Виды турбин – Газовая турбина. Устройство и принцип действия. Промышленное оборудование :: SYL.ru

Виды систем турбонаддува | Turbo Magic |

Турбонаддув – эффективный способ добавить мощности ДВС, не увеличивая частоту оборотов коленчатого вала и объем цилиндров. Сегодня мы хотим рассказать вам о том, какие существуют турбины, на какие ДВС их устанавливают и каковы принципы их работы. Популярны 3 вида высокотехнологичных турбин и систем наддува.

1. VGТ и VNT – изменяют площадь входного канала

Агрегат типа VGТ или VNT называют турбиной с изменяемой геометрией.

В чем разница:

  • Variable Geometry Turbocharger – это турбокомпрессор с изменяемой геометрией, разработка принадлежит BorgWarner.
  • Variable Nozzle Turbin – это турбина с переменным соплом, запатентована Garrett.

Как действуют: изменяют площадь входного канала и таким образом регулируют направление, силу и скорость потока выхлопных газов, поступающих на крыльчатку.

VGТ и VNT широко используют на дизелях (на машинах Volkswagen).

2. Twin Turbo – двойное турбо, или спаренные турбокомпрессоры 

Твинтурбо, Битурбо (Biturbo) – так называется способ наддува, в котором задействованы два турбокомпрессора. Благодаря двум турбинам можно преодолеть инерцию и избавиться от турбозадержки. Чтобы регулировать работу турбин, подключают ЭСУД, датчики и т.д. При этом схема расположения турбин может быть разной.

Существуют такие конструкции Twin Turbo:

  • Параллельная. Две турбины, одинаковые по параметрам, включаются и действуют одновременно и параллельно. Отработавшие газы равномерно распределяются между компрессорами, там сжимаются и направляются в общий впускной коллектор, а затем распределяются по цилиндрам. Эффективна потому, что две маленькие турбины дают меньшую турбозадержку, чем один большой турбоагрегат. Быстро увеличивается давления наддува и максимально сокращается турбояма. Используют преимущественно на дизельных V-образных моторах.
  • Последовательная. К двигателю присоединяют два турбокомпрессора, совпадающие по параметрам. Один работает постоянно, другой – включается в определенном режиме работы мотора (зависит от нагрузки и частоты оборотов). В некоторых режимах они работают параллельно. Плюс схемы – убирает последствия турбозадержки, входная мощность – максимальна. Используется на бензиновых двигателях и дизеле.
  • Ступенчатая. Используются два компрессора разных параметров, которые устанавливаются в выпускном и впускном каналах последовательно. Поток выхлопов и нагнетаемого воздуха регулируется клапанами. Разные турбокомпрессоры включаются на разных оборотах двигателя. По техническому уровню признана наиболее совершенной системой наддува. Устанавливают на дизелях от Опель, BMW и др.

Есть случаи последовательной установки трех и четырех турбин:

  • на BMW – triple-turbo;
  • на Bugatti – quad-turbo.

3. Twincharger – комбинированный наддув

Заключается в соединении двух видов наддува: механического и турбо. Механический компрессор осуществляет сжатие воздуха на низких оборотах ДВС, а на высоких он отключается. Когда обороты увеличиваются, включается турбонагнетатель и всю нагрузку по наддуву берет на себя. Twincharger используется в двигателе TSI от Volkswagen.

 

 

 Вернутся к списку «Статьи и новости»

5.5. Классификация турбин

Турбины паровые стационарные для привода турбогенераторов (ГОСТ 3618— 82) выпускаются мощностью от 2,5 до 1600 МВт на параметры свежего пара ро = 3,4÷23,5 МПа и to = 435÷565 °С.

Турбины изготовляются следующих типов: конденсационные (К), конденса­ционные с отопительным (теплофикаци­онным) отбором пара с давлением отбо­ра 0,18 МПа (Т), с производственным отбором пара для промышленного по­требления (П), с двумя регулируемыми отборами пара (ПТ), с противодавлени­ем (Р), с производственным отбором и противодавлением (ПР) и теплофика­ционные с противодавлением и отопи­тельным отбором пара (ТР).В обозначе­нии после буквы (тип турбины) приво­дится ее номинальная мощность в МВт, а затем номинальное давление пара (пе­ред стопорным клапаном турбины) в кгс/см

2. Для турбин П и ПТ в обозна­чении давления под чертой отмечается номинальное давление производственно­го отбора или противодавления турбины в кгс/см2.

