – назначение и разновидности

Среди многообразия трубопроводной арматуры особой популярностью пользуется регулирующий клапан. Он предназначен для контроля параметров перемещаемой среды в трубопроводных магистралях разного назначения. Регулировка осуществляется за счет изменения пропускной способности клапана. Для автоматизированного управления регулирующей арматурой применяют различные типы приводов. Они используются в трубопроводах, отдельные элементы которых подвергаются значительным нагрузкам, и могут быть электрическими или пневматическими.

Устройства с электроприводами востребованы в котельных, сетях отопления и вентиляции и на тепловых пунктах. Клапаны с пневмоприводами устанавливают на производствах, где управление осуществляется воздухом. Также клапаны с пневматическим приводом используются на взрывоопасных трубопроводах и для регулировки вне помещений.

    Содержание статьи:

  1. Назначение и особенности регулирующих клапанов с приводами
  2. Управление и использование приводов
  3. Варианты клапанов с приводами и их отличия
  4. Методика подключения

Назначение и особенности регулирующих клапанов с приводами

В отличие от запорных клапанов, которые предназначены для полного перекрывания, клапаны для регулировки служат для контроля и изменения объема транспортируемой среды. Такие функции востребованы на промышленных трубопроводах, используемых для перемещения:

  • газообразных и жидких веществ;
  • пара;
  • нефти и ее производных.

Регулирующий клапан с приводом позволяет варьировать показатели давления, регулировать потоки транспортируемой среды и контролировать производительность магистралей.

Управление и использование приводов

Схема регулирующего клапана с электрическим приводомСхема регулирующего клапана с электрическим приводом

По сравнению с бытовыми трубопроводами магистрали промышленного назначения отличаются большей протяженностью и интенсивным режимом эксплуатации. Для регулировки перемещаемой среды требуется множество клапанов, которыми сложно управлять вручную. Оснащение регулирующих клапанов различными вариантами приводов упрощает контроль работы трубопроводов и позволяет изменять параметры дистанционно. Применение клапанных регулирующих механизмов с механическим приводом обеспечивает эффективное управление технологическими процессами. С помощью приводов можно непрерывно контролировать параметры перемещаемых жидкостей или газа, и предотвращать аварии. Исполнительный механизм препятствует обратному движению транспортируемых веществ, и защищает от гидравлических ударов.

Чтобы приводные механизмы выполняли свои функции, необходимо соблюдение следующих правил:

  • При монтаже регулирующего клапана направление движения рабочей среды должно совпадать со стрелками, изображенными на корпусе устройства.
  • Клапаны могут фиксироваться вертикально и горизонтально. Однако исполнительный механизм, приводящий в движение запорный элемент, нужно располагать сверху.
  • Трубопроводы следует прочно закрепить, предусмотрев надежную защиту от вибраций.

В случае выхода привода для клапана из строя, может потребоваться его замена. Для упрощения демонтажных работ необходимо обеспечить доступ к регулирующему клапану и его элементам.

Варианты клапанов с приводами и их отличия

Приводные механизмы применяются для преобразования исходного управляющего сигнала, поступающего от внешнего источника, в перемещение запорного элемента. В зависимости от используемой энергии различают следующие виды клапанов для регулировки расхода транспортируемых веществ:

  • Клапаны с пневмоприводом. В качестве источника энергии для исполнительных механизмов таких клапанов служит давление сжатого воздуха. В зависимости от вида ПИМ бывают мембранные и поршневые устройства. Если поршневым механизмом оснащен запорный клапан, то он относится к защитной арматуре.
  • С электрическим исполнительным механизмом. Конструктивно электропривод состоит из электродвигателя, системы управления и редуктора. В качестве источника энергии для таких клапанов служит электричество, а управление транспортируемой средой может осуществляться с помощью дистанционного устройства. У клапанов с электроприводом наблюдается хорошее взаимодействие между двигателем и пультом управления, в том числе и при значительных расстояниях между ними.
  • С электромагнитным приводом. У клапанов с электромагнитными приводами преобразование энергии для перемещения запорного элемента происходит благодаря электромагнитам. Он является неотъемлемой частью исполнительного механизма, и в зависимости от нюансов конструкции бывает блочным или встроенным.
Регулирующий клапан с пневмоприводомРегулирующий клапан с пневмоприводомРегулирующий клапан с электроприводомРегулирующий клапан с электроприводомРегулирующий клапан с электромагнитным приводомРегулирующий клапан с электромагнитным приводом

Клапаны с пневмоприводами надежны, простоты в управлении и применяются на объектах повышенной опасности. Пневматика дешевле устройств с сервоприводами, но имеет значительные габаритные размеры.

Клапаны с электроприводами легко устанавливать и перенастраивать. Они взаимодействуют с приборами телеметрии, компьютерами и остальными средствами управления. Клапаны с электроприводами изготавливаются в общепромышленном и во взрывозащищенном исполнении, которое востребовано на газопроводах. Среди недостатков клапанов с электрическим приводом выделяют повышенную чувствительность к влажности и температуре, а также отключение двигателя при повреждениях электропитания.

Клапаны с электромагнитным приводом пользуются спросом в автоматизированных системах управления, которые регулируют параметры потоков перемещаемых сред. Клапаны с сервоприводом имеют ресурс, который измеряется 10 000 и более циклов срабатывания запорного элемента. Они точностью регулирования и оперативно реагируют на подаваемые сигналы.

Важная информация: согласно ГОСТу 12893-2005 клапаны с электроприводами и другими видами исполнительных механизмов бывают нормально-открытыми и нормально-закрытыми. НО открываются полностью при отсутствии управляющего сигнала, а НЗ — остаются с закрытым проходным сечением. Грамотное сочетание арматуры разного типа позволяет избежать дополнительных повреждений при отключении электропитания и в других аварийных ситуациях.

Клапаны с механическим приводом различаются и типом рабочего элемента. В зависимости от нюансов конструкции запорного механизма они бывают:

  • Золотниковые. Функции запорного элемента выполняет золотник, поворот которого позволяет регулировать параметры перемещаемой рабочей среды. Он не обеспечивает полную герметичность, поэтому обычно применяется на магистралях с низкими показателями давления.
  • Седельные. В качестве запорного устройства служит плунжер, который уменьшает пропускную способность путем перемещения через одно или два седла. По исполнению запорный элемент клапана представлен устройствами стержневого, тарельчатого или игольчатого типа.
  • Мембранные. Контроль параметров перемещаемой среды выполняют с помощью эластичной мембраны. Для устранения погрешностей, которые иногда возникают при управлении, мембранные клапаны оснащаются элементами, предназначенными для контролирования положения штока.

Полное перекрывание рабочей среды выполняют с помощью запорной арматуры, которая также комплектуется сервоприводом. Конструкция запорного устройства обеспечивает герметичность узлов и незаменима в магистралях, по которым транспортируют жидкости и газ.

Методика подключения

По принципу соединения с трубопроводом выделяют следующие варианты арматуры:

  • Фланцевые. Такие клапаны укомплектованы фланцами в виде дисков с отверстиями под болты и могут использоваться на магистралях высокого давления. Арматура рассчитана на многократную установку и демонтаж, что позволяет быстро менять оборудование при повреждении.
  • Под приварку. Клапаны, которые фиксируются с магистралями с помощью сварки, применяются для управления расходом рабочей среды при повышенных требованиях к герметичности. В результате образуется неразъемное соединение, что усложняет замену арматуры.

Важная информация: монтаж клапанов под приварку проводится согласно положениям ГОСТ 16037-80, если иное не предусмотрено конструкторской документацией на арматуру.

Запорно-регулирующая арматура. Принцип действия

Запорно-регулирующая арматура используется для контроля потока среды на объектах промышленного производства, и бытовых системах жизнедеятельности. Магистральные трубопроводы, месторождения нефти и газа и заводы по их переработке, сталеплавильные и химические предприятия, очистные сооружения и городской водопровод – вот лишь небольшая часть предприятий, где требуется огромное количество запорно-регулирующей арматуры.

Существует множество типов и модификаций запорно-регулирующей арматуры. Мы рассмотрим принцип действия наиболее распространенных типов изделий, таких как шаровые краны, дисковые поворотные затворы, шиберные задвижки, запорные клапаны и мембранные клапаны.

Принцип действия всех вышеперечисленных типов запорной арматуры примерно одинаков. Все эти устройства либо ограничивают поток среды (воздуха, жидкостей, пара, газа, сыпучих тел), либо полностью перекрывает его. Различаются лишь элементы конструкции типов запорной арматуры, (мембрана, диск, шар) с помощью которых и происходит перекрытие потока.

 

Принцип действия шарового крана.

Принцип действия шарового крана.Принцип действия шарового крана.

Шаровый кран – один из самых надежных элементов запорной арматуры. Краны такого типа обеспечивают очень хорошую возможность полного перекрытия потока, в случае поворота запорного элемента на четверть оборота (90°). К достоинствам шарового крана следует также отнести низкое время закрытия, и низкую вероятность протечки, в случае износа уплотнения

Шаровые краны можно разделить на неполнопроходные, и полнопроходные. Неполнопроходной кран в открытом состоянии имеет диаметр прохода меньший, чем диаметр трубопровода, полнопроходный кран имеет диаметр прохода равный диаметру трубопровода. Полнопроходный шаровый кран более эффективен, т.к. позволяет свести к минимуму падение давления в клапане.

Шаровые краны рекомендуются только для использования в полностью открытом, или полностью закрытом положении. Они не приспособлены для точного регулирования потока, или функционирования в частично открытом положении, так как создается избыточное давление на часть корпуса, что может привести к его деформированию. Деформирование корпуса приводит к протечкам и поломкам.

 

Принцип действия дискового поворотного затвора

В положении «открыто»

Принцип действия дискового поворотного затвора

Шаг 1

Принцип действия дискового поворотного затвора

Шаг 2

Принцип действия дискового поворотного затвора

В положении «закрыто»

Принцип действия дискового поворотного затвора

 

Дисковый поворотный затвор регулирует поток при помощи специального элемента – диска, закреплённого на валу, и поворачивающегося вокруг своей оси. Также, как и шаровый кран, дисковый затвор способен осуществить перекрытие за достаточно короткое время, так как диск осуществляет такой же оборот на 90 °, из-за чего этот затвор называют также четверть-оборотным.