Пример. Турбина номинальной мощ­ностью 60 МВт на начальное давление 12,74 МПа (130 кгс/см2) с двумя регули­руемыми отборами пара — производ­ственным 1,274 МПа (13 кгс/см2) и теп­лофикационным отбором обозначается ПТ-60-130/13.

Мощные конденсационные турбины типа К характеризуются тем, что почти весь пар, пройдя через турбину, направ­ляется в конденсатор и выделяющаяся при конденсации теплота полностью те­ряется. Из нескольких промежуточных ступеней турбины часть пара отбирается для регенеративного подогрева пита­тельной воды, повышающего, как пока­зано в § 6.4, термический КПД цикла. Таких отборов, называемых нерегулируе­мыми (давление отбора колеблется при изменении нагрузки), может быть от двух до девяти.

В конденсационных турбинах типа Т, предназначенных для совместной выра­ботки электроэнергии и теплоты, пар в ко­личестве, значительно большем, чем на регенерацию, отбирается на теплофика­цию, а оставшийся, пройдя последние ступени турбины, направляется в кон­денсатор. Давление пара, отбираемого на теплофикацию, поддерживается по­стоянным, отсюда отбор называют регу­лируемым.

Турбины типа П отличаются от тур­бин типа Т лишь тем, что пар из них отбирается для промышленного потреб­ления и имеет более высокие параметры. Промышленный отбор также является регулируемым, так как потребители тре­буют постоянного давления.

Турбины типа Р отличаются от всех предыдущих типов тем, что после них отсутствует конденсатор и весь отрабо­тавший пар идет на отопление или про­изводственные нужды.

Турбинами с противодавлением явля­ются также предвключенные турбины, после которых пар используется в турби­нах среднего давления. Такие турбины применяют и для «надстройки» турбин­ного оборудования электрических стан­ций при переводе их на пар более высо­ких параметров с целью повышения эко­номичности.

При расширении пара в многоступен­чатых турбинах удельный объем его от ступени к ступени возрастает, вызывая увеличение общего объема пара, прохо­дящего через проточную часть турбины. Например, пар, входя в турбину с давле­нием 2,85 МПа и температурой 400 °С, имеет удельный объем, равный 0,103 м

3/кг, а при выходе из турбины в конденсатор, где давление пара 4 кПа и влажность 12 %, удельный объем со­ставляет уже 31 мэ/кг, т. е. в 300 раз больше. Для пропуска возрастающего объема пара приходится увеличивать живое сечение сопл и лопаточных кана-

лов Но с увеличением высоты лопаток и диаметра дисков возрастают окружные скорости их движения, превышать кото­рые по условиям прочности сверх до­пустимых (н = 350-=-400 м/с) нельзя. Так как наибольшую высоту имеют ло­патки последних ступеней, то именно их пропускная способность по пару лимити­рует предельную мощность турбины

В настоящее время предельная мощ­ность однопоточной конденсационной турбины на высокое давление не превы­шает 50 МВт.

Реактивная турбина — Википедия

Материал из Википедии — свободной энциклопедии

Схема активной(слева) и реактивной(справа) турбин, где ротор — вращающаяся часть, а статор — неподвижная. В активной (импульсной) турбине расширение рабочего тела(пара) происходит в соплах, а в реактивной в каналах, образованных лопатками турбины.

Реактивная турбина — турбина, ротор которой использует силу реакции потока, возникающую при расширении рабочего тела (напор жидкости, теплоперепад газа или пара) в каналах, образованных лопатками ротора и в которой большая часть потенциальной энергии рабочего тела преобразуется в механическую работу в лопаточных каналах рабочего колеса, как правило, имеющих конфигурацию реактивного сопла.[1] Почти все турбины одновременно являются в какой-то степени и активными, и реактивными, то есть давление рабочего тела на лопатки обеспечивается как его кинетической энергией, так и за счет его расширения, но соотношение активной и реактивной составляющей у разных турбин отличается друг от друга. Принято называть реактивными лишь те турбины, в которых по реактивному принципу в механическую работу переходит не менее 50 % всей преобразованной потенциальной энергии рабочего тела.