В зависимости от положения диска и вала относительно корпуса, дисковые затворы могут быть трехэксцентриковыми и двухэксцентриковыми. Затвор со смещенным эксцентриситетом означает, что ось диска смещена относительно геометрической оси корпуса, что обеспечивает более плотное прилегание диска к уплотнению затвора, а следовательно – исключает протечки.

Дисковые поворотные затворы характеризуются простотой конструкции, легкостью веса, и компактными размерами. Но материалы, используемые при производстве затворов, могут ограничить их применение при очень высоких температурах, или крайне агрессивных средах. В основном это касается уплотнений затвора, изготовляемых из полимерных материалов.

Принцип действия дискового поворотного затвора

 

Принцип действия запорно-регулирующего клапана

В положении «открыто»

Принцип действия запорно-регулирующего клапана

Шаг 1

Принцип действия запорно-регулирующего клапана

Шаг 2

Принцип действия запорно-регулирующего клапана

В положении «Закрыто»

Принцип действия запорно-регулирующего клапана

 

Запорно-регулирующий клапан подходит для использования на различных технологических  объектах, исключая лишь трубопроводы больших диаметров, для контроля и регуляции потока среды.

Принцип действия клапанов не сильно отличается от принципа действия прочей запорно-регулирующей арматуры. Достоинства этих клапанов состоят в малом ходе затвора для полного открытия, соответственно такой клапан обычно имеет малые габариты и приемлемую массу. Также клапан обладает высокой герметичностью, и отсутствием трения уплотнения затвора о седло, что значительно сокращает их износ.

Недостатки подобного типа клапанов заключаются в сильном гидравлическом сопротивлении, и, соответственно, в больших потерях энергии, ограничении максимального диаметра трубопроводов, на которые их можно установить, а также в существовании застойных зон (по причине S-образного внутреннего сечения), где могут накапливаться примеси и мусор.

 

Принцип работы шиберной задвижки

В положении «открыто»

Принцип работы шиберной задвижки

Шаг 1

Принцип работы шиберной задвижки

Шаг 2

Принцип работы шиберной задвижки

В положении «закрыто»

Принцип работы шиберной задвижки

Конструкция шиберной задвижки напоминает шлюз — поток регулируется путем его разделения при помощи металлической пластины – шибера. Шиберная задвижка – одно из наиболее простых приспособлений для регуляции потока.

Шиберные задвижки, в зависимости от конструкции запирающего элемента могут быть межфланцевыми, двусторонними и ножевыми.

К достоинствам шиберной задвижки следует отнести то, что этот тип задвижек в открытом состоянии не содержит никаких элементов, препятствующих потоку.

Принцип работы шиберной задвижки

 

 

 

Принцип действия мембранного клапана

В положении «открыто»

Принцип действия мембранного клапана

Шаг 1

Принцип действия мембранного клапана

Шаг 2

Принцип действия мембранного клапана

В положении «закрыто»

Принцип действия мембранного клапана

Мембранные клапаны используют в качестве запорного элемента гибкую мембрану (диафрагму) метод «щипать», чтобы остановить поток клапана, используя гибкую мембрану. 

Одним из преимуществ мембранного клапана является то, что компоненты самого клапана отделены от потока среды, что в случае агрессивных сред увеличивает срок службы клапана, при условии регулярного обслуживания и своевременной замены мембраны.

Эти типы клапанов, как правило, не подходит для агрессивных сред, и сред с высокими температурами,  в основном, они применяются для водопроводных систем.

Принцип действия мембранного клапана

Ниже представлено видео, в котором наглядно показан принцип работы трехэксцентрикового дискового затвора

Клапаны регулирующие

Каталог трубопроводной арматуры АРМАТЭК

Заголовок статьи «Клапаны регулирующие» состоит из существительного и прилагательного. Прилагательное «регулирующие» свидетельствует о принадлежности ее «главного героя» к определенному виду трубопроводной арматуры ─ регулирующей арматуре. Существительное ─ о принадлежности к одному из ее типов ─ клапанам.

Регулирующая трубопроводная арматура: решая самые сложные задачи

Регулирование параметров потока рабочей среды необходимо для эффективного контроля технологических процессов и связывания между собой их отдельных фаз. Без этого невозможно обеспечить стабильность в номинальных режимах и нормальное протекание переходных режимов.

Управлять параметрами потока рабочей среды посредством изменения ее расхода, обеспечивая комплекс требований по виду регулировочной характеристики, надежности и точности регулирования, ─ одна из важнейших задач трубопроводной арматуры. И, прежде всего,─ регулирующей арматуры, занимающей исключительно важное место в общей номенклатуре трубопроводной арматуры.

Регулирующая арматура как в своем «классическом» виде, так и в комбинации с запорной арматурой (согласно «ГОСТ 24856-2014. Арматура трубопроводная. Термины и определения») обеспечивает условия нормального функционирования оборудования на различных объектах, включая такие сложные и ответственные как ТЭС, АЭС, системы трубопроводного транспорта. Примером симбиоза трубопроводной арматуры различных видов является совмещающая функции запорной и регулирующей арматуры запорно-регулирующая арматура (запорно-регулирующий клапан). Как известно, запорная арматура предназначена для перекрытия потока рабочей среды с определенной герметичностью.

Иногда к регулирующей трубопроводной арматуре относят самостоятельную с точки трения классификации, установленной в нормативно-технической документации (Так было в «ГОСТ Р 52720-2007. Арматура трубопроводная. Термины и определения»; пришедший на смену ГОСТ Р 52720-2007 ГОСТ 24856-2014 о редукционной арматуре не упоминает), редукционную (дроссельную) арматуру, предназначенную для снижения (редуцирования) рабочего давления в системе за счет увеличения гидравлического сопротивления в проточной части. Т. е. клапан, регулирующий давление. Актуальность регулирующей арматуры только возрастает по мере усложнения условий работы в электроэнергетике. Их ярким проявлением являются повышение начальных параметров теплоносителей на тепловых станциях и рост единичной мощности турбоустановок в атомной энергетике.

Без использования регулирующей арматуры невозможно обеспечить растущие требования по обеспечению надежной и вместе с тем максимально экономичной работы различных систем в тепло- и электроэнергетике, трубопроводном транспорте и других направлениях современных технологий.

Клапан ─ имя существительное

Если слово «арматура» имеет латинское происхождение, то «клапан» пришел в русский язык из немецкого, в котором еще до появления клапанов как технического устройства обозначало крышку (нем. Klappe). Языковеды даже называют точное время ─ XVIII век. Свойство клапана открывать и закрывать проход для какой-то среды ─ прямое подтверждение его кровного родства с открывающейся — закрывающейся крышкой.

Существительное «клапан» используется не только в трубопроводной арматуре. Сердечные клапаны регулируют кровоток, клапаны духовых инструментов — поступление превращающегося в звуки музыки воздуха из легких. Клапаны есть в самых разных технических устройствах ─ насосах, компрессорах и т. д. Клапан прикрывает отверстие в кармане пальто или пиджака.

Клапаны ─ самый распространенный тип трубопроводной арматуры. В качестве основного элемента они входят в конструкцию большинства регуляторов.

У клапана запирающий или регулирующий элемент перемещается параллельно к оси потока рабочей среды.

Особенности, свойственные клапанам, ─ быстрое срабатывание, высокая герметичность, большие усилия на привод затвора и гидравлическое сопротивление, наличие противодавления рабочей среды.

Конструктивно выполненная в виде клапана запорная арматура называется запорным клапаном. Обратная арматура ─ обратный клапан, невозвратно-запорная арматура ─ невозвратно-запорный клапан, невозвратно-управляемая арматура ─ невозвратно-управляемый клапан. Регулирующий клапан (иногда говорят «исполнительное устройство») ─ вид регулирующей арматуры, конструктивно выполненной в виде клапана (с исполнительным механизмом или ручным управлением).

Регулирующий клапан, предназначенный для смешения двух и более различных по параметрам и/или свойствам рабочих сред, называют смесительным клапаном.

Регулирующие клапаны зачастую ─ наиболее значимый и дорогостоящий элемент контура регулирования. Работать им приходится в достаточно сложных условиях: изменение положения регулирующего органа сопровождается изменением давления на клапане, формы проходного сечения, скорости рабочей среды в проточной части. Перепады давления сопровождаются преобразованием огромных количеств энергии.

Эффективная работа регулирующего клапана обеспечивает условия для нормального функционирования технологических систем, поддерживают стабильность их рабочих параметров.

Разновидности регулирующих клапанов

Конструктивно регулирующие клапаны могут быть односедельными, двухседельными, клеточными.

Регулирующий клапан, расчетное проходное сечение которого образовано одним затвором, называют клапан регулирующий односедельный, а двумя параллельно работающими затворами, расположенными на одной оси, ─ двухседельный регулирующий клапан.

Седло ─ неподвижная часть рабочего органа клапана. Представляет канал или отверстие для прохода потока. Подвижная часть рабочего органа носит название «затвор» и служит для перекрытия проходного отверстия седла. Подвижный регулирующий элемент затвора регулирующего клапана, перемещением которого достигается изменение его пропускной способности, носит название «плунжер».

Если затвор регулирующего клапана выполнен в виде детали с профилированными отверстиями для пропуска рабочей среды и плунжера, благодаря перемещениям которого внутри клетки меняется суммарная площадь открытых сечений этих отверстий, это ─ регулирующий клеточный клапан.

Регулирующие клапаны клеточного типа обладают высокими эксплуатационными характеристиками, отличаются безотказностью, надежностью и экономичностью. Это сравнительно новый вид оборудования ─ в России их начали выпускать только в конце в 90-х годов.

В зависимости от направления потока клапаны подразделяются на проходные и угловые.

Клапан регулирующий проходной ─ это клапан, присоединительные патрубки которого соосны или взаимно параллельны. У углового регулирующего клапана оси входного и выходного патрубков расположены во взаимно перпендикулярных плоскостях.

Проходные клапаны, у которых площадь проходного сечения затвора равна или больше площади входного патрубка, называют полнопроходными клапанами.