Альтернативная конструкция турбины, в которой потенциальная энергия рабочего тела (газа, пара, жидкости) преобразуется в кинетическую (то есть давление рабочего тела уменьшается, а скорость растёт) в неподвижных каналах (соплах), а затем на рабочих лопатках происходит превращение кинетической энергии в механическую работу, называется активной турбиной (англ. action turbine).

Поворотно-лопастная турбина — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 мая 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 мая 2019; проверки требует 1 правка. Поворотно-лопастная турбина (предоставлено Voith-Siemens)

Поворотно-лопастная турбина, турбина Каплана — реактивная турбина, лопасти которой могут поворачиваться вокруг своей оси одновременно, за счёт чего регулируется её мощность. Также мощность может регулироваться с помощью лопаток направляющего аппарата. Лопасти гидротурбины могут быть расположены как перпендикулярно её оси, так и под углом. Последняя разновидность называется диагональной турбиной.

Запатентована в 1920 году австрийским инженером Виктором Капланом, благодаря чему во многих странах мира эта турбина носит имя изобретателя. Однако имя Каплана носит также турбина без возможности поворота лопастей, положение которых относительно ротора является фиксированным. Турбины последнего типа обычно называются пропеллерными или полу-Каплан.[1][2]

Поток воды в поворотно-лопастной турбине движется вдоль её оси. Ось турбины может располагаться как вертикально, так и горизонтально. При вертикальном расположении оси поток перед поступлением в рабочую камеру турбины закручивается в спиральной камере, а затем спрямляется с помощью обтекателя. Это необходимо для равномерной подачи воды на лопасти турбины, а значит, уменьшения её износа.

Газовая турбина. Устройство и принцип действия. Промышленное оборудование :: SYL.ru

«Турбонаддув», «турбореактивные», «турбовинтовые», — эти термины прочно вошли в лексикон инженеров XX века, занимающихся проектированием и обслуживанием транспортных средств и стационарных электрических установок. Их применяют даже в смежных областях и рекламе, когда хотят придать названию продукта какой-то намек на особую мощность и эффективность. В авиации, ракетах, кораблях и на электростанциях чаще всего применяется газовая турбина. Как она устроена? Работает ли на природном газе (как можно подумать из названия), и какими вообще они бывают? Чем турбина отличается от других типов двигателя внутреннего сгорания? В чем ее преимущества и недостатки? Попытка как можно полнее ответить на эти вопросы предпринята в этой статье.

газовая турбина

Российский машиностроительный лидер ОДК

России, в отличие от многих других независимых государств, образовавшихся после распада СССР, удалось в значительной мере сохранить машиностроительную промышленность. В частности, производством силовых установок особого назначения занимается фирма «Сатурн». Газовые турбины этой компании находят применение в судостроении, сырьевой отрасли и энергетики. Продукция высокотехнологична, она требует особого подхода при монтаже, отладке и эксплуатации, а также специальных знаний и дорогостоящей оснастки при плановом обслуживании. Все эти услуги доступны заказчикам фирмы «ОДК — Газовые турбины», так сегодня она называется. Таких предприятий в мире не так уж много, хотя принцип устройства главной продукции на первый взгляд несложен. Имеет огромное значение накопленный опыт, позволяющий учитывать многие технологические тонкости, без чего добиться долговечной и надежной работы агрегата невозможно. Вот лишь часть ассортимента продукции ОДК: газовые турбины, электростанции, агрегаты для перекачки газа. Среди заказчиков – «Росатом», «Газпром» и другие «киты» химической промышленности и энергетики.

Изготовление таких сложных машин требует в каждом случае индивидуального подхода. Расчет газовой турбины в настоящее время полностью автоматизирован, но имеют значение материалы и особенности монтажных схем в каждом отдельном случае.