Регулирующий клапан, в котором при отсутствии энергии внешнего источника затвор закрыт, называют регулирующим нормально-закрытым клапаном (регулирующий клапан НЗ). А если затвор открыт ─ регулирующим нормально-открытым клапаном (регулирующий клапан НО).

Регулирующий клапан с приводом

Привод ─ устройство для управления арматурой, обеспечивающее перемещение запирающего элемента, а также создание, в случае необходимости, усилий для обеспечения требуемой герметичности в затворе.

Используются разные приводы. Управление регулирующим клапаном может быть ручным ─ клапан ручной регулирующий управляется поворотом маховика или рукоятки. Или, в зависимости от потребляемой энергии, ─ электрическим (регулирующий или запорно-регулирующий клапан с электроприводом), электромагнитным, гидравлическим, пневматическим (клапаны с пневмоприводом в основном устанавливаются там, где развиты воздушные системы) или их комбинацией.

В зависимости от местоположения относительно арматуры различают приводы встроенные или дистанционные.

Выбор конструкции регулирующего клапана

Выбор конструкции регулирующего клапана в первую очередь зависит от температуры, давления и свойств рабочей среды. Широко используются отличающиеся высокой универсальностью односедельные проходные клапаны.

В случае больших номинальных диаметров или больших перепадов давления альтернативой односедельным разгруженным клапанам являются клапаны с двойным седлом.

При «стандартных» температурах эффективное конструктивное решение — самоподжимающийся пружинный сальник. Особые требования предъявляются к клапанам, работающим в условиях очень высоких и низких температур. В первом случае для лучшей тепловой изоляции клапанов могут применяться специальные охлаждающие ребра, препятствующие чрезмерному повышению температуры в зоне сальникового уплотнения.

При криогенных температурах необходимо предусмотреть защиту сальникового уплотнения от обледенения.

В условиях сильно загрязненной рабочей среды стараются избегать сетчатых конструкций.

Для абразивной рабочей среды хорошо подойдут угловые клапаны, обеспечивающие ее беспрепятственный выброс. Если они изготовлены из износостойких материалов, срок их эксплуатации даже в экстремальных условиях будет достаточно продолжительным.

Важная часть конструкции ─ присоединение к трубопроводу. Чаще всего применяются фланцевые, сварные или винтовые соединения. Наиболее распространены фланцевые. Сварные используются, главным образом, в линиях высокого давления водяных и паровых контуров. Преимущества сварных соединений ─ герметичность. Недостаток ─ ограниченная ремонтопригодность и более высокая стоимость изготовления.

Характеристики регулирующих клапанов

Производители регулирующих клапанов в технических документах приводят значимые для потребителей параметры.

К числу важнейших из них принадлежат пропускная способность, давление рабочей среды (рабочее, пробное, иногда говорят «испытательное»), ее температура.

Большое значение имеет «геометрия» регулирующего клапана: номинальный диаметр (используются и другие наименования ─ условный проход, диаметр условного прохода, условный диаметр, номинальный размер, номинальный проход), габаритные и монтажные размеры. А также масса.

Потребителю важно знать нормативный срок службы клапана.

Интересуют его и такие характеристики, как показатели надежности, наработка на отказ, герметичность в закрытом положении, коррозионная стойкость.

Из технических паспортов регулирующих клапанов можно узнать допустимые значения температуры и влажности окружающей среды, монтажное положение, тип привода, необходимый крутящий момент для управления клапаном, диапазон регулирования, время срабатывания и ряд других показателей, характеризующих их применяемость в конкретных эксплуатационных условиях.

Регулирующие клапаны по совокупности своих возможностей и масштабам использования с полным основанием заслужили право считаться ключевыми компонентами экономической эффективности и безопасности установок, в которых они установлены.

Магистральные направления развития регулирующих клапанов ─увеличение надежности, уменьшение энергоемкости, повышение точности регулирования, рост диапазона значений объемного расхода среды и перепада давления, увеличение быстродействия, еще большая коррозионная стойкость. И при этом конструкции клапанов должны быть надежными и простыми, не требующими технического обслуживания в межремонтный период.

Значительная часть этого пути пройдена. Уже сегодня в ассортименте производителей и поставщиков трубопроводной арматуры широко представлены регулирующие клапаны чрезвычайно высокого технического уровня, способные удовлетворить запросы самых требовательных потребителей.

Регулирующий клапан — это… Что такое Регулирующий клапан?