А начиналось все так просто…

одк газовые турбины

Поиски и пар

Первые опыты преобразования поступательной энергии потока во вращательную силу человечество провело еще в глубокой древности, применив обычное водяное колесо. Все предельно просто, сверху вниз течет жидкость, в ее поток помещаются лопатки. Колесо, снабженное ими по периметру, крутится. Так же работает и ветряная мельница. Затем настал век пара, и вращение колеса убыстрилось. Кстати, так называемый «эолипил», изобретённый древним греком Героном примерно за 130 лет до Рождества Христова, представлял собой паровой двигатель, работающий именно по такому принципу. В сущности, это была первая известная исторической науке газовая турбина (ведь пар — это газообразное агрегатное состояние воды). Сегодня все же принято разделять эти два понятия. К изобретению Герона тогда в Александрии отнеслись без особого восторга, хотя и с любопытством. Промышленное оборудование турбинного типа появилось только в конце XIX века, после создания шведом Густафом Лавалем первого в мире активного силового агрегата, оснащенного соплом. Примерно в том же направлении работал инженер Парсонс, снабдив свою машину несколькими функционально связанными ступенями.

Рождение газовых турбин

Столетием ранее некоему Джону Барберу пришла в голову гениальная мысль. Зачем нужно сначала нагревать пар, не проще ли использовать непосредственно выхлопной газ, образующийся при сгорании горючего, и тем самым устранить ненужное посредничество в процессе преобразования энергии? Так получилась первая настоящая газовая турбина. Патент 1791 года излагает основную идею использования в безлошадной повозке, но его элементы сегодня применяются в современных ракетных, авиационных танковых и автомобильных моторах. Начало процессу реактивного двигателестроения дал в 1930 году Фрэнк Уиттл. Ему пришла идея использовать турбину для приведения в движение самолета. В дальнейшем она нашла развитие в многочисленных турбовинтовых и турбореактивных проектах.

сатурн газовые турбины

Газовая турбина Николы Тесла

Знаменитый ученый-изобретатель всегда подходил к изучаемым вопросам нестандартно. Для всех казался очевидным тот факт, что колеса с лопатками или лопастями «улавливают» движение среды лучше, чем плоские предметы. Тесла, в свойственной ему манере, доказал, что если собрать роторную систему из дисков, расположениях на оси последовательно, то за счет подхватывания пограничных слоев потоком газа, она будет вращаться не хуже, а в некоторых случаях даже лучше, чем многолопастный пропеллер. Правда, направленность подвижной среды должна быть тангенциальной, что в современных агрегатах не всегда возможно или желательно, но зато существенно упрощается конструкция, — в ней совершенно не нужны лопатки. Газовой турбины по схеме Тесла пока не строят, но возможно, идея лишь ждет своего времени.

Принципиальная схема

Теперь о принципиальном устройстве машины. Она представляет собой совокупность вращающейся системы, насаженной на ось (ротора) и неподвижной части (статора). На валу размещен диск с рабочими лопатками, образующими концентрическую решетку, на них воздействует газ, подаваемый под давлением через специальные сопла. Затем расширившийся газ поступает на крыльчатку, также оборудованную лопатками, называемыми рабочими. Для впуска воздушно-топливной смеси и выпуска (выхлопа) служат особые патрубки. Также в общей схеме участвует компрессор. Он может быть выполнен по различному принципу, в зависимости от требуемого рабочего давления. Для его работы от оси отбирается часть энергии, идущая на сжатие воздуха. Газовая турбина работает за счет процесса сгорания воздушно-топливной смеси, сопровождающегося значительным увеличением объема. Вал вращается, его энергию можно использовать полезно. Такая схема называется одноконтурной, если же она повторяется, то ее считают многоступенчатой.

 промышленное оборудование

Достоинства авиационных турбин

Примерно с середины пятидесятых годов появилось новое поколение самолетов, в том числе и пассажирских (в СССР это Ил-18, Ан-24, Ан-10, Ту-104, Ту-114, Ту-124 и т. д.), в конструкции которых авиационные поршневые двигатели окончательно и бесповоротно были вытеснены турбинными. Это свидетельствует о большей эффективности такого типа силовой установки. Характеристики газовой турбины превосходят параметры карбюраторных моторов по многим пунктам, в частности, по отношению мощность/вес, которое для авиации имеет первостепенное значение, а также по не менее важным показателям надежности. Ниже расход топлива, меньше подвижных деталей, лучше экологические параметры, снижен шум и вибрации. Турбины менее критичны к качеству горючего (чего нельзя сказать о топливных системах), их легче обслуживать, они требуют не так много смазочного масла. В общем, на первый взгляд кажется, что состоят они не из металла, а из сплошных достоинств. Увы, это не так.

лопатки газовой турбины

Есть у газотурбинных двигателей и недостатки

Газовая турбина во время работы нагревается, и передает тепло окружающим ее элементам конструкции. Особенно это критично опять же в авиации, при использовании реданной схемы компоновки, предполагающей омывание реактивной струей нижней части хвостового оперения. Да и сам корпус двигателя требует особой теплоизоляции и применения особых тугоплавких материалов, выдерживающих высокие температуры.

Охлаждение газовых турбин – сложная техническая задача. Шутка ли, они работают в режиме фактически перманентного взрыва, происходящего в корпусе. КПД в некоторых режимах ниже, чем у карбюраторных моторов, впрочем, при использовании двухконтурной схемы этот недостаток устраняется, хотя усложняется конструкция, как и в случае включения в схему компрессоров «дожима». Разгон турбин и выход на рабочий режим требует некоторого времени. Чем чаще происходит запуск и остановка агрегата, тем быстрей он изнашивается.

расчет газовой турбины

Правильное применение

Что же, без недостатков ни одна система не обходится. Важно найти такое применение каждой из них, при котором ярче проявятся ее достоинства. Например, танки, такие как американский «Абрамс», в основе силовой установки которого – газовая турбина. Его можно заправлять всем, что горит, от высокооктанового бензина до виски, и он выдает большую мощность. Пример, возможно, не очень удачный, так как опыт применения в Ираке и Афганистане показал уязвимость лопаток компрессора к воздействию песка. Ремонт газовых турбин приходится производить в США, на заводе-изготовителе. Отвести танк туда, потом обратно, да и стоимость самого обслуживания плюс комплектующие…

Вертолеты, российские, американские и других стран, а также мощные быстроходные катера в меньшей степени страдают от засорений. В жидкостных ракетах без них не обойтись.

Современные боевые корабли и гражданские суда также имеют газотурбинные двигатели. А еще энергетика.

характеристики газовой турбины

Тригенераторные электростанции

Проблемы, с которыми сталкивались авиастроители, не так волнуют тех, кто производит промышленное оборудование для производства электроэнергии. Вес в этом случае уже не так важен, и можно сосредоточиться на таких параметрах, как КПД и общая эффективность. Генераторные газотурбинные агрегаты имеют массивный каркас, надежную станину и более толстые лопасти. Выделяемое тепло вполне возможно утилизировать, используя для самых различных нужд, — от вторичного рециклинга в самой системе, до отопления бытовых помещений и термального питания холодильных установок абсорбционного типа. Такой подход называется тригенераторным, и КПД в этом режиме приближается к 90 %.

Ядерные энергоустановки

Для газовой турбины не имеет принципиальной разницы, каков источник разогретой среды, отдающей свою энергию ее лопаткам. Это может быть и сгоревшая воздушно-топливная смесь, и просто перегретый пар (не обязательно водяной), главное, чтобы он обеспечивал ее бесперебойное питание. По своей сути энергетические установки всех атомных электростанций, подводных лодок, авианосцев, ледоколов и некоторых военных надводных кораблей (ракетный крейсер «Петр Великий», например) имеют в своей основе газовую турбину (ГТУ), вращаемую паром. Вопросы безопасности и экологии диктуют закрытый цикл первого контура. Это означает, что первичный тепловой агент (в первых образцах эту роль выполнял свинец, сейчас его заменили парафином), не покидает приреакторной зоны, обтекая тепловыделяющие элементы по кругу. Нагрев рабочего вещества осуществляется в последующих контурах, и испаренный углекислый газ, гелий или азот вращает колесо турбины.

охлаждение газовых турбин

Широкое применение

Сложные и большие установки практически всегда уникальны, их производство ведется малыми сериями или вообще изготовляются единичные экземпляры. Чаще всего агрегаты, выпускаемые в больших количествах, находят применение в мирных отраслях хозяйства, например, для перекачки углеводородного сырья по трубопроводам. Именно такие и производятся компанией ОДК под маркой «Сатурн». Газовые турбины насосных станций полностью соответствуют по назначению своему названию. Они действительно качают природный газ, используя для своей работы его же энергию.

Отправить ответ

avatar
  Подписаться  
Уведомление о