Регулирующий клапан
        устройство для регулирования температуры, давления, расхода и др. параметров. Входит в автоматические системы управления или регулирования и воздействует на течение технологических или теплоэнергетических процессов в соответствии с получаемой командной информацией. Р. к. устанавливается на магистральных и технологических трубопроводах, технологических аппаратах, установках, резервуарах и т. п. Р. к. состоит из регулирующего органа (собственно клапана), который изменяет сечение потока, и исполнительного механизма — пневматического привода, который получает командную информацию от автоматического регулятора или прибора с дистанционным управлением и передаёт её регулирующему органу. По условной пропускной способности различают Р. к. для средних, малых и микрорасходов, по условному давлению — низкого, среднего и высокого давлений. Р. к. выпускают для работы при температуре среды от —225 до 450 °С. Р. к. по конструктивным признакам отличаются большим разнообразием: одно- и двухседельные, диафрагмовые, проходные, угловые, трёхходовые и т. п. Наиболее распространены двухседельные Р. к. с мембранно-пружинным исполнительным механизмом. Регулирующий орган имеет фланцевую проходную конструкцию и состоит из верхней и нижней крышек, Плунжера и корпуса, в который ввёрнуты 2 седла. Шток плунжера соединительной гайкой связан со штоком исполнительного механизма, закрепленным на верхней крышке регулирующего органа. Стандартный командный сигнал (под давлением воздуха 0,02—0,1 Мн/см2) воздействует на мембрану, которая передаёт усилие на возвратную пружину механизма, в результате чего перемещается шток с затвором и изменяется проходное сечение, а следовательно, и пропускная способность клапана.

         Лит.: Автоматизация, приборы контроля и регулирования. Справочник, книга 5, М., 1967: Современные конструкции трубопроводной арматуры. (Справочное пособие), под ред. Ю, И. Котелевского, М., 1970.

         Г. Г. Мирзабеков.

Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

  • Регулирующие устройства
  • Регулирующий стержень

Смотреть что такое «Регулирующий клапан» в других словарях:

  • регулирующий клапан — Регулирующая арматура, конструктивно выполненная в виде клапана с исполнительным механизмом или ручным управлением. [ГОСТ Р 52720 2007] Классификация (по ГОСТ 12893 2005) числу седел односедельные двухседельные; типу плунжера пробочные сегментные …   Справочник технического переводчика

  • РЕГУЛИРУЮЩИЙ КЛАПАН — 3.21. РЕГУЛИРУЮЩИЙ КЛАПАН Клапан, предназначенный для регулирования параметров рабочей среды посредством изменения ее расхода и управляемый от внешнего источника энергии ² Источник: РМ 4 239 91: Системы автоматизации. Словарь справочник по… …   Словарь-справочник терминов нормативно-технической документации

  • Регулирующий клапан — Современный регулирующий клапан с электрическим приводом. Регулирующий клапан один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто примен …   Википедия

  • РЕГУЛИРУЮЩИЙ КЛАПАН — устройство для регулирования давления, уровня, расхода и др. параметров. Устанавливается на магистральных и технологич. трубопроводах, резервуарах, аппаратах и т. п. Состоит из регулирующего органа и исполнит. механизма. Различают Р. к. низкого,… …   Большой энциклопедический политехнический словарь

  • регулирующий клапан — reguliavimo vožtuvas statusas T sritis automatika atitikmenys: angl. control valve vok. Abstimmventil, n; Reglerventil, n; Regulierventil, n rus. клапан управления, m; регулировочный клапан, m; регулирующий клапан, m pranc. soupape de réglage, f …   Automatikos terminų žodynas

  • регулирующий клапан — reguliavimo vožtuvas statusas T sritis Energetika apibrėžtis Vožtuvas slėgiui, lygiui, debitui ir kitiems parametrams reguliuoti. Magistralinių ir technologinių vamzdynų, rezervuarų, aparatų ir pan. vožtuvas. atitikmenys: angl. regulating valve;… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • регулирующий клапан паровой стационарной турбины — регулирующий клапан Клапан для регулирования расхода пара через проточную часть цилиндра паровой стационарной турбины. [ГОСТ 23269 78] Тематики газовые и паровые турбины и двигатели Обобщающие термины элементы и составные части Синонимы… …   Справочник технического переводчика

  • Регулирующий клапан нормально закрытый НЗ — Регулирующий клапан, в котором при отсутствии энергии внешнего источника затвор закрыт Источник: ГОСТ 12893 83: Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • Регулирующий клапан нормально открытый НО — Регулирующий клапан, в котором при отсутствии энергии внешнего источника затвор открыт Источник: ГОСТ 12893 83: Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • Регулирующий клапан (клапан) — терморегулятор без устройства автоматического регулирования температуры (может иметь рукоятку или защитный колпачок для изменения вручную количества протекающего через него теплоносителя). Источник …   Словарь-справочник терминов нормативно-технической документации

Правила подбора регулирующих клапанов

16 Ноября 2018

Регулирующая арматура в настоящее время является неотъемлемой составляющей систем водоснабжения, отопления и вентиляции, а также различных технологических линий. И правильный подбор регулирующего клапана для данных систем является важной задачей, так как позволяет получить следующие преимущества:

  1. Повысить эффективность работы предприятий за счет более точного регулирования технологических процессов.
  2. Решить проблемы, связанные с высоким уровнем шума и кавитацией, и, как следствие, — с эрозионным износом клапанов и трубопроводов.
  3. Сократить расходы на техническое обслуживание предприятий.
  4. Повысить безопасность технологических процессов.

Независимо от поставленной задачи, расчет регулирующего клапана сводится к определению его пропускной способности, при которой на заданном расходе будет дросселирован заданный избыток напора.

Пропускная способность регулирующей арматуры численно характеризуется коэффициентом пропускной способности Kv. Коэффициент Kv равен расходу рабочей среды с плотностью 1000 кг/м3 через клапан при перепаде давления на нем 0,1 МПа.

В зависимости от типа среды применяются различные расчетные формулы для определения значения Kv, но исходные данные остаются неизменными:

  • P1 — давление на входе клапана, бар;
  • P2 — давление на выходе клапана, бар;
  • ∆P — перепад давления на клапане, бар;
  • t1 — температура среды на входе, oC;
  • Q — расход для жидкости, м3/ч;
  • QN — расход для газов при Н.У., нм3/ч;
  • G — расход для водяного пара, кг/ч;
  • ρ — плотность жидкости, кг/м3;
  • pN — плотность газов при Н.У., кг/нм3.

Поскольку при расчете пропускной способности не учитывается ряд факторов, влияющих на работу клапана, для выбора клапана используется коэффициент Kvs, учитывающий запас в 30%.

По рассчитанному значению Kvs подбирается регулирующий клапан с максимально близким бóльшим значением Kvs c учетом рекомендуемого диаметра.

Клапан необходимо выбирать так, чтобы расчетная величина Kvs находилась в интервале между Kvs min и Kvs max клапана. Для клапанов различных производителей значения Kvs min различны. Указанные параметры приведены в технических описаниях оборудования.

Кроме соответствия по пропускной способности, существует ряд параметров, на которые следует обратить внимание при подборе регулирующих клапанов, а именно:

  • условный диаметр;
  • условное давление;
  • вероятность возникновения кавитации;
  • уровень шума;
  • отношение входного давления к выходному или допустимый перепад давления на клапане.
  • 1. Условный диаметр

    Регулирующая арматура никогда не подбирается по диаметру трубопровода. Однако диаметр трубопровода до и после клапана необходимо рассчитывать для подбора обвязки регулирующих клапанов. Так как регулирующий клапан подбирается по величине Kvs, часто условный диаметр клапана оказывается меньше условного диаметра трубопровода, на котором он установлен, особенно при большом перепаде на клапане. В этом случае допускается выбирать клапан с условным диаметром меньше условного диаметра трубопровода на одну-две ступени. При большей разнице рекомендуется использовать клапаны с пониженной пропускной способностью Kvs. Данное решение позволяет снизить стоимость оборудования, а также при таком подборе оборудование оказывается более компактным по габаритам и массе.

    • w — рекомендуемая скорость потока среды, м/c;
    • Q — рабочий объемный расход среды м3/ч;
    • d — диаметр трубопровода, м.

    2. Условное давление

    Условное давление Ру является единственным параметром для изготовляемой арматуры, гарантирующим ее прочность и учитывающим как рабочее давление, так и рабочую температуру. Условное давление соответствует допустимому рабочему давлению для данного вида арматуры при нормальной температуре (20 оС). При повышении температуры механические свойства конструкционных материалов ухудшаются, поэтому для арматуры с высокой рабочей температурой допустимые рабочие давления ниже, чем условные. Это снижение зависит от материала деталей арматуры и температурной зависимости прочностных свойств этого материала. Чем выше рабочая температура, тем ниже максимальное рабочее давление при одном и том же значении условного давления.

    Ниже приведены таблицы зависимости максимального рабочего давления в зависимости от температуры для различных материалов исполнения:

    3. Вероятность возникновения кавитации

    Одной из серьезных проблем, возникающих при применении запорной и регулирующей арматуры, является возникновение кавитации. Особенно сильно этот эффект проявляется при использовании регуляторов, понижающих давление «после себя» — редукционных клапанов.

    Кавитация — процесс образования и последующего схлопывания пузырьков вакуума в потоке жидкости, сопровождающийся шумом и гидравлическими ударами, что в свою очередь приводит к преждевременному износу элементов регулирующей арматуры.

    Для проверки возможности появлении кавитации при больших перепадах давления на клапане применяется следующая формула:

    • P1 – давление на входе клапана, бар;
    • ∆P – перепад давления на клапане, бар.

    4. Уровень шума

    При выборе регулятора давления необходимо учитывать явления, связанные с шумом работающего регулятора. Возникновение шумов вызвано газодинамическими колебательными процессами у регулирующих органов и стенок регуляторов. При совпадении частоты колебаний амплитуда колебаний клапана может резко возрасти, что приведет к износу и разрушению клапана, а также к сильной вибрации регулятора.

    Главной причиной повышенного шума является повышенная скорость среды в выбранном трубопроводе относительно рекомендуемой. Фактическая скорость среды может быть рассчитана по формуле:

    • w – скорость потока среды, м/c;
    • Q – рабочий объемный расход среды м3/ч;
    • d – диаметр трубопровода, м.

    Ниже приведены рекомендуемые скорости сред для снижения риска появления критического уровня шума:

    Одним из способов снижения уровня шума в системах, помимо использования клапанов специальной конструкции, является применение гибких вставок (виброкомпенсаторов) на участках до и после клапана.

    5. Отношение входного давления к выходному или допустимый перепад давления на клапане

    Для некоторых редукционных клапанов ограничено отношение входного давления к выходному. Входное давление, воздействуя на плунжер редукционного клапана, стремится его открыть. Выходное давление воздействует на мембрану (или другой управляющий элемент) клапана, стремясь закрыть клапан. При превышении ограничения по отношению входного и выходного давления клапан не сможет закрыться — и выходное давление будет больше давления настройки. Ограничения по указанному параметру также исключают кавитацию в седле регулирующего клапана.

    Выполнение данных указаний при подборе регуляторов позволит значительно улучшить показатели технологических процессов и увеличить срок службы регулирующей арматуры. Примеры расчетов приведены в статье. По вопросам подбора оборудования просьба обращаться к инженерам отдела регулирующей арматуры компании АДЛ.

РЕГУЛИРУЮЩИЙ КЛАПАН — это… Что такое РЕГУЛИРУЮЩИЙ КЛАПАН?


РЕГУЛИРУЮЩИЙ КЛАПАН

устройство для регулирования давления, уровня, расхода и др. параметров. Устанавливается на магистральных и технологич. трубопроводах, резервуарах, аппаратах и т. п. Состоит из регулирующего органа и исполнит. механизма. Различают Р. к. низкого, среднего и высокого давления; по конструкции — одно- и двухседельные, диафрагмовые, проходные, угловые, трёхходовые и др. Наиболее распространены двухседельные Р. к. с мембранно-пружинным исполнит. механизмом (см. рис.). Командный сигнал с помощью мембраны и возвратной пружины преобразуется в перемещение штока с затвором, к-рый изменяет проходвое сечение, а следовательно, и пропускную способность Р. к.

Регулирующий клапан: 1 - регулирующий орган; II - пневматический исполнительный механизм; 1 - мембрана; 2 - возвратная пружина; 3 - шток; 4 - корпус регулирующего органа; 5 - затвор; 6 - сёдла

Регулирующий клапан: 1 — регулирующий орган; II — пневматический исполнительный механизм; 1 — мембрана; 2 — возвратная пружина; 3 — шток; 4 — корпус регулирующего органа; 5 — затвор; 6 — сёдла

Большой энциклопедический политехнический словарь. 2004.

  • РЕГУЛИРОВАНИЕ СТОКА
  • РЕГУЛЯТОР

Смотреть что такое «РЕГУЛИРУЮЩИЙ КЛАПАН» в других словарях:

  • регулирующий клапан — Регулирующая арматура, конструктивно выполненная в виде клапана с исполнительным механизмом или ручным управлением. [ГОСТ Р 52720 2007] Классификация (по ГОСТ 12893 2005) числу седел односедельные двухседельные; типу плунжера пробочные сегментные …   Справочник технического переводчика

  • РЕГУЛИРУЮЩИЙ КЛАПАН — 3.21. РЕГУЛИРУЮЩИЙ КЛАПАН Клапан, предназначенный для регулирования параметров рабочей среды посредством изменения ее расхода и управляемый от внешнего источника энергии ² Источник: РМ 4 239 91: Системы автоматизации. Словарь справочник по… …   Словарь-справочник терминов нормативно-технической документации

  • Регулирующий клапан — Современный регулирующий клапан с электрическим приводом. Регулирующий клапан один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто примен …   Википедия

  • регулирующий клапан — reguliavimo vožtuvas statusas T sritis automatika atitikmenys: angl. control valve vok. Abstimmventil, n; Reglerventil, n; Regulierventil, n rus. клапан управления, m; регулировочный клапан, m; регулирующий клапан, m pranc. soupape de réglage, f …   Automatikos terminų žodynas

  • регулирующий клапан — reguliavimo vožtuvas statusas T sritis Energetika apibrėžtis Vožtuvas slėgiui, lygiui, debitui ir kitiems parametrams reguliuoti. Magistralinių ir technologinių vamzdynų, rezervuarų, aparatų ir pan. vožtuvas. atitikmenys: angl. regulating valve;… …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Регулирующий клапан —         устройство для регулирования температуры, давления, расхода и др. параметров. Входит в автоматические системы управления или регулирования и воздействует на течение технологических или теплоэнергетических процессов в соответствии с… …   Большая советская энциклопедия

  • регулирующий клапан паровой стационарной турбины — регулирующий клапан Клапан для регулирования расхода пара через проточную часть цилиндра паровой стационарной турбины. [ГОСТ 23269 78] Тематики газовые и паровые турбины и двигатели Обобщающие термины элементы и составные части Синонимы… …   Справочник технического переводчика

  • Регулирующий клапан нормально закрытый НЗ — Регулирующий клапан, в котором при отсутствии энергии внешнего источника затвор закрыт Источник: ГОСТ 12893 83: Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • Регулирующий клапан нормально открытый НО — Регулирующий клапан, в котором при отсутствии энергии внешнего источника затвор открыт Источник: ГОСТ 12893 83: Клапаны регулирующие односедельные, двухседельные и клеточные. Общие технические условия …   Словарь-справочник терминов нормативно-технической документации

  • Регулирующий клапан (клапан) — терморегулятор без устройства автоматического регулирования температуры (может иметь рукоятку или защитный колпачок для изменения вручную количества протекающего через него теплоносителя). Источник …   Словарь-справочник терминов нормативно-технической документации

Отправить ответ

avatar
  Подписаться  
Уведомление о